
|

|
Full Text: 
|
|
¿µ³²ÀÇ´ëÇмúÁö Vol.24 No.2 p252-261, Dec. 2007
|
Original Article
|
Çѱ¹Àο¡¼ ¥â3AR, UCP2 À¯ÀüÀÚÀÇ ´ÙÇü¼º°ú üÁú·®Áö¼öÀÇ °ü·Ã¼º |
Association Analyses of ¥â3AR Trp64Arg and UCP-2 -866G/A Polymorphisms with Body Mass Index in Korean
|
Á¤È«¼ö, ÀÌÁÖÇö, »ç°øÁØ*?¹è¼º¿í¢Ó?±èÁ¤Èñ?±èÀç·æ
|
¿µ³²´ëÇб³ Àǰú´ëÇÐ »ýÈÇÐ?ºÐÀÚ»ý¹°Çб³½Ç*, ¿¹¹æÀÇÇб³½Ç¢Ó, ¿µ³²´ëÇк´¿ø °Ç°ÁõÁø¼¾ÅÍ¢Ó
|
|
Ã¥ÀÓÀúÀÚ£º±èÀç·æ, ´ë±¸½Ã ³²±¸ ´ë¸í5µ¿ 317-1, ¿µ³²´ëÇб³ Àǰú´ëÇÐ »ýÈÇÐ?ºÐÀÚ»ý¹°Çб³½Ç
|
Tel: (053) 620-4342, Fax: (053) 654-6651
|
Email: kimjr@med.yu.ac.kr
|
December 30, 2007
|
|
Abstract
|
|
Background£ºObesity is the most common nutritional disorder in Western society as well as in Korea. Obesity results from a combination of genetic, environmental, and behavioral factors.
Materials and Methods£ºIn an attempt to investigate the association of obesity with its candidate genes, ¥â3 adrenergic receptor (¥â3AR) and uncoupling protein 2 (UCP2), we analyzed polymorphisms of ¥â3AR Trp64Arg and UCP2 -866G/A by PCR-RFLP analysis and the obesity-related phenotypes, including body mass index (BMI), fasting glucose concentration, and plasma lipid profiles in 750 subjects.
Results£ºThe Trp64Arg polymorphism in the ¥â3AR gene was not statistically associated with the BMI. The UCP2 -866G/A polymorphism was significantly higher in obese than in non-obese subjects (P<0.05). However, the UCP2 -866A/A polymorphism was higher in the non-obese subjects.
Conclusion£ºThese results suggest that the UCP2 -866G/A polymorphism might be more useful for the prediction of obesity and obesity-associated diseases in Korean patients than the ¥â3AR Trp64Arg polymorphism.
º» ¿¬±¸´Â ¿µ³²´ëÇб³ ¼±µµ¿¬±¸ºñ(105098)ÀÇ Áö¿øÀ» ¹Þ¾Æ ÀÌ·ç¾îÁ³´Ù.
|
|
Key Words: Obesity, Beta-3 adrenergic receptor, Uncoupling protein 2, Polymorphism, Body Mass Index
|
|
References |
|
|
|
1. Friedman JM. Obesity in the new millennium. Nature 2000 Apr;404:632-4.
|
|
2. Bray GA, Tartaglia LA. Medicianl strategies in the treatment of obesity. Nature 2000 Apr; 404:672-7.
|
|
3. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature 1995 Mar;372:425-32.
|
|
4. Rosmond R. Association studies of genetic polymorphisms in central obesity: a critical review. Int J Obes Relat Metab Disord 2003 Oct;27:1141-51.
|
|
5. Strobel A, Issad T, Camoin L, Ozata M, Strosberg AD. A leptin missense mutation associated with hypogonadism and morbid obesity. Nat Genet 1998 Mar;18:213-5.
|
|
6. Schwartz MW, Woods SC, Porte D Jr, Seeley RJ, Baskin DG. Central nervous system control of food intake. Nature 2000 Apr;404:661-71.
|
|
7. Hinney A, Becker I, Heibult O, Nottebom K, Schmidt A, Ziegler A, et al. Systematic mutation screening of the pro-opiomelanocortin gene: identification of several genetic variants including three different insertions, one nonsense and two missense point mutations in probands of different weight extremes. J Clin Endocrinol Metab 1998 Oct;83:3737-41.
|
|
8. Wilson BD, Ollmann MM, Barsh GS. The role of agouti-related protein in regulating body weight. Mol Med Today 1999 Jun;5:250-6.
|
|
9. Rosmond R, Chagnon M, Bouchard C, Bjorntorp P. A missense mutation in the human melanocortin-4 receptor gene in relation to abdominal obesity and salivary cortisol. Diabetologia 2001 Oct;44:1335-8.
|
|
10. Esterbauer H, Schneitler C, Oberkofler H, Ebenbichler C, Paulweber B, Sandhofer F, et al. A common polymorphism in the promoter of UCP2 is associated with decreased risk of obesity in middle-aged humans. Nat Genet 2001 Jun;28:178-83.
|
|
11. Lowell BB, Flier JS. Brown adipose tissue, ¥â3-adrenergic receptors, and obesity. Annu Rev Med 1997 Feb;48:307-16.
|
|
12. Clement K, Vaisse C, Manning BS, Basdevant A, Guy-Grand B, Ruiz J, et al. Genetic variation in the ¥â3-adrenergic receptor and an increased capacity to gain weight in patients with morbid obesity. N Engl J Med 1995 Aug;333:352-4.
|
|
13. Oizumi T, Daimon M, Saitoh T, Kameda W, Yamaguchi H, Ohnuma H, et al. Genotype Arg/Arg, but not Trp/Arg, of the Trp64Arg polymorphism of the ¥â3-adrenergic receptor is associated with type 2 diabetes and obesity in a large Japanese sample. Diabetes Care 2001 Sep;24:1579-83.
|
|
14. Swarbrick MM, Chapman CM, McQuillan BM, Hung J, Thompson PL, Beilby JP. A Pro12Ala polymorphism in the human peroxisome proliferator-activated receptor-gamma 2 is associated with combined hyperlipidaemia in obesity. Eur J Endocrinol 2001 Mar;144:277-82.
|
|
15. ±èº´ÁØ, ±è¼ºÈÆ, ±èµ¿ÁØ, ÇÔÁ¾·Ä, ±èÁø¼®, ¾È±ÔÁ¤, µî. Çѱ¹ÀÎ ºñ¸¸Áõ¿¡¼ ¥â3 ¾Æµå·¹³¯¸° ¼ö¿ëü À¯ÀüÀÚ ´ÙÇü¼ºÀÇ ÀÇÀÇ. ´ç´¢º´ 1998 Oct;50:450-6.
|
|
16. ¹Ú¼®¿ø, ÀÌÇöö, ±Ç¼®ÁÖ, Á¶Àº¿µ, ÀÌÁ¾È£, ¼Û¿µµæ, µî. ºñ¸¸Àο¡¼ º£Å¸3-¾Æµå·¹³¯¸°¼º ¼ö¿ëü À¯ÀüÀÚº¯ÀÌ¿¡ µû¸¥ üÁö¹æ ºÐÆ÷¾ç»ó°ú üÁß°¨·®ÀÇ È¿°ú. ´ëÇѳ»ºÐºñÇÐȸÁö 1998 Oct;13:590-600.
|
|
17. À±Å½Â, ±è¿ëµæ, ±èÇý¼ø, ±è¹ÌÁ¤, ¼¿µ¼º, ±ÇÁßÇõ, µî. º£Å¸3-¾Æµå·¹³¯¸°¼º ¼ö¿ëü À¯ÀüÀÚ º¯ÀÌ¿Í Ã¼Áö¹æ ºÐÆ÷. ´ëÇѳ»ºÐºñÇÐȸÁö 2003 Jan;18: 184-92.
|
|
18. Park HS, Kim Y, Lee C. Single nucleotide variants in the ¥â2-adrenergic and ¥â3-adrenergic receptor genes explained 18.3% of adolescent obesity variation. J Hum Genet 2005 Jun;50: 365-9.
|
|
19. ±èÇý¼ø, ÀÌÀαÔ, ¼¿µ¼º. ¸á¶ó³ëÄÚÆ¾-4 ¼ö¿ëü À¯ÀüÀÚ ´ÙÇü¼º°ú ºñ¸¸°úÀÇ °ü°è. ´ç´¢º´ 2003 Mar;27:123-31.
|
|
20. Salisbury BA, Pungliya M, Choi JY, Jiang R, Sun XJ, Stephens JC. SNP and haplotype variation in the human genome. Mutat Res 2003 May;526:53-61.
|
|
21. van Baak MA. The peripheral sympathetic nervous system in human obesity. Obes Rev 2001 Feb;2:3-14.
|
|
22. Collins S, Daniel KW, Rohlfs EM, Ramkumar V, Taylor IL, Gettys TW. Impaired expression and functional activity of the ¥â3- and ¥â1- adrenergic receptors in adipose tissue of congenitally obese (C57BL/6J ob/ob) mice. Mol Endocrinol 1994 Apr;8:518-27.
|
|
23. Grujic D, Susulic VS, Harper ME, Himms- Hagen J, Cunningham BA, Corkey BE, et al. ¥â3-adrenergic receptors on white and brown adipocytes mediate ¥â3-selective agonist-induced effects on energy expenditure, insulin secretion, and food intake. A study using transgenic and gene knockout mice. J Biol Chem 1997 Jul;272:17686-93.
|
|
24. Walston J, Silver K, Bogardus C, Knowler WC, Celi FS, Austin S, et al. Time of onset of non-insulin-dependent diabetes mellitus and genetic variation in the ¥â3-adrenergic-receptor gene. N Engl J Med 1995 Aug;333:343-7.
|
|
25. Widen E, Lehto M, Kanninen T, Walston J, Shuldiner AR, Groop LC. Association of a polymorphism in the ¥â3-adrenergic-receptor gene with features of the insulin resistance syndrome in Finns. N Engl J Med 1995 Aug;333:348-51.
|
|
26. Ghosh S, Langefeld CD, Ally D, Watanabe RM, Hauser ER, Magnuson VL, et al. The W64R variant of the ¥â3-adrenergic receptor is not associated with type II diabetes or obesity in a large Finnish sample. Diabetologia 1999 Feb;42:238-44.
|
|
27. Janssen JA, Koper JW, Stolk RP, Englaro P, Uitterlinden AG, Huang Q, et al. Lack of associations between serum leptin, a polymorphism in the gene for the ¥â3-adrenergic receptor and glucose tolerance in the Dutch population. Clin Endocrinol (Oxf) 1998 Aug;49: 229-34.
|
|
28. Jezek P. Possible physiological roles of mitochondrial uncoupling proteins-UCPn. Int J Biochem Cell Biol 2002 Oct;34:1190-206.
|
|
29. Le Fur S, Le Stun. C, Dos Santos C, Bougneres P. The common -866G/A polymorphism in the promoter of uncoupling protein 2 is associated with increased carbohydrate and decreased lipid oxidation in juvenile obesity. Diabetes 2004 Jan;53:235-9.
|
|
30. Schauble N, Geller F, Siegfried W, Goldschmidt H, Remschmidt H, Hinney A, et al. No evidence for involvement of the promoter polymorphism -866G/A of the UCP2 gene in childhood-onset obesity in humans. Exp Clin Endocrinol Diabetes 2003 Apr;111:73-6.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|