중이수술에 인체에서 추출한 Fibrin 접착제의 이용 : Ammonium Sulfate fibrin 접착제와 Tisseel®의 비교

국군 대구 병원 이비인후과
이 형철

영남대학교 의과대학 이비인후과학교실
양미경 박문흡

서 론

중이 수술의 발전과 함께 중이 수술의 성공을 높이고자 이식하는 고막 및 이소골의 더욱 안정성 있는 결합력을 얻으려는 시도가 연구되고 있으며, 최근 인체 추출물인 fibrin을 이용한 방법이 발전하게 중이수술에 이용됨으로서 중이 수술이 새로운 전기를 맞고 있다고 한다.

그 동안 중이 수술에 cyanoacrylates 제제를 이용한 연 구를 있었으나 중이 심한 조직피사 및 내이 독성 때문에 임상적으로 활용되는 못하였다.

인체에서 추출한 fibrinogen 등의 혈액응고 인자와 thrombin을 결합시켜 접착제를 만들어 이용함으로써 인체에서 독성이 전혀 없으며, 혈 수가 완전히 일어나며, 적당한 장력이 유지되 고 수술후 처유가 빠르므로 더욱 성공적인 수술 결과를 기대할 수 있다.

상품화된 fibrin 접착제(Tisseel®)는 타인의 혈액을 이용하여 만드는 것으로 바이러스성 간염 이나 후천성 면역 결핍증의 결과에 의한 가능성이 있으며 고가비밀이 단점이며, 자가 fibrin 접착제는 상기 문제가 배제되어 안전하게 사용 할 수 있다.

저작들은 fibrin 접착제로 근막 및 인공이소골 (TORP)을 접착하여 장력을 측정하였으며 함후 fibrin 접착제를 중이 수술 및 다른 미세수술에 이용함으로서 좋은 결과를 얻을 것으로 기대하는 바이다.

재료 및 방법

1. Ammonium Sulfate fibrin 접착제의 제조

1) Component 1 (Fig 1.)

10% sodium citrate 용액 4cc 와 36cc의 혈액을 혼합하여 3,200 RPM으로 10분간 원심분리하여 상층액(혈장)을 분리하고 여기에 포화 ammonium sulfate 용액 5.2cc을 첨가하면 fibrinogen 침전이 일어난다. 이것은 3,200 RPM으로 3분간 원심분리한 후 상층액을 버리고 백색 침전물만 남긴다. 이 상태로 24시간 가량 방동 보관할 수 있다. 이 침전물에 calcium chloride 용액 (40 mmol/l) 4cc 을 넣어 잘 혼들어 용해시킨다. (component 1.)
2) Component 2.
Bovine thrombin (500IU/ml) 용액

2. 상품화된 Fibrin 접착제 (Tisseel®)
오스트리아의 IMMUNO AG.에서 생산한 접착제로 냉동 충전법에 의하여 저장된 인체 혈액에서 대량 추출함.
1) Component 1.
fibrinogen, 혈액응고인자 XIII, 및 fibrin 분해 억제제인 aprotinin 용액임.
2) Component 2.
thrombin (4IU/ml 또는 500IU/ml) 및 calcium chloride 용액임.

3. 사용방법
1) 근막 사이의 접착력 측정

인체에서 체취한 근막을 사방 1cm 으로 잘라서 근막의 끝을 실험 병 안에 넣고 한계는 위로 고정하고 한계는 아래로 고정하여 무게를 측정할 수 있게 만든다 (Fig. 2.).
Fibrin 접착제 component 1 과 component 2 을 같은 양 두근막 사이에 넣고 10분 및 30분 후 접착력을 측정한다. Ammonium sulfate fibrin 접착제와 Tisseel®을 교대로 측정하였다.

2) 근막과 인공이소골 (TORP : Ceravital® Ceramic Ossicular Replacement Prosthesis, Xomed Inc.)의 특성

사방 1cm 되는 근막의 한쪽면을 프라스틱관에 고정하고 TORP 의 아래 부분에 무게를 측정할 수 있게 장치한 후 (Fig. 3.) 근막과 TORP 사이에 fibrin 접착제 component 1 과 component 2 을 같은 양 집어 넣고 10분 및 30분 후 접착력을 측정한다. Ammonium sulfate fibrin 접착제와 Tisseel®을 교대로 측정하였다.

Fig. 1. Diagram of preparation of autologous fibrin glue (component 1).

Fig. 2. Two 1-cm pieces of fascia glued with fibrin adhesive suspended and weighted to determined shearing strength at separation.

Fig. 3. TORP glued to a piece of fascia with fibrin adhesive. Suspended and weighted to determine bonding power at separation.

성 적
1. 근막 사이의 fibrin 접착력 측정
Ammouium sulfate fibrin 접착력에 의한 접착력은 5회 실시한 결과 10분 후 36gm에서 315gm까지 나타났고 평균 175.2gm 이었으며, 30분 후 140gm에서 920gm까지 나타났고 평균 406gm 이었다.

Tisseel®에 의한 접착력은 4회 실시한 결과 10분 후 420gm에서 980gm까지 나타났고 평균 722.5gm이었으며, 30분 후 490gm에서 1140gm까지 나타났고 평균 832.5gm 이었다(Table. 1).

2. 근막과 TORP 의 접착력 측정

Ammouium sulfate fibrin 접착력에 의한 접착력은 4회 실시한 결과 10분 후 1.5gm에서 7.5gm까지 나타났고 평균 3.78gm 이었다. 30분 후 4.5gm에서 21.5gm까지 나타났고 평균 12.05gm 이었다.

Tisseel®에 의한 접착력은 3회 실시한 결과 10분 후 15gm에서 48gm까지 나타났고 평균 36gm이었으며, 30분 후 56gm에서 102gm까지 나타났고 평균 85.33gm 이었다(Table. 2).

고찰

상처 치유과정에서 fibrin의 중요성은 이미 알려진 사실이다. 조직이 손상을 입으면 thrombin과 calcium에 의해 fibrinogen이 fibrin 으로 변하여 응고가 일어나고 손상된 조직과 혈관과 접착 효과를 가지게 되어 염증 및 세균 손상을 예방하고 세포 성장에 필요한 물질을 생성하게 되는 것이다. 또한 fibrin은 다형 백혈구의 화학추적(Chemotaxis)을 유발하는 데 필수적이기도 하다.

Table 1. Compared shearing strength(gm/cm²)

<table>
<thead>
<tr>
<th></th>
<th>ASFA*</th>
<th>Tisseel®</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 min</td>
<td>30 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>140</td>
<td>420</td>
</tr>
<tr>
<td>53</td>
<td>285</td>
<td>620</td>
</tr>
<tr>
<td>160</td>
<td>325</td>
<td>870</td>
</tr>
<tr>
<td>312</td>
<td>360</td>
<td>980</td>
</tr>
<tr>
<td>315</td>
<td>920</td>
<td></td>
</tr>
<tr>
<td>average</td>
<td>175.2</td>
<td>406</td>
</tr>
</tbody>
</table>

* ASFA (Ammonium Sulfate Fibrin Adhesive)

Table 2. Torp Bonding(gm)

<table>
<thead>
<tr>
<th></th>
<th>ASFA*</th>
<th>Tisseel®</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 min</td>
<td>30 min</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td>4.5</td>
<td>15</td>
</tr>
<tr>
<td>2.7</td>
<td>7.2</td>
<td>45</td>
</tr>
<tr>
<td>3.4</td>
<td>15</td>
<td>48</td>
</tr>
<tr>
<td>7.5</td>
<td>21.5</td>
<td></td>
</tr>
<tr>
<td>average</td>
<td>3.78</td>
<td>12.05</td>
</tr>
</tbody>
</table>

이러한 합성 접착제의 부적당함으로 인해 주로 수술동에 생체조직을 이용한 접착제의 사용이 시도되었다.

최초의 조직의 접합이나 피부복합에 이용한 fibrinogen 분말과 현장 농축액을 thrombin과 혼합한 용액은 fibrinogen의 농도가 높은 경우 fibrin의 해제가 존재하기 때문에 용고용 접착제가 해리되면서 접착력이 약화되는 단점이 있었다.

1972년 Matras 등은 fibrinogen, 혈액응고인 자 XIII, thrombin, calcium chloride 이 혼합된 용액을 이용하여 동물실험에서 접합된 신경접합에 성공함으로서 fibrin 접착제가 활성화되면서 유럽에서는 Tisseel® (Immuno, Inc Vienna)가 상용화되었다.

유럽에서 Tisseel®은 이비인후과 수술 및 다른 외과적 수술 및 병원내에 많이 사용되고 있으며 특이 중이 재건질에 큰 영향을 미치고 있다. 저장된 인체혈액에서 추출된 가damn에 바이러스성 간염 및 후천성 면역 결핍증 (AIDS)의 전과 가능성을 있어 미국에서 임상적으로 Tisseel®의 사용을 제한하고 있으며 동물실험에만 사용하고 있다.

Siedentop 등은 Tisseel®을 이용하여 chimpanz에 이소스 접합에 성공적으로 이용하였고 수술 45일후 조직검사에서 증이 및 내이에 독성효과 및 손상이 없음을 증명하였다.

Moretz 등은 fibrin 접착제를 사용하여 중이 수술을 성공적으로 하였으며 조직의 접착력은 상처 치유의 fibroblast의 증식기간(수술후 4 10일)까지 유지한다고 하였다. Fibrin 접착제의 최종 접착력의 70%가 fibrinogen 및 thrombin을 혼합한 2분이내에 얻어지며 최종적으로 fibrin 접착제는 완전히 흡수되어 상처치유 과정에는 전력 영향을 미치지 않는다. Feldmann 등은 Tisseel®을 이용하여 말초신경 접합에 사용하여 정확한 위치에 접합이 되고 신경손성이 적으므로 일반적인 방법보다 더 좋은 결과를 얻었다고 하였다. 또한 인체에 사용하는 인공 이식들 (proplast, silastic, supramis polyfilament, ear cartilage 등)도 fibrin 접착제로 쉽게 원하는 위치에 넣을 수 있었다고 한다. Palva 등은 쥐에 생긴 미로누역의 치료에 fibrin glue을 이용하므로서 성공적으로 치료할 수 있었다.

Fibrin 접착제의 주성분은 fibrinogen 이며 간에서 합성되며 사용기전은 혈액응고 기전에서 fibrin의 단량체가 중합하는 과정에서 얻는 접착력을 기반으로 한다. Thrombin과 반응하여 fibrin으로 되면서 응고를 유발하게 되고 혈액응고인자 XIII은 수소결합에 의해 느슨히 연결되어 있는 fibrin net를 종유고차결합으로 만들어 줄으므로서 기계적 안정성 뿐만 아니라 fibrin 분해억제 효과도 얻게 해준다(Fig. 4).

Fig. 4. Components and reactions of the fibrin glue system.
Fibrinogen 을 분리하는데는 여러가지 방법이 있다. 상품화된 fibrin 접착제는 방동침강법에 의해 fibrinogen 을 분리하는데서 yield가 낮고 3) 공정이 어려우며 고가인 단점 때문에 종이 수술 시 이용하기는 비효율적이지만 대량의 혈액을 사용하며 대량의 fibrinogen을 제조함으로 이 방법을 쓰고 있다.

Ammonium sulfate 침강법을 이용한 fibrinogen의 분리는 Wolf 4) 및 박 동등 5)이 임상적으로 많이 이용하고 있으며 환자의 혈액을 적정 세 취하여 심한에서 파편시간에 간단하게 제조 가능하며 Tissel® 보다는 접착력이 떨어지거나 임상적으로 이용하기에는 충분한 접착력이 없음을 있고 생체내 사용시 부작용이 없으므로 polyethylene glycol 침강법과 함께 가장 유용하게 사용되고 있다. 본 실험에서도 ammonium sulfate 침강법을 이용한 fibrin 접착제를 사용하였다.

Polyethylene glycol 침강법은 혈산바륨과 혈산마그네슘을 혈장과 반응시키고 30% polyethylene glycol로 침강시켜 고농도의 fibrinogen과 혈액용고인자 XII를 분리하여 임상적으로 이용하는 방법이다.

이와에도 ether 침강법 6), ethanol 분합법 7), glycine 및 ethano 침강법 8), glycine 및 ethanol 침강법 9), glycine 침강법 10) 등이 있으나 대부분의 방법이 장시간에 걸쳐 여러단계의 과정이 필요하고 차가운 곳에서 조작해야 되는 과정이 있고 제조물이 분해, 변성 또는 감염될 위험성이 커서 임상적으로 활용하기에는 부적당하다.

Epstein 등 11)은 임상적으로 이용하기 위하여 사가 fibrin은 다음의 특성을 갖는 것이 적당하다고 하였다.

1. 소량의 혈액으로 제조가능할 것
2. fibrinogen과 혈액용고인자 XIII을 고농도로 일일수 있으며 불필요한 단백질이 혼합되지 않은 것
3. 최고속 원심 분리나 ventilating blood가 필요없이 병원내에서 간단하게 조작이 가능할 것
4. 무균조작이 가능할 것
5. 수술 사용전 방동 보관이 가능할 것
6. 상품화된 제품과 비슷한 효능을 지닐 것
7. 공정상 특성있는 물질로 변하지 않을 것 등이다.

Sidentop 등 12)과 Laitakari 등 13)은 fibrin 접착제의 접착력은 fibrinogen의 농도에 비례한다고 하였으며 사가 fibrin 접착제는 종이 수술에 충분한 접착력을 가진다고 하였다.

지난 10여년간 fibrin 접착제는 이비인후과 영역에서 임상적으로 안전한제품으로, 이소프 제조, 고막제생술, 외이도 후벽 재건술, 피부 이식술, 뇌경막접합, 윗가루를 이용한 적응도 및 유향동체술, 비정격수술, 외상손 수술후 출혈치료등 다양하게 이용되고 있다. 14) fibrin 접착제의 독성작용에 대하여 Epstein 등 15)은 chinchilla를 이용한 동물실험에서 증이점막 및 이소프 손상을 관찰할 수 없었으며 페난유발 반응 검사상에서도 정상반응을 보였으므로 fibrin 접착제를 안전하게 사용할 수 있다고 했으며, Katzke 등 16)도 소량의 fibrin 접착제의 중이 및 내외의 독성작용 실험결과 전해 독성 작용을 발견할 수 없다고 했다. 그러나 Marquet 등 17)은 과량의 fibrin 접착제 사용시 가상혈관이나 육아홍이 생긴다고 하였다. 중이 수술에 fibrin 접착제를 사용함으로서 중이가네 Gelfoam의 사용을 줄일수 있으므로 Gelfoam 사용으로 옵서터는 중이가네에 혈종소실 및 혈관 막개리에 의한 고막의 절체 및 감각(promontory)에 유착되는 문제점의 발생을 줄이 수 있다. 이러한 fibrin 접착제는 이비인후과 영역 뿐 아니라 다른 외과적 미세 수술에 적용함으로서 좋은 결과를 얻을 수 있을 것이다. 18)
요 약

성공적인 종이수술을 위하여 안전하고 효과적인 접착제가 필요하며, 합성 접착제의 독성 작용 때문에 인체에서 수출한 접착제를 사용하게 되었다.

Fibrin 접착제가 저장 혈액에서 체취되면 갑염성 절환의 전염 위험이 있지만 자가 fibrin 접착제를 사용하면 전염위험이 없다.

저자들은 ammonium sulfate fibrin 접착제와 상품화된 fibrin 접착제의 접착력을 비교한 결과 ammonium sulfate fibrin 접착제의 접착력이 상품화된 fibrin 접착제의 반 정도의 접착력을 가지지만 그 정도의 접착력이면 고막계생술, 안면신경 봉합술, 이소골 재건술, 외이도 후벽계 건술, 헤아모를 이용한 전두동 및 유양동피제술 등 이비인후과 수술에 사용하기에 충분한 접착력이다.

참고 문헌

15. Mckelvie, P. : A trial of adhesives in recon-

Abstract

Use Biologic Fibrin Adhesive in Otologic Surgery: Compared with Ammonium Sulfate Fibrin Adhesive and Tisseel

Hyung Chul Lee
Department of Otolaryngology
Taegue Miliary Hospital

Mi Gyeung Yang and Mun Heum Park
Department of Otolaryngology
College of Medicine, Yeungnam University
Taegu, Korea

Successful middle ear surgery requires the availability of an safe, effective bonding material. Side effect caused by synthetic materials have led to the use of biologic adhesive. However, they carry the risk of transmission of infectious diseases if they are prepared from pooled human blood.

The adhesive strength of ammonium sulfate fibrin adhesive produce an adhesive strength that is half that of the homologous commercial product.

It is, however, good enough for use in several otolaryngological operations, tympanoplasty, facial nerve repair, reconstruction of ossicles, reconstruction of posterior wall of ear canal and obliteration of frontal sinus and mastoid antrum using bone dust.

Key Word: Biologic fibrin adhesive, Surgical tissue adhesive.