The Role of Secretory IgA and Complement in IgA Nephropathy

Beatrijs D. Oortwijn, PhD,* Jan-Willem Eijgenraam, MD,* Maria-Pia Rastaldi, MD, PhD,† Anja Roos, PhD,*‡ Mohamed R. Daha, PhD,* and Cees van Kooten, PhD*

Summary: IgA nephropathy (IgAN) is characterized by glomerular deposition of IgA, often together with complement components. This deposited IgA is mainly polymeric in nature. Although early studies suggested a role for local complement activation in the development of glomerular injury in IgAN, recent attention has focused on the involvement of the lectin pathway of complement activation in the progression of renal disease in IgAN. In addition, we have found that glomerular secretory IgA deposition may be one of the initiators of local complement activation in the kidney. In the present review we discuss recent developments in this area and provide a model of how mucosal immunity and renal inflammation may be interconnected.

Semin Nephrol 28:58-65 © 2008 Elsevier Inc. All rights reserved.

Keywords: Secretory IgA, complement activation, IgA nephropathy, mannose binding lectin, antigen-specific IgA

IgA nephropathy (IgAN) is the most common form of primary glomerulonephritis worldwide. The hallmark of this disease is the deposition of IgA1 in the glomerular mesangium.1,2 These deposits are thought to be composed mainly of high-molecular-weight IgA1, sometimes together with IgG or complement components such as C3.3 The disease shows a broad spectrum of clinical presentations, leading to progressive renal failure in a substantial proportion of patients. It has been reported that IgA deposits disappear after transplantation of a kidney from an IgAN patient into a non-IgAN patient.4 Furthermore, after renal transplantation recurrent mesangial IgA deposition is observed in about 50% of patients.5 These results strongly suggest that the basic abnormality of the disease lies within the IgA immune system rather than within the kidney. It is likely that several factors contribute to the development of IgAN, including the nature, glycosylation pattern and composition of IgA, dysregulation of the IgA immune response, and changes in the clearance of IgA from the circulation.6

Serum levels of IgA are increased in approximately 50% of patients with IgAN.7 Importantly, in other diseases associated with increased serum IgA, such as IgA myeloma, mesangial IgA deposition is not seen, suggesting there is something particular about the IgA molecule in IgAN that promotes mesangial deposition. One of the most consistent changes seen in the circulating pool of IgA is aberrant IgA1 glycosylation, possibly owing to a reduced activity of core 1 β1,3-galactosyltransferase (reviewed by Novak, pp. 78-87). This aberrantly glycosylated IgA also has been shown in glomerular IgA deposits, suggesting such molecules have a predisposition to mesangial deposition compared with normally glycosylated IgA.8

The increase in circulating IgA1 levels appears to be the result of an increased production of this isotype by the bone marrow9 and a
low clearance rate by the liver. Mucosal polymeric IgA (pIgA) plasma cell numbers are normal or even reduced in IgAN, and pIgA antibody levels in mucosal secretions are not increased and are sometimes lower than controls.

Interestingly, patients with IgAN often present with macroscopic hematuria after upper respiratory tract infections. Mucosal infection or presentation of live microorganisms leads to excess amounts of IgA in the systemic compartment with the propensity to induce glomerular injury. Immunization studies in IgAN, using different antigens and routes of administration, have produced conflicting results with respect to the systemic IgA response. Mucosal and systemic IgA hyporesponsiveness to mucosal immunization with the neoantigen cholera toxin subunit B has been reported. Furthermore, systemic antigen challenge results in normal or increased titers of circulating pIgA antibodies, with increased levels of IgA in mucosal secretions of IgAN patients.

The fundamental result of these changes in the IgA immune system is both a qualitative and quantitative alteration in circulating IgA. We believe these changes have a direct impact on the systemic clearance of IgA and the interaction of systemic IgA with glomerular mesangial cells. These events are the driving force for the local inflammatory response. Based on recent developments, this review primarily focuses on the role of secretory IgA (SIgA) and mannose binding lectin (MBL) in the pathogenesis of IgAN.

IgA

IgA is the most abundantly produced immunoglobulin isotype, and plays a critical role in protecting the host against environmental pathogens at mucosal surfaces. In human beings, IgA in the circulation primarily consists of monomeric IgA, and only 10% to 20% of the IgA is dimeric IgA (dIgA) or pIgA. Furthermore, IgA consists of 2 subclasses, namely IgA1 and IgA2. IgA1 has 10 potential O-glycosylation sites and 2 N-glycosylation sites. IgA2 has no O-glycosylation sites but has 2 to 3 additional N-glycosylation sites. In vitro deglycosylation of IgA leads to self-aggregation, suggesting that underglycosylation of IgA may contribute to the generation of high-molecular-weight IgA.

In secretions, SIgA is generated during transcytosis of dIgA by epithelial cells, ultimately leading to its association with the extracellular part of the polymeric Ig receptor (secretory component). Besides the presence of SIgA in the mucosa, low levels (10 μg/mL) of SIgA can be detected in serum.

COMPLEMENT IN IgAN

In IgAN, deposits of IgA are associated commonly with the deposition of complement components, most often C3, the membrane attack complex (C5b-9), and properdin. Furthermore, increased levels of split products of activated C3 have been observed in the circulation of patients with IgAN and associated with increased proteinuria and hematuria, suggesting involvement of the alternative pathway in IgAN. Indeed, in vitro as well as in vivo studies have shown that pIgA can activate directly the alternative pathway of complement, whereas monomeric IgA is a poor activator of the complement system. The molecular basis for this difference between monomeric IgA and pIgA is not clear.

Recently, the lectin pathway of complement, with the recognition molecules MBL, H-ficolin,
and L-ficolin, was described.27,28 MBL is able to bind directly to a number of microorganisms, via carbohydrates expressed on their surface.29 On binding to an activator, MBL activates the complement cascade via the lectin pathway, which plays a critical role in the first line of host defense against these pathogens. Furthermore, genetic polymorphisms in the MBL gene, resulting in low serum MBL levels and nonfunctional MBL, have a negative impact on several chronic diseases.30

Evidence is accumulating that MBL and activation of the lectin pathway of complement also can be unfavorable for disease progression. This has been suggested for rheumatoid arthritis, and also for IgAN, based on renal biopsy studies showing the presence of excess MBL in glomeruli in IgAN.31–35 Furthermore, it has been shown that MBL is able to bind pIgA, leading to activation of the lectin pathway in vitro.34 However, there is no difference in the binding of MBL to IgA from healthy subjects or patients with IgAN.35 The carbohydrate recognition domain of MBL is able to bind in a calcium-dependent way to a number of saccharides, such as D-mannose, L-fucose, and N-acetylglucosamine. The binding of MBL by IgA is likely to be through the oligomannose structures present in the N-linked sugars of the heavy chains of pIgA, however, this requires further confirmation.35 Deposition of MBL in association with IgA, as a marker for lectin pathway activation, has been reported in a subpopulation of IgAN patients,33,32,36 but these findings have been questioned by others.37 Furthermore, the relationship of glomerular MBL deposition with parameters of renal damage and complement activation via the lectin pathway is inconsistent between different studies. Recently, our group described a renal biopsy series in which IgA was co-deposited with MBL in 25% of examined patients.38 Furthermore, patients with MBL deposition showed more severe renal disease as compared with MBL-negative cases, suggesting an important role for MBL in disease progression.38 These results indicate that activation of the lectin pathway, initiated via MBL and possibly also L-ficolin, occurs in a subpopulation of IgAN patients, implicating MBL as a biomarker for disease progression in these cases.38 There have been indications that MBL can be expressed by intrinsic renal cells, but at present the relative contribution of these cells to deposited MBL is unclear. These results indicate that activation of the lectin pathway, initiated via MBL and possibly also L-ficolin, occurs in a subpopulation of IgAN patients, implicating MBL as a biomarker for disease progression in these cases.38

These findings at the biopsy level emphasize the importance of further delineating the precise composition of IgA in mesangial deposits because ultimately these data will inform us about the mechanisms involved in IgA deposition and complement activation in IgAN. Local complement activation will result in cell injury and induction of an inflammatory cascade that contributes to disease progression. The impact of glycosylation has been reviewed in detail elsewhere39 and is not discussed further in this review. We concentrate on recent findings concerning the presence of SIgA in renal deposits.

SIgA IN IgAN

About 40% of patients with IgAN have recurrent episodes of macroscopic hematuria frequently preceded 1 or 1 days earlier by infections. Upper respiratory tract infections occur most frequently,40 but occasionally other infections have been implicated, including gastrointestinal and urinary tract infections. Mucosal immunization with a neoantigen in healthy individuals leads not only to a localized mucosal immune response, but also to an antigen-specific immune response in plasma, suggesting a close relationship between the mucosa and bone marrow. This response is reduced after immunization of patients with IgAN.12 Production of SIgA is a specific process taking place at mucosal surfaces and occurs after binding of dIgA to the polymeric Ig receptor and transcytosis of this IgA across the mucosal epithelium.41 Epithelial IgA transport in the opposite direction also has been described, in which SIgA binds selectively to microfold cells irrespective of their antigen-binding specificity, followed by transport of SIgA across the epithelium and targeting to subepithelial dendritic cells (DCs).42 In vitro it has been shown that human DCs can bind and endocytose SIgA.43 It has been suggested that this targeting of SIgA to
DCs may play an important role in mucosal immune regulation through modulation of DC activation. Importantly, not all retrograde transport seems to be associated directly with DC uptake because small amounts of SlgA also can be found in human serum. Moreover, increased serum levels of SlgA have been reported in various diseases, indicating that SlgA may be a marker of clinical interest. Recently, our group showed that in purified serum IgA preparations, SlgA is found in high-molecular-weight IgA fractions and that the relative concentration of SlgA is higher in patients with IgAN as compared with controls. In serum low concentrations of SlgA were measured but there were no differences in SlgA concentrations between patients with IgAN and healthy subjects. However, there was a correlation between hematuria in patients with IgAN and the serum SlgA concentration. There also is evidence that systemic clearance of SlgA may be defective in IgAN.

GLYCOSYLATION OF SlgA IN IgAN

As mentioned previously, it is has been suggested that the glycosylation of IgA is an important pathogenic factor in IgAN. The predominance of IgA1 in mesangial deposits and the unusual hinge region of IgA1 with multiple O-linked glycosylation sites has stimulated a great deal of interest in changes to IgA1 glycosylation in IgAN. Indeed, both in serum but, more importantly, also in the eluate of isolated glomeruli, a specific reduction of O-linked galactosylation has been observed. Furthermore, with size fractionation of eluted proteins from kidney sections, it has been found that these deposits contain predominantly high-molecular-weight forms of IgA. Recently, we showed a 120-fold accumulation of SlgA, based on a comparison of the composition of serum and glomerular immunoglobulins, in IgA eluted from isolated glomeruli in IgAN.

Previous studies have shown a role for glycosylation of IgA in the binding and activation of mesangial cells. Stimulation of mesangial cells with high-molecular-weight IgA leads to enhanced production of chemokines and cytokines, including interleukin-6, transforming growth factor-β, tumor necrosis factor-α, monocyte chemotactant protein-1, interleukin-8, and macrophage inhibitory factor. Interestingly, SlgA binds better to mesangial cells than serum IgA, and binding of SlgA results in mesangial cell synthesis and release of increased amounts of interleukin-6. At present, it is unclear which mesangial cell IgA receptor binds SlgA.

The glycosylation of SlgA is different to serum IgA in several respects. First, SlgA is a tetramolecular complex consisting of 2 IgA molecules, J chain and SC wrapped around the heavy chains. Modeling of SlgA suggests that the N-glycans of the α heavy chains can be masked by SC. This also may result in altered exposure of the hinge region O-glycans. Moreover, specific analysis of the glycosylation of the IgA heavy chains present in SlgA has shown different N-glycan structures compared with that of serum IgA. Specifically, terminal N-acetylglucosamine residues are present in the majority of the N-glycans of SlgA. The O-glycans of the hinge region of the α heavy chain of SlgA display a wide range of glycan structures, which for the major part now are characterized. It would be very interesting to have precise information on the glycosylation of the α heavy chains of SlgA in IgAN, but at present such information is not available.

SlgA IN IgAN BIOPSY SPECIMENS

To confirm the presence of SlgA in glomeruli in IgAN, our group stained kidney biopsy specimens from patients with IgAN for SlgA deposition. In 15% of cases positive staining for mesangial SlgA was observed. In a separate study secretory component deposition was identified in 13 of 191 IgAN renal biopsy specimens, whereas all control biopsy specimens were negative for secretory component. In a Japanese study all IgAN biopsy specimens studied were positive for secretory component, whereas normal kidneys were negative. Interestingly, in this study there was an association between single nucleotide polymorphisms in the polymeric Ig receptor and the presence of IgAN. The relationship between secretory component deposition and other molecules in the glomeruli, and clinical parameters of the patients, has not been studied.

In our study, double staining and confocal microscopy showed remarkable colocalization
of SlgA and MBL, supporting the previously reported strong correlation between SlgA and MBL in a subgroup of patients. In addition, there was strong colocalization with C4d, suggesting local complement activation. An association between SlgA and MBL has been reported by other investigators. Royle et al suggested that disruption of the noncovalent interactions between secretory component and the IgA heavy chain (ie, at low pH), may lead to MBL binding and subsequent complement activation via the lectin pathway.

The notion of a pathogenic role of SlgA deposition in IgAN and the knowledge that mucosal sites are critical for the generation of SlgA raises interesting questions concerning the involvement of mucosal immune responses in IgAN.

THE ROLE OF THE TONSILS IN IgAN

The tonsils are located at the gateway of the respiratory and alimentary tract and belong to the mucosa-associated lymphoid tissue. The major function of the tonsils is as a first line of defense against viral, bacterial, and food antigens. In IgAN, tonsillar tissue contains more IgA-secreting B cells than healthy subjects and this increase is matched by a parallel increase in the number of dimeric IgA-secreting cells. Tonsils from patients with IgAN contain more IgA-producing cells compared with controls, and synthesize IgA1, which is less sialylated than serum IgA1, suggesting that the tonsils may be a source of the IgA that deposits in IgAN.

Stimulation of the tonsils by ultra short wave has been shown to trigger acute changes in the urinary sediment in a subgroup of patients with IgAN but not patients with other renal diseases. These patients had suffered more frequent episodes of macroscopic hematuria after upper respiratory tract infections and had higher levels of serum SlgA preceding tonsillar stimulation than those IgAN patients who did not respond to tonsillar stimulation.

Although no randomized controlled trials of tonsillectomy in IgAN patients have been reported it has been suggested that tonsillectomy can improve renal outcome in some patients. There is some retrospective evidence from Japan that tonsillectomy was associated with a favorable effect on long-term renal survival in IgAN patients supporting the notion that the mucosal IgA immune system may have an important role in the pathogenesis of IgAN.

IMMUNIZATION STUDIES IN IgAN PATIENTS

Immunization studies examining both systemic and mucosal (oral) secondary immune responses in IgAN have generated conflicting results with respect to serum and mucosal antigen-specific IgA responses. In IgAN, mucosal immunization with cholera toxin subunit B resulted in an impaired mucosal and systemic antigen-specific IgA response compared with healthy subjects, whereas there was no difference in antigen-specific IgA responses after simultaneous systemic immunization with the neoantigen keyhole limpet hemocyanin. Recently, Smith et al described the O-glycosylation pattern of antigen-specific serum IgA against the systemic antigen tetanus toxoid and the mucosal antigen Helicobacter pylori. In this study higher Vicia villosa (a lectin recognizing the Tn-antigen) binding was observed for IgA1 specific for H pylori as compared with tetanus toxoid. There were no differences between patients and controls. This suggests that IgA1 O-glycosylation may vary in different immune responses and may be determined at the site of antigen encounter. This also would imply that an altered balance in O-glycosylation pattern of IgA1 in IgAN patients potentially could be a consequence of a mucosal immune response rather than a generic defect in B-cell O-glycosylation.

Recently, we investigated the size distribution of antigen-specific IgA in serum and nasal washes after mucosal and systemic immunization (Eijgenraam et al, unpublished data). Nasal washes contained mainly SlgA whereas serum IgA displayed the usual size distribution of serum IgA, being mainly monomeric. SlgA was detectable in these sera, and, as expected, restricted to the high-molecular-weight IgA fractions. We found that the antigen-specific IgA was found predominantly in the high-molecular-weight fractions, irrespective of the route of administration. Importantly, we also were able to show low but
significant levels of antigen-specific SIgA in serum after intranasal vaccination, strongly suggesting a link between mucosal immune responses and circulating SIgA (Fig. 2).

CONCLUSIONS

In this review we have discussed the potential role for MBL and SIgA in the pathogenesis of IgAN. pIgA is able to activate the alternative pathway, but also by binding MBL activate the lectin pathway of complement. We also have discussed the mesangial deposition of MBL in IgAN and that this deposition is associated with more severe renal injury.

Patients with IgAN often experience macroscopic hematuria after upper respiratory tract infections. Although there is no obvious increase in serum SIgA in IgAN we have described a clear relationship between serum SIgA concentrations and risk of hematuria in IgAN. Moreover, compared with other serum immunoglobulins SIgA appears to deposit preferentially within glomeruli in IgAN and this is reflected by the SIgA staining observed in kidney biopsy specimens of patients with IgAN. The presence of SIgA is associated strongly with co-deposition of MBL and the complement activation product C4d. Taken together, the data presented in this review support a role for SIgA and MBL in the pathogenesis of IgAN in a subpopulation of patients.

REFERENCES

46. Rostoker G, Terzidis H, Petit-Phar M, et al. Secretory IgA are elevated in both saliva and serum of patients

