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Multiple Organ Dysfunction
Syndrome in Children With

Sepsis: Role of Genetic Factors

Orfeas Liangos, MD, and Bertrand L. Jaber, MD, MS

Summary: This review summarizes current knowledge on the impact of genetic markers on
susceptibility, severity, and outcome of acute inflammatory disorders in children, with a
special focus on systemic infections. A 14-year-old child with Neisseria meningitides bacte-
remia, complicated by septic shock and multiple organ dysfunction, is discussed as an
exemplary case, and linked to the application of genetic epidemiology and the study of
common disorders in children. The current pertinent literature is comprehensively reviewed
and limitations and future directions are discussed.
Semin Nephrol 28:499-509 © 2008 Elsevier Inc. All rights reserved.
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 s presented in the first clinical case by
Symons and Picca in this issue, the early
clinical presentation of the 14-year-old

atient with a flu-like prodrome, headache, nau-
ea, emesis, and fatigue appears nonspecific,
ut combined with the rapid development of
ever (warm core and cool periphery), shock,
nd hypoperfusion (mottled skin, hypoten-
ion), it raises the suspicion of systemic Neisse-
ia meningitides bacteremia and septic shock,
specially in a young adolescent. T h e clinical
ourse of the patient is characterized by re-
ractory hypotension and development of a
etechial rash, consistent with Waterhouse-
riderichsen syndrome. At this point, several of
he key clinical findings on presentation indi-
ate not only the presence of the systemic in-
ammatory response syndrome (SIRS), but also
f multiple organ dysfunction. According to the
dult multiple organ failure score, circulatory,
espiratory, and neurologic failure are evident
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t the time of presentation, and in the subse-
uent 24 hours hematologic and renal failure
nsue. According to the meningococcal septic
hock score1 and based on the available labora-
ory and clinical data, this patient has a risk for
ortality of approximately 80%, a grim outlook.
he initial volume resuscitation of 5 L in the
rst hours appears adequate, however, the sub-
equent, continuous administration of more
rystalloid solutions is less favorable and may
e associated with an increased risk for mortal-

ty.2,3 In addition, acute kidney injury (AKI) is
vident on the first morning after admission,
ased on a 50% increase in serum creatinine

evel, and although the benefit of an earlier
ephrology consultation is debatable, the clini-
al condition of this patient makes a spontane-
us recovery of kidney function rather unlikely
nd the subsequent need for renal replacement
herapy appears all but inevitable.

This case illustrates an overwhelming sys-
emic inflammatory response with resulting
ultiple organ dysfunction syndrome (MODS)

ncluding AKI in response to a systemic gram-
egative bacterial infection. The role of the host

mmune response to inflammatory stimuli and
ts significance for the development and mani-
estation of MODS and AKI has been increas-

ngly recognized. Bacterial infection, which
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epresents an environmental influence, induces
n immune response in the host that is modu-
ated in part by genetic factors. The recognition
nd description of genetic factors that predis-
ose to an overwhelming inflammatory response
uch as the one described in the aforementioned
ase could facilitate the development of risk mark-
rs for the susceptibility to and/or the severity of
rgan dysfunction including AKI. This summary
ttempts to outline the current knowledge on the
ole of genetic polymorphisms in MODS and AKI,
o describe a selection of candidate gene poly-
orphisms, and to provide possible future impli-

ations.

ENETIC POLYMORPHISM
N HEALTH AND DISEASE

lthough most of the DNA sequences among
umans are identical, as little as 0.1% of the
uman genome accounts for all interindividual
ariability or gene polymorphism.4 Polymor-
hism may be found in the promoter or 5’-
anking region where it may influence tran-
criptional activity4; in the exons or coding
equences where it may be silent or affect the
tructure, binding, or trafficking of the gene
roduct; in the introns or intervening se-
uences where it may impair messenger RNA
rocessing; or in the 3’-untranslated region of a
ene where it may affect RNA half-life or trans-
ation into protein.5

Three forms of human gene polymorphisms
ave been described4: single nucleotide poly-
orphism, typically consisting of a single nu-

leotide substitution; variable number of tan-
em repeats or minisatellite polymorphism,
onsisting of in-tandem insertion of multiple
epeats of nucleotide sequences of less than
00 base pairs4; and microsatellite polymor-
hism, consisting of several repeats of a short
otif of 1 to 5 nucleotides.

HE CANDIDATE GENE APPROACH

n a candidate gene approach, candidate
enes are selected if they are likely to modify
ost responses to environmental stimuli; for
xample, the inflammatory response to an
nfectious stimulus such as described in the

arlier case by Symons and Picca. Such a b
andidate gene can then be tested in an af-
ected population. It is important to note,
owever, that associations cannot prove a
ausal relationship and that a candidate ge-
etic polymorphism associated with a disease
ight be merely located in proximity to other
athogenic genetic factors, as in linkage dis-
quilibrium. The more traditional approach
f a linkage analysis, in which co-inheritance
f a disease phenotype along with a specific
egion of the genome is identified, has been
roven useful for the identification of mono-
enic conditions, such as polycystic kidney dis-
ase in which environmental factors play only a
inimal role.

ENETIC POLYMORPHISM IN
CUTE INFLAMMATORY DISORDERS

he Proinflammatory Axis

n overwhelming acute host defense response
o infectious or noninfectious triggers such as
urns or trauma may induce a SIRS.6 This re-
ponse results in the systemic release of biolog-
cally active mediators, which can lead to organ
ysfunction and failure.7 The association of
roinflammatory cytokines with adverse clini-
al outcomes in acute inflammatory states has
een well documented.8-12

Proinflammatory cytokines such as tumor ne-
rosis factor-� (TNF-�) and interleukin-1� (IL-
�) exert systemic effects by causing stimula-
ion of platelet-activating factor, prostanoid,
nd nitric oxide synthesis by vascular endothe-
ial cells, which in turn leads to vasodilatation,
apillary leak, intravascular coagulation, sys-
emic hypotension, and organ dysfunction as
llustrated in the case. Chemokines such as IL-8
acilitate recruitment of neutrophils to target
issues where the latter may release reactive
xygen species and proteolytic enzymes lead-

ng to tissue damage. In addition, TNF-� and
L-6 also induce protein catabolism.13

he Anti-Inflammatory Axis

n response to the SIRS, a subsequent compensa-
ory anti-inflammatory response can be observed.
mmunomodulatory cytokines and mediators, in-
luding IL-10, IL-1 receptor antagonist, and solu-

le TNF receptors, are key contributors to the
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ompensatory anti-inflammatory response.14 It
an therefore be postulated that the extent of the
ost inflammatory response is determined in part
y a balance between proinflammatory and anti-

nflammatory mechanisms, and that modulation
f these mechanisms could be used as a therapeu-
ic strategy.15,16

OLYMORPHISM OF CANDIDATE
NFLAMMATORY RESPONSE GENES

he following section highlights selected can-
idate gene polymorphisms that previously
ave been associated with adverse outcomes in
cute infectious and inflammatory states, with a
pecial emphasis on the pediatric population

Table 1. Positive Association Studies Between
Genes and Acute Infectious/Inflammatory Dis

Gene Polymorphic Allel

Cytokines
TNF-� �308 A allele (TNF�2)

TNF-� �308 A allele (TNF�2)
TNF-� �308 A allele (TNF�2)
TNF-� �308 A allele (TNF�2)

TNF-� �238 A allele

IL-1� �511 allele 2/2
IL-1� �511 allele 1/2
IL-1 receptor

antagonist
�2018 C allele

IL-6 �174 C allele
IL-6 �174 C allele

IL-10 �1082 GA genotype
IL-10 �1082 A allele

Chemokines
IL-8 �251 A allele
RANTES �28 CC, �403 GA, an

intron 1.1 TT genoty
Abbreviations: VLBW, very low birth weight; RSV, respiratory
Table 1). n
NF-� and TNF-�

olymorphism within the 5’-flanking region of
he TNF-� gene at positions �238 (G to A) and
308 (G to A) has been described. The �308 A

llele is associated with increased TNF-� pro-
oter activity17-19 and production.20-23 In adults,

NF-� gene polymorphism has been associated
ith adverse clinical outcomes in various acute

nflammatory states including sepsis.24-30 In par-
icular the TNF-� �308 A allele has been asso-
iated with higher monocyte-derived TNF-�
roduction levels, higher disease severity
cores, and increased mortality rates in patients
ith dialysis requiring AKI.31 In children, the
NF-� �308 A allele has been associated with

morphisms of Selected Cytokine/Chemokine
s in Children

Acute Illness Reference

igher disease severity and mortality
in meningococcal infection

28

usceptibility to cerebral malaria 29
eonatal acute renal failure 32
rolonged mechanical ventilation
and supplement oxygen
requirement in preterm neonates

33

ncreased preterm birth and early
childhood mortality, and increased
malaria morbidity

108

ebrile seizure in children 40
urvival in meningococcal disease 96
usceptibility to and mortality from
meningococcal disease in children

97

eonatal acute renal failure 32
ncreased incidence of late blood
stream infection in ventilated
VLBW infants

51

eningococcal disease 53
ncreased incidence of late blood
stream infection in ventilated
VLBW infants

51

SV bronchiolitis 63
ncreased susceptibility to severe
RSV bronchiolitis

66

tial virus.
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entilation and supplemental oxygen require-
ent in preterm neonates.33

The gene coding for TNF-� is located in prox-
mity to the TNF-� gene. Single nucleotide poly-

orphism at position �1069 (G to A) in the
rst intron of the gene has been character-

zed.34 The TNF-�2 or A allele, which is more
ommon than the TNF-�1 or G allele, is associ-
ted with higher IL-1� and TNF-� production,35

nd with adverse clinical outcomes in sep-
is.36,37 However, this association might be due
o linkage disequilibrium between the TNF-�
nd TNF-� polymorphism.38

he IL-1 Family

he IL-1 family consists of IL-1�, IL-1�, IL-1
eceptors type I and II, and IL-1 receptor
ntagonist. Polymorphism of the IL-1� gene
t position �511 (C to T)39 is associated with
cute inflammatory disorders.39-41 The allele 2
f a 5-allele minisatellite polymorphism of the
L-1� gene has been associated with increased
L-1� production,42-44 which has been linked to
n increased susceptibility to sepsis.45,46

L-6

L-6 is a pleiotropic cytokine that can exert both
ro- and anti-inflammatory effects.47 A single nu-
leotide substitution at position �174 (G to C)48

s associated with reduced gene promoter ac-
ivity.48,49 Clinical studies of this polymorphism
ave yielded conflicting results. Nevertheless,
n association with sepsis50 and AKI in low-
irth-weight infants32 has been described. The
L-6 �174C allele also has been associated with
n increased incidence of late blood stream
nfection in African American ventilated very-
ow-birth-weight infants.51

L-10

n addition to other IL-10 gene polymorphisms
escribed in the literature, the single nucleotide
romoter gene polymorphism at position �1082
G to A) causes alterations in gene transcrip-
ion,52 leading to 3 levels of IL-10 expression:
igh (GG), intermediate (GA), and low pro-
ucer (AA) genotype.18,52 This polymorphism has
een linked to susceptibility for clinical severity of

eningococcal disease,53 severity of community- d
cquired pneumonia,54 as well as with disease
everity and mortality in AKI.55 In ventilated
ery-low-birth-weight infants, the IL-10 �1082
allele has been associated with an increased

ncidence of late blood stream infection,51 but
his polymorphism did not have a major influ-
nce on mortality or the development of bron-
hopulmonary dysplasia.56 Children with the
L-10 �592 CC genotype as well as carriers of
he �592 A-allele also have been shown to have

higher risk of hospitalization for respiratory
yncytial virus than heterozygous carriers.57

hemokine Genes

hemokines comprise a large and ever-in-
reasing group of small chemotactic cyto-
ines that can recruit leukocytes to sites of
nflammation.58,59 Chemokines also are ex-
ressed in renal tissue and thus may be im-
ortant mediators of neutrophil and mono-
yte influx into renal tissue in response to
ystemic inflammatory conditions such as the
IRS or after renal ischemia-reperfusion.60

oreover, a host of chemokine genes are
xpressed to a high degree in renal tissue in
xperimental models of sepsis.61 Genetic
olymorphisms have been described for sev-
ral chemokine genes and have been linked
o acute inflammatory disorders.62-65 Three
ingle nucleotide polymorphisms, �28 (C to
), �403 (G to A), and intron 1.1 (T to C) in

he RANTES gene, have been correlated with
ranscriptional activity, and with susceptibil-
ty to severe respiratory syncytial virus bron-
hiolitis in children.66

xidative Stress–Related Genes

eutrophil and endothelial cell–derived, cell
embrane–bound reduced nicotinamide-ade-

ine dinucleotide phosphate oxidases are in-
olved in superoxide production and may play
role in the development of organ dysfunction
aused by SIRS.67 Neutrophil and monocyte-
erived myeloperoxidase, involved in the syn-
hesis of hypochlorous acid, may play a role in
schemia-reperfusion injury.68 Antioxidant en-
ymes such as glutathione peroxidases69 on the
ther hand inactivate hydrogen peroxide, lipid
eroxides,70 and peroxynitrite.71 Superoxide

ismutases are additional antioxidant enzymes
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hat inactivate superoxide anion.72,73 The bal-
nce between pro-oxidative and anti-oxidative
echanisms plays an important and increas-

ngly recognized role in the pathophysiology of
KI.67,74-77

The nicotinamide-adenine dinucleotide phos-
hate oxidase p22phox subunit �242 (C
o T),78-80 and the catalase �262 (C to T)81,82

enetic polymorphism have been characterized
nd in adults linked to organ injury,72 and to
dverse clinical outcomes in AKI.83

ENE POLYMORPHISM-OUTCOME
INK IN MENINGOCOCCAL DISEASE

he featured case scenario describes a cata-
trophic course of a meningococcal infection,
haracterized by an overwhelming inflamma-
ory response, profound and refractory hypo-
ension and coagulopathy, followed by multiple
rgan dysfunction and failure. What is the evi-
ence that would link this scenario to polymor-
hism of candidate genes? In fact, a host of
linical association studies exist that help ad-
ress this question (Fig. 1).

eutrophil Phagocytosis
nd Opsonization-Related Genes

olymorphism H/R131 of the Fc gamma RIIa
eceptor or CD32, a receptor subtype for the Fc
omain of IgG expressed on the cell surface of
eutrophils, has been shown to decrease neu-
rophil phagocytotic activity of opsonized bac-
eria. Three case-control studies showed an as-
ociation of the Fc gamma receptor subtype

igure 1. Multiple organ system dysfunction risk strati

nvironmental interaction. PAI-1, plasminogen activator inhib
IIa-R/R131 with disease severity.84-86 In addi-
ion, the genotypes RIIIa-F/F158 and RIIIb-
A2/2 were overrepresented in populations af-

ected by the disease, suggesting an increased
usceptibility.53 On the other hand, one pub-
ished report showed no association of this
olymorphism with disease susceptibility or se-
erity.87 Two other genetic polymorphisms en-
oding proteins involved in opsonization, a
plice site mutation in exon 10 (c.1487-2 A to
) in the properdin gene, and 3 promoter poly-
orphisms (�221Y/X, �550H/L, and �4P/Q)

f mannose binding leptin-2 were observed in
Danish family with a high incidence of menin-
ococcal meningitis. The candidate gene vari-
nts cosegregated with biochemically con-
rmed deficiency in the gene products, and
ere associated with the development of men-

ngitis in affected family members.88 In addi-
ion, a functional (�496 C to T) single nucleo-
ide polymorphism within the factor H gene
as associated with increased factor H plasma

evels, a known inhibitor of complement acti-
ation. The C allele was linked to an increased
usceptibility for meningococcal infection.89

nhibition of Fibrinolysis Genes

common functional insertion/deletion (4G/
G) polymorphism of the gene encoding plas-
inogen activator inhibitor-1 was identified as a

andidate for the development of coagulopathy
nd organ dysfunction in meningococcal dis-
ase. The 4G/4G genotype was found to be
ssociated with an increased plasma plasmino-

n in meningococcal infection. A model for genetic and
ficatio

itor-1; IL-1Ra, IL-1 receptor antagonist.
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504 O. Liangos and B.L. Jaber
en activator inhibitor-1 level and clinical sever-
ty at the time of hospital admission as well as

ith mortality,90 the development of septic
hock,91,92 and vascular complications owing to
isseminated intravascular coagulation and
ortality93,94 in several independent multi-

enter European case-control studies in pediat-
ic populations. One other candidate gene poly-
orphism affecting fibrinolysis is the Thr325Ile

imorphism of the thrombin-activatable fibrino-
ysis inhibitor gene, which showed an associa-
ion with increased susceptibility to and mor-
ality from meningococcal disease.95

ytokine Genes
n Meningococcal Disease

mong the IL-1 gene family, studies of variants
n the IL-1� gene at position �51196 as well as
he IL-1 receptor antagonist �2018 C to T
ariant97 were associated with mortality in me-
ingococcal disease. One single-center study

inked the D variant of an insertion deletion
olymorphism of intron 6 of the angiotensin-
onverting enzyme gene to prolonged intensive
are unit stay and intensive care unit mortality.
owever, potential concerns about the link be-

ween angiotensin-converting enzyme activity
nd modulation of acute inflammatory re-
ponses and referral bias of this study of criti-
ally ill pediatric patients was well acknowl-
dged by the investigators.98 In one study
esting multiple inflammatory cytokine gene
olymorphisms, the IL-6 �174 GG and IL-10
1082 AA genotypes were associated with in-

reased disease severity and mortality but only
he IL-1 receptor antagonist variable number of
andem repeat polymorphisms was linked to
ncreased susceptibility to meningococcal in-
ection.99

IMITATIONS OF THE
INGLE CANDIDATE GENE APPROACH

he candidate gene approach typically includes
esting for a statistical association of a candidate
enetic marker with a specific clinical manifes-
ation in a case-control setting. The risk of gen-
rating a false-positive result in such a setting is
igh, especially if the study design includes a

mall sample size, a lack of physiologic plausi- t
ility, patient selection or recruitment from a
ingle geographic region leading to lack of di-
ersity.100 If a genetic marker is tested as a
redictor of mortality, the frequency of the
ost pertinent genetic risk markers may be

ltered by survival bias in a cross-sectional case-
ontrol design and prospective cohort studies
hould be preferred in that setting.101 Linkage
isequilibrium of the tested candidate gene
olymorphism with another perhaps unidenti-
ed but causal polymorphism also could lead to
alse conclusions.102 Finally, it is important to
tress that extreme contradictory estimates in
elatively small genetic association studies are
ot uncommon, in particular, early during the
ccumulation of the scientific evidence.103

Clinical studies of genetic polymorphism
hould therefore follow strict quality criteria
nd should include a plausible hypothesis with
n a priori definition of the beneficial or harm-
ul phenotypes to be observed, the functional
ignificance of the gene polymorphism docu-
ented by altered expression of the gene prod-

ct in in-vitro or in animal models, and a large
nough study sample.104 Good quality genetic
ssociation studies also should be designed pro-
pectively, include an appropriate control
roup, and allow for correction of potential
onfounders. The genotype-phenotype associa-
ion should be strong and specific to a pre-
efined clinical effect, and ideally show a bio-

ogical gradient or gene-dose effect. Finally, the
esults of genetic association studies also
hould be reproducible in additional distinct
opulations.

UTURE DIRECTIONS

ncreasing success in the discovery of genetic
isk markers and susceptibility factors may aid
n the development of novel risk-stratification

odels that include genetic markers. Genetic
usceptibility/risk markers are characterized by
heir stability over time and independence of
ene product expression, in contrast to physi-
logic assessments and protein biomarkers,
hich could be expressed in situ and not be

menable to measurement in biological fluids
uch as serum or urine. Such novel risk-stratifi-
ation tools may be superior to the current

ools that include clinical and basic laboratory
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esults. However, the application of such mod-
ls will be of limited clinical value without
oncrete therapeutic options that, if instituted
arly in the course of sepsis or other conditions
redisposing to AKI or MODS, have the poten-
ial to alter the course of the disease.105,106 Fu-
ure genetic risk-stratification tools could esti-
ate the predisposition of individuals to

ommon complications of diagnostic or thera-
eutic procedures and, more speculatively, as-
ist in the molecular design of therapeutic
rugs, so-called custom drugs, specifically de-
igned to optimize individualized patient
are.107 One example of such an approach
ould be gene therapy techniques that block
njurious responses with, for example, anti-
ense oligonucleotides.

Expanding the knowledge of polymorphism
f immune-response genes may aid in the iden-
ification of individuals susceptible to acute in-
ammatory or infectious disorders such as the
evelopment of sepsis and MODS after trauma,
urns, or systemic infections. The identification
f potential genetic risk markers not only may
acilitate the identification of at-risk individuals,
ut also allow for a more guided therapeutic
pproach to attenuate key pathophysiologic
echanisms and pathways that lead to organ

ysfunction and adverse clinical outcomes in
hese conditions.
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