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Proteomic Methods for
Biomarker Discovery in Urine

Daniel W. Wilkey*,† and Michael L. Merchant, PhD*,†

Summary: Many challenges exist with disease-state biomarker identification. These chal-
lenges include sample heterogeneity, poorly designed sample sets, insufficient numbers of
samples, as well as inconvenient workflows, inadequate methodology, and development of
false-positive markers resulting from protein degradation during sample handling. Yet despite
these difficulties, substantial progress has been achieved with the application of proteomic
methods toward biomarker discovery in renal disease. Significant advances have occurred in
the past decade with electrophoretic, chromatographic, and mass spectrometric methods for
discerning biomarkers of disease. Recent applications of proteomics to the study of renal
disease have identified new mechanisms in renal disease progression and established protein
expression profiles for complex renal diseases including glomerular and tubular pathologies.
In some cases these protein profiles have proven successful with guiding patient treatment
and markers for pharmacologic therapies. Proteomic analysis only recently has been applied
to the study of renal disease, yet it has shown substantial potential for future successes.
Semin Nephrol 27:584-596 © 2007 Elsevier Inc. All rights reserved.
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edicine has long relied on physical ex-
amination and clinical blood and urine
chemistries to diagnose or stage dis-

ase. Early historical references to the diagnosis
f renal disease are contained in the Ebers pa-
yrus written in approximately 1552 BCE, with
eferences to a condition of polyuria; consid-
red by many as the first reference to a clinical
escription of diabetes. A millennium later (4th-
th century BCE), diabetes was diagnosed by
ncient Indian physicians Charak and Susrutha
n observations of ants collecting around the
rine of certain individuals. These physicians
ermed the condition Madhumeha or honey-
ike urine. The modern day search for diagnostic

arkers of disease focuses on the discovery of
rognostic markers that allow for intervention
efore the development of substantial pathophys-

ology.
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Seminars in N84
The explosion of science leading from the
enomic and proteomic revolutions has rede-
ned the potential of clinical chemistries to
etter personalize medical care1,2 for such dis-
ase complications as diabetic nephropathy
DN).2,3 The personalization of medical care is
redicated on the existence of discrete marker
ompounds (ie, biomarkers) whose individual
r collective abundance is diagnostic of disease.
he National Institutes of Health Biomarker
efinitions Working Group has provided a con-

ensus definition for biomarker as “. . . cellular,
iochemical, and molecular (genetic and epige-
etic) alterations by which a normal or abnor-
al biologic process can be recognized or mon-

tored. Biomarkers are measurable in biological
edia, such as in tissues, cells, or fluids.”4 The-

retic applications of biomarkers in research
re assessment of pharmaceutical efficacy and
afety (in vitro as well as in vivo studies) and in
edical care for screening or staging progres-

ion of disease states, and also for evaluating the
esponse to treatment. These applications hint
t half the hope for biomarkers. In addition to
erforming as a prognostic metric, biomarkers

opefully will provide mechanistic insight into

ephrology, Vol 27, No 6, November 2007, pp 584-596



t
b
o
v
t

C

G

T
i
d
i
c
u
m
g
t
s
t
b
a
H
u
i
n
e
n
s
t
t
T
l
a
T
i
p
m
j
m
s

s
e
d
s
b
k
n
g

k
g
a
e
b
i
t
e
p
t
c
F
s
p
m
g
t
m
t
o
t
p
a
a

T
D

B
s
t
u
s
p
R
i
c
c
t
s
t
t
o
s
p
t
f
t
o
t

Proteomic methods 585
he molecular and cellular pathways that have
een disrupted in the disease state. Thus, bi-
markers can guide treatment as well as pro-
ide direction for future research on interven-
ion.

HALLENGES IN BIOMARKER DISCOVERY

eneral Considerations

he development of biomarkers for routine clin-
cal applications has 3 distinct phases that can be
escribed generically as biomarker discovery, val-

dation, and implementation.5 Preferably the dis-
overy or preclinical phase is performed in an
nbiased fashion with a sufficient number of well-
atched samples to power the analysis.6,7 Here

enomic and proteomics methods each lend
hemselves toward an unbiased analysis of the
ample. Optimally, the sample type(s) (ie, fluid,
issue, or casts) and analytic method(s) used for
iomarker discovery should be easily translat-
ble into the second phase of validation studies.
ence, easily obtainable body fluids such as
rine or blood are desirable for discovery stud-

es. Tissue samples such as biopsy material are
ot ideal but may be used for biomarker discov-
ry purposes, keeping in mind the end goal of
oninvasive diagnosis or staging of disease. Still,
ubstantial progress has been made regarding
he extraction of information (proteolytic pep-
ides) from formalin-fixed biopsy material.8–11

he difficulties of biomarker-lead development,
ikened to searching for a needle in a haystack,
re dissimilar to the difficulties of validation.
he principal difficulty of the validation phase

s establishing the appropriate validation sam-
le set and using a sensitive, high-throughput
ethod for biomarker quantification. The sub-

ect of the third phase of biomarker develop-
ent, biomarker implementation, is outside the

cope of this article and is not addressed here.
A discernable commonality to most recent

uccesses in biomarker discovery for renal dis-
ases is the incorporation of a non–hypothesis-
riven approach (genomic and proteomic) for
electing early sentinel/discriminatory disease
iomarkers. Several proteins including urinary
idney injury molecule-1 and urinary or plasma
eutrophil gelatinase–associated lipocalin, sug-

ested to perform as sensitive markers of acute s
idney injury (AKI), first were identified by
enomic analysis of kidney tissue isolated from
nimal models of AKI.12,13 Expressional differ-
nces of each of these protein biomarkers have
een confirmed recently at the protein level using

mmunochemical methods in urine. Other pro-
ein biomarkers of acute and chronic renal dis-
ases are suggested to be derived from common
lasma proteins having unique patterns of post-
ranslational modification or are differentially
ompartmentalized into urinary exosomes.7,14–19

urther, peptide biomarkers or peptide expres-
ion patterns diagnostic of renal disease (ie,
eptide profiles) have been identified using a
ore direct approach with tandem technolo-

ies of capillary electrophoresis–mass spec-
rometry (CE-MS) or liquid chromatography–
ass spectrometry (LC-MS).20–24 The success of

hese biomarker developments is based in part
n proteomic advances in high-resolution elec-
rophoretic or LC methods, more robust com-
utational platforms (software and hardware),
nd, lastly, high-throughput, high-sensitivity MS
nalyses of peptides.

he Curse of Proteomic
imensionality in Biomarker Discovery

iomarker discovery efforts both benefit and
uffer from the proteomic approach. A substan-
ial benefit of the proteomic approach is the
nbiased nature of the proteomic paradigm. A
ubstantial detriment of the proteomic ap-
roach can be inferred from a quote taken from
ichard Bellman, “the curse of dimensional-

ty.25” The curse of dimensionality is a signifi-
ant obstacle in elucidating trends within the
omplex data sets. Statistical analyses of these
ypes of data sets suffer from the paucity of
amples compared with number of observa-
ions (ie, data points, gel spots, observed pep-
ide ions) per sample. Although a few examples
f high-resolution 2-dimensional electrophore-
is (2DE) proteomics data sets have been re-
orted in the literature, individual urinary pro-
eomic 2DE data sets typically are defined by a
ew hundred protein spots. Urinary MS data sets
ypically are defined by hundreds to thousands
f identified proteins based on thousands of
ryptic peptides. Because of the increased sen-

itivity of modern mass spectrometers over con-
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586 D.W. Wilkey and M.L. Merchant
entional protein stains used in 2DE experi-
ents, more data points are observed in an

ndividual LC-MS proteomic experiment com-
ared with an individual 2DE proteomic exper-

ment. But careful design of the sample sets and
mplementation of biostatistical controls can
bate, but not eliminate, the dimensionality
urse.

The dimensionality curse starts with the sam-
le used for analysis. Urine has been criticized
s a biomarker reservoir because of the high
egree of variability in the protein source and

n the variability of the urinary protein concen-
ration.26 Urine contains soluble proteins from
ultiple sources including filtered plasma pro-

eins and proteins secreted by genitourinary
ells including renal glomerular and tubular
ells. Urine also contains insoluble or sedimen-
ary components such as cell casts, sloughed cells
ie, podocytes), excreted vesicular particles (ie,
xosomes), and even renal calculi. In addition to
igh-molecular-weight proteins, urine contains

ow-molecular-weight polypeptide components
peptides) present at an equivalent mass
mount with equivalent complexity to the
igher molecular weight urinary proteins. The
aried physical nature of urine composition can
e capitalized on and urinary subproteomes frac-
ioned, thus increasing the sensitivity or dynamic
ange for detection of low abundant species.18

rom several studies performed independently,
e can draw conclusions regarding the relative

bundance of proteins and peptides in urine.
hou et al27 determined the protein composi-
ion of normal urine and discerned it to be 49%
oluble, 48% sedimentary, and 3% exosomal
rotein. Adachi et al28 determined that the hu-
an urinary proteome contains more than

,500 proteins, many of which are membrane
exosomal) proteins. The estimate of urinary
olypeptide composition by Zhou et al27 was to
he exclusion of low-molecular-weight species,
uch as urinary peptides. Norden et al29 con-
luded normal human urine (excluding Tamm-
orsfall protein [THP]) contains 66% protein (de-
ned as polypeptide �10 kd) and 33% peptide
content in range 750 d to 10 kd), with the
umbers of individual peptides observed in nor-
al urine rivaling that of observed proteins.23,30
n addition, the complexity of the urinary pro- c
eome is increased by posttranslational protein
rocessing events. This is evidenced from the

act that a substantial number of urinary pro-
eins detected in the urine are derived from the
ame gene product with alternative degrees of
osttranslational modifications such as proteol-
sis or glycosylation. The dimensionality curse
an be broken only when the number of sam-
les exceeds the number of observations, not

ust the total number of gene products. It is
nlikely the biomarker-lead discovery pro-
esses will ever be designed to include thou-
ands of samples per study arm. Therefore,
ost biomarker-lead development studies are

estined to be underpowered.

oncerns With Quantitative Proteomic
ethods Used for Biomarker Discovery

general concern with the detection of unique
arkers of renal pathophysiology should be

atural abundance of the marker species. Anal-
sis for biomarkers in urine is facilitated by the
ase of urine sample collection. Larger volumes
f urine can be collected and fractionation
chemes can be scaled up for purposes of de-
ecting low abundant marker species. Analysis
f renal organ or tissue is more problematic. In
hese cases, tissue or surrogate tissue marker
ompounds can be used. Methods used to de-
elop surrogate marker compounds to address
ensitivity can rely on fractionation of cellular
nd subcellular proteomes. The fractionation of
ubcellular organelles acts to enrich for low
bundant species. These data are then useful
or comparison with genomic data to identify
ith altered protein expression differences, to

dentify novel gene transcripts with or without
ovel post-translational modifications, to iden-
ify affected metabolic pathways and for com-
arison to profile changes in the urine pro-
eome over the disease course.31

Integral steps to all biomarker discovery ap-
roaches include sample preparation, sample
eparation, protein or peptide quantification,
nd peptide/protein identification. Data quality
y way of variation in the data can arise as a
esult of the sample source (urine versus surro-
ate cell culture models versus tissue), or meth-
ds for sample separation (electrophoretic or

hromatographic), quantification (noncovalent
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Proteomic methods 587
taining, covalent labeling, or label-free methods),
nd identification (mass spectrometric, immuno-
hemical, and bioinformatic analysis platforms).
ultiple approaches exist for the analysis of renal
athophysiology and elucidation of biomarkers of
enal disease. Two main proteomic separation
latforms upstream of mass spectrometers are
sed in lead-biomarker discovery efforts. These
ometimes multidimensional separation methods
re based on electrophoretic or liquid chromato-
raphic separation of proteins and/or peptides.
ecent reviews from the application of electro-
horesis and liquid chromatography in protein
eparation are available32–41 and will not be ex-
anded on here. Quantification of proteins or
eptides is achieved after high-resolution sample
eparation. Electrophoresis invariably involves
rotein staining: either covalent or noncovalent
uorescent stains. Quantification of proteins
ownstream of the chromatographic separation is
chieved using MS and by measurement of the
ndividual ion or total ion current. Recent work
y the Association of Biomedical Resource Facili-
ies (Proteomics Research Group PRG2006) on
elative Quantification methods has suggested
uite strongly that label-free mass spectrometric
uantification of proteins has a lower variability in
he observed data as compared with all other
ethods except radioactive labeling of proteins.
ur work provided here supports this position of

he benefit of label-free MS quantification of pro-
eins. We highlight this perspective with a few
xamples of variation in proteomic data sets that
hen can be used in statistical considerations dur-
ng biomarker discovery efforts.

DE

ample source–derived data variation is intrin-
ically a problem of contaminating species. To
llustrate this concept, representative 2DE im-
ges are provided for analyses of cell culture
ysates and for normal and diabetic urinary pro-
eomes (Figs. 1-3). A murine mesangial cell pro-
eome reference map was created using 60 �g
ell lysate protein, 3 to 10 non-linear immobi-
ized pH gradient (IPG) strips, 4% to 12% Nu-
AGE (Invitrogen, Carlsbad, CA) slab gels, and
YPRO Ruby staining (Molecular Probes, In-
itrogen, Carlsbad, CA), and is presented in

igure 1. Thirty protein spots across the high- w
o-low isoelectric point (pI) and molecular mass
Mr) ranges were selected as seed spots against
hich a total of 18 gel images (5 gels per two

-h treatment conditions and 4 gels per two
4-h treatment conditions) were matched using
rogenesis Discovery software (Nonlinear Dy-
amics, Newcastle upon Tyne, UK). An analysis
f variance was calculated for seed spot-volumes
ithin glucose treatments. The coefficient of vari-

nce (CVs) for the replicate matched gels were
.17 (n � 5), 0.17 (n � 5), 0.20 (n � 4), and
.21 (n � 4). The grand average of all CVs was
alculated across all 30 seed spots of the 4 gel
ets and determined to be 0.19. The grand CV
as taken to represent the sum of all variations

nd is derived from both the biology of the
ample and the 2DE technique.

Figures 2 and 3 are illustrative of 2DE gel
mages using 25 �g normal pediatric urine pro-
ein and new-onset (pediatric; urine collection
6 mo since time of diagnosis) type 1 diabetes
ellitus (DM) urine protein. CVs for individual

el spot volumes were calculated for 20 protein
eed spot volumes found in normal adult urine
els (n � 5). The grand average for these CVs

igure 1. Representative 2DE gel image of murine mes-
ngial cell lysate separated using 7-cm 3 to 10 NL IPG
trips and 4% to 12% sodium dodecyl sulfate–polyacryl-
mide gel electrophoresis (SDS-PAGE) slab gels. Thirty
rotein spots across the high-to-low pI and Mr ranges
ere selected as seed spots against which a total of 18
el images were matched using Progenesis Discovery
oftware. An analysis of variance was calculated for seed-
pot volumes within glucose treatments and a grand CV
as calculated equaling 0.19.
as found to be 0.299. The 2DE CV was calcu-
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588 D.W. Wilkey and M.L. Merchant
ated for 20 matched protein spots found
ithin the type 1 DM urine 2DE gel images

n � 5) and the grand CV was calculated to be
.49.

Two conclusions can be drawn from these
tudies. First, cell cultures or other more geneti-
ally homogenous protein sources inherently will
rovide a more reproducible result. Second, de-
pite having high variability, properly designed
xperiments using power analyses based on these
rine gel spot-volume CV calculations increase
he likelihood of avoiding type II errors. The
alculated 2DE CV data were used in power
alculations. Power calculations are prospec-
ive and are predictive of the number of sample
eplicates needed if one wishes to avoid a sta-
istical type II error. A power calculation re-
uires an estimate of the variability intrinsic to
he method being used, the desired statistical sig-
ificance level, expected measurement in both
rms of the experiment, and the minimum ob-
erved change. Assuming a normal distribution
f measured values and equal variances in the
easured values, a replicate gel set of 4 gels per

roup of cell culture lysate ensure that an ob-

igure 2. Representative 2DE gel image of 25�g nor-
al pediatric urine protein desalted by trichloroacetic

cid (TCA) precipitation and proteins resolved on 7-cm
–10 non-linear immobilized pH gradient (IPG) strips
nd 4–12% SDS PAGE slab gel. Twenty protein spots
cross the high-to-low isoelectric (pI) and molecular
ass (Mr) ranges were selected as seed spots against
hich a total of 5 gel images were matched using Pro-
enesis Discovery software. An analysis of variance was
alculated for seed spot-volumes and a grand coefficient
f variance calculated equaling 0.299.
erved change of 50% in the prototypical pro- fi
ein spot volume (2,010 � 382 pixel units) at
he 95% confidence interval provides for a
ower of 0.869. The computed power estimate
0.869) is greater than 0.80, which is consid-
red a minimum benchmark for statistical
oundness. However, increasing the number of
eplicate gels of cell culture lysate to 10 per
roup provides a power of 0.999, which is
ore than sufficient for purposes of discovery

cience and establishing proteomic candidates
or validation by other means.

atrix-Assisted Laser
esorption Ionization–Time of Flight MS
ecent advances in liquid chromatography and
obotics have provided for the automated spot-
ing of nanoliter volumes of peptide or protein
amples onto matrix-assisted laser desorption
onization (MALDI) target plates. Efficient ion-
zation of peptides and proteins requires the
resence of an ultraviolet-absorbing organic
olecule (the matrix) such as cinnamic acid or a

innamic acid derivative. MALDI–time of flight
TOF) MS analysis of peptides historically has
een viewed as semiquantitative. In many ways,

igure 3. 2DE image of 25�g urine protein from new-
nset (�6 mo from diagnosis) T1DM urine sample de-
alted by trichloroacetic acid (TCA) precipitation and
roteins resolved on 7-cm 3-10 non-linear immobilized
H gradient (IPG) strips and 4–12% SDS PAGE slab gel.
wenty protein spots across the high-to-low isoelectric
pI) and molecular mass (Mr) ranges were selected as
eed spots against which a total of 5 gel images and to
he normal urine gel images (n�5) were matched using
rogenesis Discovery software. An analysis of variance
as calculated for seed spot-volumes and a grand coef-

cient of variance calculated equaling 0.49.
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Proteomic methods 589
his approach offers much in terms of through-
ut and accuracy to investigate urine protein
nd peptide expression. This is particularly the
ase when the MALDI-MS instrument possesses
S/MS capability that allows peptide sequence

dentification.

ssessing Variability in
linical Proteomic Studies
nd the Impact on Power Analysis

n all too often neglected aspect of MS-based
iomarker analysis is the assessment of biolog-

cal and instrument variability. These variables
ltimately control the reproducibility of the an-
lytic method. To determine the reproducibility
f the MALDI-TOF MS method, we collected
ata in triplicate (ie, samples were spotted on
he plate 3 times) using 2 separate standard
eptide mixtures, with each peptide present at
he 100-fmol level. These experiments were
epeated a total of 3 times. The analysis of
tandards was based on (1) the order of sample
pplication or (2) the MALDI matrix selected as
he co-crystal. To simulate a complex peptide
ixture, a commercially available trypsin digest

f �-galactosidase (�-gal), was chosen to bench-
ark variance within the acquired data. A sec-

nd peptide mixture was composed of 2 pep-
ides: a hydrophilic peptide, angiotensin II, a
ydrophobic peptide, P14R, and was used to
enchmark the variation in the data as a result
f physiochemical parameters. Peptide stan-
ards were spotted at random plate locations
nd in 3 sample application techniques: (1)
o-spotted with MALDI matrix, (2) sample
potted first and allowed to dry, and (3) sam-
le spotted onto dried matrix. Peptide stan-
ards were spotted using the prototypical
atrix, �-cyano-4-hydroxycinnamic acid (�-
N), and with 2 salts derived from �-CN: (1)
-butylammonium �-CN and (2) diethylam-
onium �-cyano-4-hydroxycinnamate (DEA
-CN). These salts are reported as ionic liquids
nd in theory ensure a more homogenous dis-
ribution of the peptide within the forming crys-
alline matrix. The resulting homogeneity should
herefore provide for a lower incidence of ob-
erved variation in the acquired data set. Under

he conditions used in this study, the samples v
ehaved as solids and were applied as solutions
n acetonitrile.

Figure 4 depicts the comparison of �-gal
ALDI-TOF spectra for the various sample spot-

ing methods. From these data, it was deter-
ined that application of the sample followed

y overlay of �-CN onto the dried sample af-
orded the best reproducibility (CV), but with
lightly fewer peptide ions than the peptide/
atrix co-mixed spot. Figures 5 to 7 illustrate

he peptide ion signal intensities for the detec-
ion of the 2-peptide mixture of angiotensin II
ATII) and P14R. These data suggest that the
onic liquids (salts) (n-butylammonium �-CN
nd DEA �-CN) perform best when applied as a
ample underlay. However, the ionization effi-
iency of the 2-peptide mixture for the cin-
amate salts is not reproduced with complex
eptide mixtures of the �-gal digest and there-

ore cannot be taken to function as the opti-
um MALDI-TOF matrix. Therefore, in consid-

ration of the total number of observed
eptides and the variation in observed peptide

onization, it is suggested that the matrix spot-
ed onto the dried sample to be the best
ethod to reproducibly observe the maximum

umber of peptide ions with a calculated CV of
.28. These values of variation in the MALDI-
OF–acquired data approximate those CVs cal-
ulated for LC-ESI-MS methods, which are re-
orted to be 10% for CV and �15% for standard
rror.42–44

The calculated MALDI-TOF MS CV data are
ssential to determine the statistical power
eeded in a clinical proteomics study. Assum-

ng a normal distribution and equal variances, a
eplicate peptide set of 4 samples per group
nsure that an observed change of 50% in a
eptide ion intensity (2,000 � 560) at the 95%
onfidence interval is calculated to be greater
han 0.99. The computed value (0.997) is suffi-
iently powered to greater than 0.80, which is
onsidered a minimum benchmark for statisti-
al soundness. However, increasing the num-
er of replicates to 10 per group calculates a
ower of greater than 0.999, which is more
han sufficient for purposes of discovery sci-
nce and establishing proteomic candidates for

alidation by other means.
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590 D.W. Wilkey and M.L. Merchant
ECENT FINDINGS IN
RINARY BIOMARKER DISCOVERY

lomerular Nephropathies

hronic renal diseases such as DN, focal seg-
ental glomerular sclerosis (FSGS), lupus ne-
hritis, membranous nephropathy (MN), and

gA nephropathy (IgAN) are associated with
roteinuric states. Proteinuric states can de-
elop from failure of the glomerular filtration
arrier, the proximal tubule endocytic protein
cavenging system, or both. In many instances
he pathology of the disease is restricted to
pecific nephron units.45–48 The gold standard
or diagnosing many or most of these states is
ith a biopsy examination. Biopsy examina-

ions have inherent risks such as the invasive
ature of the procedure. Another risk is the
nderassessment of the diseased kidney owing
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igure 4. Comparison of MALDI-TOF MS spectra repro
omplex peptide mixture (�-galactosidase digest). (A) �
igest co-spotted with �-CN matrix, (C) �-gal digest app
-gal digest applied in 50% acetonitrile to pre-spotted �

n 30% acetonitrile results in poor peptide ionization. T
atrix and allow for the production of the required pep
o the limited area of the biopsy versus the total a
idney surface area. Therefore, discriminatory
rinary biomarkers should be more advanta-
eous toward screening for glomerular disease.
ignificant progress has been made in the ap-
lication of 2DE and MS profiling of urine for
stablishing protein and peptide profiles that
an define disease versus nondisease states.

DE Identification of Urine Biomarkers

ecent work by several groups has suggested
hat suitable biomarkers for glomerular disease
ight be based on differential urinary expres-

ion of common serum proteins having specific
egrees of posttranslational modification.7,49 In
ne study, the urinary proteome of 32 individ-
als comprising FSGS, lupus nephritis, MN, and
N glomerular nephropathies were studied.
rotein patterns were developed using 2DE,
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centage acetonitrile is insufficient to dissolve the �-CN
atrix co-crystal.
tted

+4 1

%
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te
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%
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te
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ducibi
-gal d
lied i

-CN m
he per
nd features (protein gel spots) diagnostic for
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Proteomic methods 591
athology were evaluated using unsupervised
lustering algorithms and also by artificial neu-
al network (ANN) analyses. The unsupervised
pproach involved the simultaneous clustering
f gels and spots by unweighted pair group
verage. Based on the analyses of all 32 gels, no
ingle gel spot could differentiate all 4 diseases
nd no significant variation in the gel spot pat-
erns or gel spot intensities could be discerned
onsidering sample collection order, diagnosis,
nd race, age, or serum creatinine level. Aggre-
ate variation in the data was discerned using a
ouble-cluster analysis of gels and spots. Pro-
ein spots were ranked by intensity and parsed
nto quartiles. The ANN was trained on 50% of
he samples randomly selected using ranked
rotein spot volumes and known values of in-
ammation markers (interleukin-6, interleu-
in-8, and interleukin-16) as clinical inputs.
are was taken not to over-fit the data, and the
xternal validation set (the remaining 50% of
amples) was retained as a future validation
ending identification of discriminatory gel
pot features. By using the trained ANN the
alidation set was analyzed with 64 predictions

igure 5. Comparison of sample application techniqu
ALDI matrix. Sample application technique was evalu

nd hydrophobic peptides. The sample underlay metho
easurements. , spot sample, overlay matrix (CV-ATII �

.26, CV-P14R � 0.45); , spot matrix, overlay sample (
ade (16 patients � 4 disease states). The ANN r
ade predictions with 83% accuracy. The sen-
itivity (75-86%) and specificity (67-92%) are
omparable or better than many currently used
iomarker tests. Twenty-one protein spots com-
rising at least 12 gene products provided the
ost sensitive discriminatory features. Six pro-

eins, all plasma proteins, were aggregately re-
ponsible for 13 gel spots. These 6 proteins
Zn-�-2 glycoprotein, �-1 antitrypsin, haptoglo-
in, transferrin, albumin, and �-1 microglobu-

in) are all known to be glycosylated, thus
roviding an explanation for multiple protein
harge isoforms observed in the 2DE gels.
he conclusions from these data and sup-
orted by the literature50,51 are that the glo-
erulopathy induces a change permeability/

electivity that biases the glomerular filtration
f plasma proteins. Here the advantage of
DE is in the identification of protein iso-
orms that could have been missed by top-
own LC-MS methods.
In a second study, the urine from 43 patients

16 IgAN, 10 normal, and 16 DN) were com-
ared using differential in-gel electrophoresis
DIGE) labeling. DIGE is a 2DE method that

hydrophobic versus hydrophilic peptides using �-CN
sing ATII and P14R peptides as prototypical hydrophilic
lted in the lowest observed CV for peptide ion intensity
, CV-P14R � 0.37); , mix sample and matrix (CV-ATII �
II � 0.27, CV-P14R � 0.44).
e with
ated u
d resu

0.25
elies on covalent labeling of sample proteins
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ith fluorescent dyes derived from cyanine
unctional groups (eg, Cy-2, Cy-3, and Cy-5).
hese dyes have varying extents of unsaturation,
bsorb light at slightly different wavelengths, and
uorescently emit light at slightly different wave-

engths. The dyes react with primary amines us-
ng a minimal labeling or saturation-labeling strat-
gy. With DIGE labeling it is possible to label
ndividual samples with specific dyes, mix-la-
eled samples, and conduct simultaneous 2DE
xperiments within one gel. Identical proteins
rom separate samples are co-resolved and are
uantified differentially using specific fluores-
ence excitation/emission wavelength combi-
ations. The ability to directly compare and
uantify proteins from 2 different samples min-

mizes the problems of gel-to-gel variation, en-
ures a more accurate alignment of gel images
etween replicate gels, and reduces the number
f individual gel experiments. Finally, the avail-
bility of 3 Cy dyes provides for 2 experimental
onditions (case and control) and allows for use
f the third dye to label a composite internal
tandard derived from a mix of all samples.

Here, the DIGE labeling resulted in the visu-

igure 6. Comparison of sample application technique w
ALDI matrix. Sample application technique was evalu

nd hydrophobic peptides. The sample co-mix method
easurements. , spot sample, overlay matrix (CV-ATII �

.26, CV-P14R � 0.16); , spot matrix, overlay sample (
lization of 172 protein spots. By using MS and s
ioinformatics, the majority of the spots were
dentified as serum proteins and fragments of
erum proteins. More than 70% (122 of 172)
f all protein spots were identified as fragments
f albumin. DIGE labeling indicated a gross in-
reased expression of all proteins in the IgAN
rine except for �1-microglobulin. This expres-
ional change was unexpected and was inter-
reted as a sample handling issue. The gel im-
ges did not indicate the presence of THP. THP
s a major, dominant component of almost all
rine samples and should be present on the
IGE images. The authors (Yokota et al49) pur-

ued the question of down-regulation of urinary

1-microglobulin in IgAN. �1-microglobulin also
s known as protein HC and is a member of the
ipocalin family (which includes neutrophil ge-
atinase-associated lipocalin or NGAL) and has
een reported previously as a marker for glo-
erular and tubular insults. Typically �1-micro-

lobulin is up-regulated in the disease condition
ut notably here is down-regulated. The au-
hors were unable to confirm the down-expres-
ion using �1-microglobulin enzyme-linked im-
unosorbent assay and included DN urine

ydrophobic versus hydrophilic peptides using DEA �-CN
sing ATII and P14R peptides as prototypical hydrophilic
ed in the lowest observed CV for peptide ion intensity
, CV-P14R � 0.46); , mix sample and matrix (CV-ATII �
II � 0.19, CV-P14R � 0.30).
ith h
ated u
result
0.29
amples as disease controls. The disparity in
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IGE and enzyme-linked immunosorbent assay
esults was not fully explained but suggested
hat a source of variability could be the result of
ample labeling.

S-Based Discovery of Biomarkers
ubstantial effort has been placed into direct
nalyses of urine proteins by MS methods. Two
elatively high-throughput MS approaches, CE-MS
nd surface enhanced laser desorption ionization,
ppearing in the recent literature have identi-
ed proteomic profiles associated with renal
isease states including glomerular diseases
uch as DN, IgAN, MN, FSGS, and minimal
hange disease.20–24,52,53 These 2 MS methods
ave the advantage of identifying polypeptide
asses from the peptidome mass range into the

ow-molecular-weight proteome mass range.
he 2 methods suffer from low mass accuracies,
n inability to perform true top-down proteomic
nalyses, and issues regarding reproducibility
ith replicate sample analyses. Stringent con-

rol of sample handling and extensive develop-
ent of software to deal with technical variabil-

ty has allowed CE-MS to become a robust tool
or urinary biomarker discovery.23

igure 7. Comparison of sample application technique wit
alt matrix and various spotting techniques. Sample applic
rototypical hydrophilic and hydrophobic peptides. The samp

ntensity measurements. , spot sample, overlay matrix (CV-A
.15, CV-P14R � 0.17); , spot matrix, overlay sample (CV
The complexity of a normal human pro- g
eome as analyzed by CE-MS is comparable with
hat by 2DE. For instance, Wittke et al54 ana-
yzed the urine from 18 healthy individuals and
iscerned a common pattern of approximately
50 polypeptides present in at least 50% of all
amples. Studies by Meier et al22 showed that
he complexity of the urine polypeptidome is
uch that no one sentinel biomarker or polypep-
ide feature can discriminate between normals
nd glomerular diseases such as DN, FSGS, or
inimal change disease. However, panels of
olypeptides could be used to biostatistically
ort the urine samples into defining renal dis-
ase states. This work was extended by the
ame group22 to show the ability to differentiate
ype 1 DM from type 2 DM from normal sam-
les as well as defining response to angiotensin
I receptor blocker treatment for DN patients.55

astly and significantly, using the CE-MS pep-
ide profiling approach, urinary biomarker stud-
es have produced the fist prognostic biomarker
anel using purely proteomic methods. Decra-
er et al21 analyzed the urine of infants with

reteropelvic junction obstruction. The CE-MS
ata then were classified or clustered into

ophobic versus hydrophilic peptides using �-CN butylamine
technique was evaluated using ATII and P14R peptides as
ix method resulted in the lowest observed CV for peptide ion

0.37, CV-P14R � NA); , mix sample and matrix (CV-ATII �
� 0.37, CV-P14R � 0.35).
h hydr
ation
le co-m
TII �
roups and correlated with the severity of ure-
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594 D.W. Wilkey and M.L. Merchant
eropelvic junction obstruction. In a follow-up,
rospective, blinded study, these discerned bi-
markers performed with a 94% success rate
or identifying which newborn required correc-
ive surgery.

RINARY BIOMARKER
ISCOVERY FOR TUBULAR NEPHROPATHIES

cute kidney injury (AKI), previously referred
o as acute renal failure, represents a significant
linical problem with incidence rates as high as
0% among intensive care patients. Positive out-
omes for AKI are low as based on reported
orbidity and mortality rates from 25% to 70%.
he gold standard used to monitor for AKI is
erum creatinine, despite the fact that serum cre-
tinine levels are lagging indicators of renal status.
erum creatinine levels vary with a laundry list of
actors including lean muscle mass, metabolic
tate, hydration status, as well as sex and age.
everal markers of AKI have been mentioned,
ith strong candidates being urinary or plasma
eutrophil gelatinase–associated lipocalin, and
idney injury molecule-1. Although these markers
erform admirably in animal models, they await
alidation in larger human studies to ensure that
hey are more specific for acute tubular nephrop-
thies than for chronic nephropathies.

Two recent AKI biomarker studies used rat
odels of AKI and following changes in the uri-

ary proteome by DIGE.14,15 In one case, the
nimals were injected with cisplatin and uri-
ary exosomes isolated by differential centrifu-
ation. Exosomes are small vesicles (50-80 nm)
omprising a single-membrane bilayer enriched in
embrane proteins. The luminal contents of

he exosome contain cytoplasmic protein de-
ived from the cell type that exocytosed the
xosome into the urine. Specific marker pro-
eins for cell types found along the length of the
ephron have been detected in urinary exo-
omes. Hence, urinary exosomes represent a
aluable source of protein rich with potential
iomarkers. In this study almost 1,800 gel spots
ere detected and 74 had a 1.5-fold statistically

ignificant (P � .05) expressional change. Twen-
y-eight proteins were identified by a combina-
ion of MALDI-TOF MS and LC-MS methods.
hese expressional differences were evaluated

y a complementary immunoblotting (IB) m
ethod. Nine identified proteins had commer-
ially available antibodies. By IB analysis, the
IGE results for 2 proteins (annexin V and

etuin A) were confirmed. Further investigation
f fetuin A was conducted to determine the
emporal expression as a function of the cispla-
in insult. Urinary exosomal fetuin A had a 2.75-
old expressional increase by 24 hours, peaking
t 48 hours at 52.5-fold. The expression of fe-
uin A remained increased past day 5 after AKI.
etuin A was shown to be present exclusively
n the exosomes and observed in the lumen of
etached tubular cells by day 5. Increased ex-
ression of exosomal fetuin A was confirmed in
human patients with AKI as compared with

ospitalized non-AKI patients.
In the second case, the model of AKI is a

epsis model of renal failure in aged animals
mice and rats). Sepsis is a major cause of AKI
nd despite investigation remains a persistent
ause of AKI mortality. Some efforts into treat-
ng sepsis as an intervention for AKI mortality
ave had good results. Holly et al14 used a DIGE
pproach to study the urinary proteome of a
epsis model of AKI. In this model sepsis was
nduced by cecal ligation and puncture (CLP).
he contents of the ligated and punctured ce-
um are extruded into the abdominal cavity.
he model requires aged mice or rats (Sprague-
awley) and used CLP sepsis nonresponders as

he control for the CLP sepsis responders. DIGE
xperiments were performed in triplicate. Pro-
ein spots were chosen if there was a change in
elative expression with statistical significance
P � .05). In all, 97 protein spots were selected
or MS identification and 30 were identified.
hree groups of proteins were found to have
ltered expression and included a decrease in
irculating proteins such as albumin, a decrease
n serine protease inhibitors, and an altered ex-
ression in brush-border enzymes (an increase in
minopeptidase and a decrease in meprin-1-�). IB
nalyses for meprin-1-� did not confirm DIGE
esults. To test the biologic relevance of the data,
n inhibitor of brush-border enzymes (actinonin)
as used to treat CLP sepsis responders and eval-
ate the role of brush-border enzymes in AKI.
ice treated with actinonin had a lower serum

reatinine level compared with vehicle-treated

ice at 24 hours after CLP. Together these results
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Proteomic methods 595
uggest the DIGE method can provide lead bi-
markers for AKI that can be used to design

ntervention strategies.

ONCLUSIONS

roteomics is an adaptive, unbiased methodol-
gy that is well suited for lead discovery phases
f biomarker development. Proteomic meth-
ds, although imperfect, rapidly develop large
onstrained data sets. The high dimensionality
f the proteomic data set can be offset by the
omparison of large numbers of samples, com-
arison of samples derived from phenotypic
xtremes, and by the use of both unsupervised
nd supervised data analyses approaches. De-
pite the recent advances in electrophoretic,
hromatographic, and mass spectrometric tech-
ologies, less biomarker development work has
een performed in the field of renal disease
hen compared with other fields such as can-

er research or cardiology. We can see from the
ork here that biomarkers likely will be com-
rised of sets of discriminatory protein features
nd less likely will be comprised of a single
rotein. This complexity in the diagnostic pro-
ess certainly will necessitate more develop-
ent on the analytic platforms currently in wide-

pread use among hospital clinical chemistry
epartments. As proteomic methods become
ore widely integrated into medical research, the

bility to discern complex disease patterns will
elp address the early diagnosis of renal disease.
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