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Summary: Many challenges exist with disease-state biomarker identification. These chal-
lenges include sample heterogeneity, poorly designed sample sets, insufficient numbers of
samples, as well as inconvenient workflows, inadequate methodology, and development of
false-positive markers resulting from protein degradation during sample handling. Yet despite
these difficulties, substantial progress has been achieved with the application of proteomic
methods toward biomarker discovery in renal disease. Significant advances have occurred in
the past decade with electrophoretic, chromatographic, and mass spectrometric methods for
discerning biomarkers of disease. Recent applications of proteomics to the study of renal
disease have identified new mechanisms in renal disease progression and established protein
expression profiles for complex renal diseases including glomerular and tubular pathologies.
In some cases these protein profiles have proven successful with guiding patient treatment
and markers for pharmacologic therapies. Proteomic analysis only recently has been applied
to the study of renal disease, yet it has shown substantial potential for future successes.
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edicine has long relied on physical ex-

amination and clinical blood and urine

chemistries to diagnose or stage dis-
ease. Early historical references to the diagnosis
of renal disease are contained in the Ebers pa-
pyrus written in approximately 1552 BCE, with
references to a condition of polyuria; consid-
ered by many as the first reference to a clinical
description of diabetes. A millennium later (4th-
5th century BCE), diabetes was diagnosed by
ancient Indian physicians Charak and Susrutha
on observations of ants collecting around the
urine of certain individuals. These physicians
termed the condition Madbumehba or boney-
like urine. The modern day search for diagnostic
markers of disease focuses on the discovery of
prognostic markers that allow for intervention
before the development of substantial pathophys-
iology.
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The explosion of science leading from the
genomic and proteomic revolutions has rede-
fined the potential of clinical chemistries to
better personalize medical care!? for such dis-
ease complications as diabetic nephropathy
(DN).23 The personalization of medical care is
predicated on the existence of discrete marker
compounds (ie, biomarkers) whose individual
or collective abundance is diagnostic of disease.
The National Institutes of Health Biomarker
Definitions Working Group has provided a con-
sensus definition for biomarker as “. . . cellular,
biochemical, and molecular (genetic and epige-
netic) alterations by which a normal or abnor-
mal biologic process can be recognized or mon-
itored. Biomarkers are measurable in biological
media, such as in tissues, cells, or fluids.”* The-
oretic applications of biomarkers in research
are assessment of pharmaceutical efficacy and
safety (in vitro as well as in vivo studies) and in
medical care for screening or staging progres-
sion of disease states, and also for evaluating the
response to treatment. These applications hint
at half the hope for biomarkers. In addition to
performing as a prognostic metric, biomarkers
hopefully will provide mechanistic insight into

584 Seminars in Nephrology, Vol 27, No 6, November 2007, pp 584-596



Proteomic methods

585

the molecular and cellular pathways that have
been disrupted in the disease state. Thus, bi-
omarkers can guide treatment as well as pro-
vide direction for future research on interven-
tion.

CHALLENGES IN BIOMARKER DISCOVERY
General Considerations

The development of biomarkers for routine clin-
ical applications has 3 distinct phases that can be
described generically as biomarker discovery, val-
idation, and implementation.> Preferably the dis-
covery or preclinical phase is performed in an
unbiased fashion with a sufficient number of well-
matched samples to power the analysis.” Here
genomic and proteomics methods each lend
themselves toward an unbiased analysis of the
sample. Optimally, the sample type(s) (ie, fluid,
tissue, or casts) and analytic method(s) used for
biomarker discovery should be easily translat-
able into the second phase of validation studies.
Hence, easily obtainable body fluids such as
urine or blood are desirable for discovery stud-
ies. Tissue samples such as biopsy material are
not ideal but may be used for biomarker discov-
ery purposes, keeping in mind the end goal of
noninvasive diagnosis or staging of disease. Still,
substantial progress has been made regarding
the extraction of information (proteolytic pep-
tides) from formalin-fixed biopsy material.8-1!
The difficulties of biomarker-lead development,
likened to searching for a needle in a haystack,
are dissimilar to the difficulties of validation.
The principal difficulty of the validation phase
is establishing the appropriate validation sam-
ple set and using a sensitive, high-throughput
method for biomarker quantification. The sub-
ject of the third phase of biomarker develop-
ment, biomarker implementation, is outside the
scope of this article and is not addressed here.

A discernable commonality to most recent
successes in biomarker discovery for renal dis-
eases is the incorporation of a non- hypothesis-
driven approach (genomic and proteomic) for
selecting early sentinel/discriminatory disease
biomarkers. Several proteins including urinary
kidney injury molecule-1 and urinary or plasma
neutrophil gelatinase-associated lipocalin, sug-
gested to perform as sensitive markers of acute

kidney injury (AKI), first were identified by
genomic analysis of kidney tissue isolated from
animal models of AKI.'>!3 Expressional differ-
ences of each of these protein biomarkers have
been confirmed recently at the protein level using
immunochemical methods in urine. Other pro-
tein biomarkers of acute and chronic renal dis-
eases are suggested to be derived from common
plasma proteins having unique patterns of post-
translational modification or are differentially
compartmentalized into urinary exosomes.”-'4-19
Further, peptide biomarkers or peptide expres-
sion patterns diagnostic of renal disease (ie,
peptide profiles) have been identified using a
more direct approach with tandem technolo-
gies of capillary electrophoresis-mass spec-
trometry (CE-MS) or liquid chromatography-
mass spectrometry (LC-MS).2°-24 The success of
these biomarker developments is based in part
on proteomic advances in high-resolution elec-
trophoretic or LC methods, more robust com-
putational platforms (software and hardware),
and, lastly, high-throughput, high-sensitivity MS
analyses of peptides.

The Curse of Proteomic
Dimensionality in Biomarker Discovery

Biomarker discovery efforts both benefit and
suffer from the proteomic approach. A substan-
tial benefit of the proteomic approach is the
unbiased nature of the proteomic paradigm. A
substantial detriment of the proteomic ap-
proach can be inferred from a quote taken from
Richard Bellman, “the curse of dimensional-
ity.>>” The curse of dimensionality is a signifi-
cant obstacle in elucidating trends within the
complex data sets. Statistical analyses of these
types of data sets suffer from the paucity of
samples compared with number of observa-
tions (ie, data points, gel spots, observed pep-
tide ions) per sample. Although a few examples
of high-resolution 2-dimensional electrophore-
sis (2DE) proteomics data sets have been re-
ported in the literature, individual urinary pro-
teomic 2DE data sets typically are defined by a
few hundred protein spots. Urinary MS data sets
typically are defined by hundreds to thousands
of identified proteins based on thousands of
tryptic peptides. Because of the increased sen-
sitivity of modern mass spectrometers over con-
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ventional protein stains used in 2DE experi-
ments, more data points are observed in an
individual LC-MS proteomic experiment com-
pared with an individual 2DE proteomic exper-
iment. But careful design of the sample sets and
implementation of biostatistical controls can
abate, but not eliminate, the dimensionality
curse.

The dimensionality curse starts with the sam-
ple used for analysis. Urine has been criticized
as a biomarker reservoir because of the high
degree of variability in the protein source and
in the variability of the urinary protein concen-
tration.2® Urine contains soluble proteins from
multiple sources including filtered plasma pro-
teins and proteins secreted by genitourinary
cells including renal glomerular and tubular
cells. Urine also contains insoluble or sedimen-
tary components such as cell casts, sloughed cells
(e, podocytes), excreted vesicular particles (ie,
exosomes), and even renal calculi. In addition to
high-molecular-weight proteins, urine contains
low-molecular-weight polypeptide components
(peptides) present at an equivalent mass
amount with equivalent complexity to the
higher molecular weight urinary proteins. The
varied physical nature of urine composition can
be capitalized on and urinary subproteomes frac-
tioned, thus increasing the sensitivity or dynamic
range for detection of low abundant species.!®
From several studies performed independently,
we can draw conclusions regarding the relative
abundance of proteins and peptides in urine.
Zhou et al*’ determined the protein composi-
tion of normal urine and discerned it to be 49%
soluble, 48% sedimentary, and 3% exosomal
protein. Adachi et al*® determined that the hu-
man urinary proteome contains more than
1,500 proteins, many of which are membrane
(exosomal) proteins. The estimate of urinary
polypeptide composition by Zhou et al*” was to
the exclusion of low-molecular-weight species,
such as urinary peptides. Norden et al* con-
cluded normal human urine (excluding Tamm-
Horsfall protein [THP]) contains 66% protein (de-
fined as polypeptide >10 kd) and 33% peptide
(content in range 750 d to 10 kd), with the
numbers of individual peptides observed in nor-
mal urine rivaling that of observed proteins.?330
In addition, the complexity of the urinary pro-

teome is increased by posttranslational protein
processing events. This is evidenced from the
fact that a substantial number of urinary pro-
teins detected in the urine are derived from the
same gene product with alternative degrees of
posttranslational modifications such as proteol-
ysis or glycosylation. The dimensionality curse
can be broken only when the number of sam-
ples exceeds the number of observations, not
just the total number of gene products. It is
unlikely the biomarkerlead discovery pro-
cesses will ever be designed to include thou-
sands of samples per study arm. Therefore,
most biomarker-lead development studies are
destined to be underpowered.

Concerns With Quantitative Proteomic
Methods Used for Biomarker Discovery

A general concern with the detection of unique
markers of renal pathophysiology should be
natural abundance of the marker species. Anal-
ysis for biomarkers in urine is facilitated by the
ease of urine sample collection. Larger volumes
of urine can be collected and fractionation
schemes can be scaled up for purposes of de-
tecting low abundant marker species. Analysis
of renal organ or tissue is more problematic. In
these cases, tissue or surrogate tissue marker
compounds can be used. Methods used to de-
velop surrogate marker compounds to address
sensitivity can rely on fractionation of cellular
and subcellular proteomes. The fractionation of
subcellular organelles acts to enrich for low
abundant species. These data are then useful
for comparison with genomic data to identify
with altered protein expression differences, to
identify novel gene transcripts with or without
novel post-translational modifications, to iden-
tify affected metabolic pathways and for com-
parison to profile changes in the urine pro-
teome over the disease course.’!

Integral steps to all biomarker discovery ap-
proaches include sample preparation, sample
separation, protein or peptide quantification,
and peptide/protein identification. Data quality
by way of variation in the data can arise as a
result of the sample source (urine versus surro-
gate cell culture models versus tissue), or meth-
ods for sample separation (electrophoretic or
chromatographic), quantification (noncovalent
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staining, covalent labeling, or label-free methods),
and identification (mass spectrometric, immuno-
chemical, and bioinformatic analysis platforms).
Multiple approaches exist for the analysis of renal
pathophysiology and elucidation of biomarkers of
renal disease. Two main proteomic separation
platforms upstream of mass spectrometers are
used in lead-biomarker discovery efforts. These
sometimes multidimensional separation methods
are based on electrophoretic or liquid chromato-
graphic separation of proteins and/or peptides.
Recent reviews from the application of electro-
phoresis and liquid chromatography in protein
separation are available3* 4! and will not be ex-
panded on here. Quantification of proteins or
peptides is achieved after high-resolution sample
separation. Electrophoresis invariably involves
protein staining: either covalent or noncovalent
fluorescent stains. Quantification of proteins
downstream of the chromatographic separation is
achieved using MS and by measurement of the
individual ion or total ion current. Recent work
by the Association of Biomedical Resource Facili-
ties (Proteomics Research Group PRG2006) on
Relative Quantification methods has suggested
quite strongly that labelfree mass spectrometric
quantification of proteins has a lower variability in
the observed data as compared with all other
methods except radioactive labeling of proteins.
Our work provided here supports this position of
the benefit of labelfree MS quantification of pro-
teins. We highlight this perspective with a few
examples of variation in proteomic data sets that
then can be used in statistical considerations dur-
ing biomarker discovery efforts.

2DE

Sample source-derived data variation is intrin-
sically a problem of contaminating species. To
illustrate this concept, representative 2DE im-
ages are provided for analyses of cell culture
lysates and for normal and diabetic urinary pro-
teomes (Figs. 1-3). A murine mesangial cell pro-
teome reference map was created using 60 ug
cell lysate protein, 3 to 10 non-linear immobi-
lized pH gradient (IPG) strips, 4% to 12% Nu-
PAGE (Invitrogen, Carlsbad, CA) slab gels, and
SYPRO Ruby staining (Molecular Probes, In-
vitrogen, Carlsbad, CA), and is presented in
Figure 1. Thirty protein spots across the high-
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Figure 1. Representative 2DE gel image of murine mes-
angial cell lysate separated using 7-cm 3 to 10 NL IPG
strips and 4% to 12% sodium dodecyl sulfate-polyacryl-
amide gel electrophoresis (SDS-PAGE) slab gels. Thirty
protein spots across the high-to-low pl and Mr ranges
were selected as seed spots against which a total of 18
gel images were matched using Progenesis Discovery
software. An analysis of variance was calculated for seed-
spot volumes within glucose treatments and a grand CV
was calculated equaling 0.19.

to-low isoelectric point (pI) and molecular mass
(Mr) ranges were selected as seed spots against
which a total of 18 gel images (5 gels per two
2-h treatment conditions and 4 gels per two
24-h treatment conditions) were matched using
Progenesis Discovery software (Nonlinear Dy-
namics, Newcastle upon Tyne, UK). An analysis
of variance was calculated for seed spot-volumes
within glucose treatments. The coefficient of vari-
ance (CVs) for the replicate matched gels were
0.17 (n = 5), 0.17 (n = 5), 0.20 (n = 4), and
0.21 (n = 4). The grand average of all CVs was
calculated across all 30 seed spots of the 4 gel
sets and determined to be 0.19. The grand CV
was taken to represent the sum of all variations
and is derived from both the biology of the
sample and the 2DE technique.

Figures 2 and 3 are illustrative of 2DE gel
images using 25 ug normal pediatric urine pro-
tein and new-onset (pediatric; urine collection
<6 mo since time of diagnosis) type 1 diabetes
mellitus (DM) urine protein. CVs for individual
gel spot volumes were calculated for 20 protein
seed spot volumes found in normal adult urine
gels (n = 5). The grand average for these CVs
was found to be 0.299. The 2DE CV was calcu-
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Figure 2. Representative 2DE gel image of 25ug nor-
mal pediatric urine protein desalted by trichloroacetic
acid (TCA) precipitation and proteins resolved on 7-cm
3-10 non-linear immobilized pH gradient (IPG) strips
and 4-12% SDS PAGE slab gel. Twenty protein spots
across the high-to-low isoelectric (pl) and molecular
mass (Mr) ranges were selected as seed spots against
which a total of 5 gel images were matched using Pro-
genesis Discovery software. An analysis of variance was
calculated for seed spot-volumes and a grand coefficient
of variance calculated equaling 0.299.

lated for 20 matched protein spots found
within the type 1 DM urine 2DE gel images
(n = 5) and the grand CV was calculated to be
0.49.

Two conclusions can be drawn from these
studies. First, cell cultures or other more geneti-
cally homogenous protein sources inherently will
provide a more reproducible result. Second, de-
spite having high variability, properly designed
experiments using power analyses based on these
urine gel spot-volume CV calculations increase
the likelihood of avoiding type II errors. The
calculated 2DE CV data were used in power
calculations. Power calculations are prospec-
tive and are predictive of the number of sample
replicates needed if one wishes to avoid a sta-
tistical type II error. A power calculation re-
quires an estimate of the variability intrinsic to
the method being used, the desired statistical sig-
nificance level, expected measurement in both
arms of the experiment, and the minimum ob-
served change. Assuming a normal distribution
of measured values and equal variances in the
measured values, a replicate gel set of 4 gels per
group of cell culture lysate ensure that an ob-
served change of 50% in the prototypical pro-

tein spot volume (2,010 £ 382 pixel units) at
the 95% confidence interval provides for a
power of 0.869. The computed power estimate
(0.869) is greater than 0.80, which is consid-
ered a minimum benchmark for statistical
soundness. However, increasing the number of
replicate gels of cell culture lysate to 10 per
group provides a power of 0.999, which is
more than sufficient for purposes of discovery
science and establishing proteomic candidates
for validation by other means.

Matrix-Assisted Laser
Desorption lonization-Time of Flight MS

Recent advances in liquid chromatography and
robotics have provided for the automated spot-
ting of nanoliter volumes of peptide or protein
samples onto matrix-assisted laser desorption
ionization (MALDI) target plates. Efficient ion-
ization of peptides and proteins requires the
presence of an ultraviolet-absorbing organic
molecule (the matrix) such as cinnamic acid or a
cinnamic acid derivative. MALDI-time of flight
(TOF) MS analysis of peptides historically has
been viewed as semiquantitative. In many ways,
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Figure 3. 2DE image of 25ug urine protein from new-
onset (<6 mo from diagnosis) TIDM urine sample de-
salted by trichloroacetic acid (TCA) precipitation and
proteins resolved on 7-cm 3-10 non-linear immobilized
pH gradient (IPG) strips and 4-12% SDS PAGE slab gel.
Twenty protein spots across the high-to-low isoelectric
(pl) and molecular mass (Mr) ranges were selected as
seed spots against which a total of 5 gel images and to
the normal urine gel images (n=5) were matched using
Progenesis Discovery software. An analysis of variance
was calculated for seed spot-volumes and a grand coef-
ficient of variance calculated equaling 0.49.
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this approach offers much in terms of through-
put and accuracy to investigate urine protein
and peptide expression. This is particularly the
case when the MALDI-MS instrument possesses
MS/MS capability that allows peptide sequence
identification.

Assessing Variability in
Clinical Proteomic Studies
and the Impact on Power Analysis

An all too often neglected aspect of MS-based
biomarker analysis is the assessment of biolog-
ical and instrument variability. These variables
ultimately control the reproducibility of the an-
alytic method. To determine the reproducibility
of the MALDI-TOF MS method, we collected
data in triplicate (ie, samples were spotted on
the plate 3 times) using 2 separate standard
peptide mixtures, with each peptide present at
the 100-fmol level. These experiments were
repeated a total of 3 times. The analysis of
standards was based on (1) the order of sample
application or (2) the MALDI matrix selected as
the co-crystal. To simulate a complex peptide
mixture, a commercially available trypsin digest
of B-galactosidase (f3-gal), was chosen to bench-
mark variance within the acquired data. A sec-
ond peptide mixture was composed of 2 pep-
tides: a hydrophilic peptide, angiotensin II, a
hydrophobic peptide, P4R, and was used to
benchmark the variation in the data as a result
of physiochemical parameters. Peptide stan-
dards were spotted at random plate locations
and in 3 sample application techniques: (1)
co-spotted with MALDI matrix, (2) sample
spotted first and allowed to dry, and (3) sam-
ple spotted onto dried matrix. Peptide stan-
dards were spotted using the prototypical
matrix, a-cyano-4-hydroxycinnamic acid (a-
CN), and with 2 salts derived from «a-CN: (1)
n-butylammonium «-CN and (2) diethylam-
monium «a-cyano-4-hydroxycinnamate (DEA
a-CN). These salts are reported as ionic liquids
and in theory ensure a more homogenous dis-
tribution of the peptide within the forming crys-
talline matrix. The resulting homogeneity should
therefore provide for a lower incidence of ob-
served variation in the acquired data set. Under
the conditions used in this study, the samples

behaved as solids and were applied as solutions
in acetonitrile.

Figure 4 depicts the comparison of [-gal
MALDI-TOF spectra for the various sample spot-
ting methods. From these data, it was deter-
mined that application of the sample followed
by overlay of a-CN onto the dried sample af-
forded the best reproducibility (CV), but with
slightly fewer peptide ions than the peptide/
matrix co-mixed spot. Figures 5 to 7 illustrate
the peptide ion signal intensities for the detec-
tion of the 2-peptide mixture of angiotensin II
(ATID) and P;4R. These data suggest that the
ionic liquids (salts) (n-butylammonium «-CN
and DEA o-CN) perform best when applied as a
sample underlay. However, the ionization effi-
ciency of the 2-peptide mixture for the cin-
namate salts is not reproduced with complex
peptide mixtures of the 3-gal digest and there-
fore cannot be taken to function as the opti-
mum MALDI-TOF matrix. Therefore, in consid-
eration of the total number of observed
peptides and the variation in observed peptide
ionization, it is suggested that the matrix spot-
ted onto the dried sample to be the best
method to reproducibly observe the maximum
number of peptide ions with a calculated CV of
0.28. These values of variation in the MALDI-
TOF-acquired data approximate those CVs cal-
culated for LC-ESI-MS methods, which are re-
ported to be 10% for CV and *£15% for standard
error,42-44

The calculated MALDI-TOF MS CV data are
essential to determine the statistical power
needed in a clinical proteomics study. Assum-
ing a normal distribution and equal variances, a
replicate peptide set of 4 samples per group
ensure that an observed change of 50% in a
peptide ion intensity (2,000 = 560) at the 95%
confidence interval is calculated to be greater
than 0.99. The computed value (0.997) is suffi-
ciently powered to greater than 0.80, which is
considered a minimum benchmark for statisti-
cal soundness. However, increasing the num-
ber of replicates to 10 per group calculates a
power of greater than 0.999, which is more
than sufficient for purposes of discovery sci-
ence and establishing proteomic candidates for
validation by other means.
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100 fmol R-gal Digest Spotted Using Various Techniques
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Figure 4. Comparison of MALDI-TOF MS spectra reproducibility and effects of sample application techniques using a
complex peptide mixture (B-galactosidase digest). (A) B-gal digest pre-spotted with «-CN matrix overlay, (B) B-gal
digest co-spotted with «-CN matrix, (C) B-gal digest applied in 30% acetonitrile to pre-spotted a-CN matrix, and (D)
B-gal digest applied in 50% acetonitrile to pre-spotted a-CN matrix. Note the application of the B-gal peptide mixture
in 30% acetonitrile results in poor peptide ionization. The percentage acetonitrile is insufficient to dissolve the a-CN
matrix and allow for the production of the required peptide matrix co-crystal.

RECENT FINDINGS IN
URINARY BIOMARKER DISCOVERY

Glomerular Nephropathies

Chronic renal diseases such as DN, focal seg-
mental glomerular sclerosis (FSGS), lupus ne-
phritis, membranous nephropathy (MN), and
IgA nephropathy (JgAN) are associated with
proteinuric states. Proteinuric states can de-
velop from failure of the glomerular filtration
barrier, the proximal tubule endocytic protein
scavenging system, or both. In many instances
the pathology of the disease is restricted to
specific nephron units.#>-4% The gold standard
for diagnosing many or most of these states is
with a biopsy examination. Biopsy examina-
tions have inherent risks such as the invasive
nature of the procedure. Another risk is the
underassessment of the diseased kidney owing
to the limited area of the biopsy versus the total

kidney surface area. Therefore, discriminatory
urinary biomarkers should be more advanta-
geous toward screening for glomerular disease.
Significant progress has been made in the ap-
plication of 2DE and MS profiling of urine for
establishing protein and peptide profiles that
can define disease versus nondisease states.

2DE Identification of Urine Biomarkers

Recent work by several groups has suggested
that suitable biomarkers for glomerular disease
might be based on differential urinary expres-
sion of common serum proteins having specific
degrees of posttranslational modification.”# In
one study, the urinary proteome of 32 individ-
uals comprising FSGS, lupus nephritis, MN, and
DN glomerular nephropathies were studied.
Protein patterns were developed using 2DE,
and features (protein gel spots) diagnostic for
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Figure 5. Comparison of sample application technique with hydrophobic versus hydrophilic peptides using «-CN
MALDI matrix. Sample application technique was evaluated using ATIl and P,4R peptides as prototypical hydrophilic
and hydrophobic peptides. The sample underlay method resulted in the lowest observed CV for peptide ion intensity
measurements. 7, spot sample, overlay matrix (CV-ATIl = 0.25, CV-P14R = 0.37); &, mix sample and matrix (CV-ATIl =
0.26, CV-P14R = 0.45); [, spot matrix, overlay sample (CV-ATIl = 0.27, CV-P14R = 0.44).

pathology were evaluated using unsupervised
clustering algorithms and also by artificial neu-
ral network (ANN) analyses. The unsupervised
approach involved the simultaneous clustering
of gels and spots by unweighted pair group
average. Based on the analyses of all 32 gels, no
single gel spot could differentiate all 4 diseases
and no significant variation in the gel spot pat-
terns or gel spot intensities could be discerned
considering sample collection order, diagnosis,
and race, age, or serum creatinine level. Aggre-
gate variation in the data was discerned using a
double-cluster analysis of gels and spots. Pro-
tein spots were ranked by intensity and parsed
into quartiles. The ANN was trained on 50% of
the samples randomly selected using ranked
protein spot volumes and known values of in-
flammation markers (interleukin-6, interleu-
kin-8, and interleukin-16) as clinical inputs.
Care was taken not to over-fit the data, and the
external validation set (the remaining 50% of
samples) was retained as a future validation
pending identification of discriminatory gel
spot features. By using the trained ANN the
validation set was analyzed with 64 predictions
made (16 patients X 4 disease states). The ANN

made predictions with 83% accuracy. The sen-
sitivity (75-86%) and specificity (67-92%) are
comparable or better than many currently used
biomarker tests. Twenty-one protein spots com-
prising at least 12 gene products provided the
most sensitive discriminatory features. Six pro-
teins, all plasma proteins, were aggregately re-
sponsible for 13 gel spots. These 6 proteins
(Zn-a-2 glycoprotein, a-1 antitrypsin, haptoglo-
bin, transferrin, albumin, and a-1 microglobu-
lin) are all known to be glycosylated, thus
providing an explanation for multiple protein
charge isoforms observed in the 2DE gels.
The conclusions from these data and sup-
ported by the literature®®>! are that the glo-
merulopathy induces a change permeability/
selectivity that biases the glomerular filtration
of plasma proteins. Here the advantage of
2DE is in the identification of protein iso-
forms that could have been missed by top-
down LC-MS methods.

In a second study, the urine from 43 patients
(16 IgAN, 10 normal, and 16 DN) were com-
pared using differential in-gel electrophoresis
(DIGE) labeling. DIGE is a 2DE method that
relies on covalent labeling of sample proteins
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Figure 6. Comparison of sample application technique with hydrophobic versus hydrophilic peptides using DEA a-CN
MALDI matrix. Sample application technique was evaluated using ATIl and P,4R peptides as prototypical hydrophilic
and hydrophobic peptides. The sample co-mix method resulted in the lowest observed CV for peptide ion intensity
measurements. ¢, spot sample, overlay matrix (CV-ATIl = 0.29, CV-P14R = 0.46); @, mix sample and matrix (CV-ATIl =
0.26, CV-P14R = 0.16); [, spot matrix, overlay sample (CV-ATIl = 0.19, CV-P14R = 0.30).

with fluorescent dyes derived from cyanine
functional groups (eg, Cy-2, Cy-3, and Cy-5).
These dyes have varying extents of unsaturation,
absorb light at slightly different wavelengths, and
fluorescently emit light at slightly different wave-
lengths. The dyes react with primary amines us-
ing a minimal labeling or saturation-labeling strat-
egy. With DIGE labeling it is possible to label
individual samples with specific dyes, mix-la-
beled samples, and conduct simultaneous 2DE
experiments within one gel. Identical proteins
from separate samples are co-resolved and are
quantified differentially using specific fluores-
cence excitation/emission wavelength combi-
nations. The ability to directly compare and
quantify proteins from 2 different samples min-
imizes the problems of gel-to-gel variation, en-
sures a more accurate alignment of gel images
between replicate gels, and reduces the number
of individual gel experiments. Finally, the avail-
ability of 3 Cy dyes provides for 2 experimental
conditions (case and control) and allows for use
of the third dye to label a composite internal
standard derived from a mix of all samples.
Here, the DIGE labeling resulted in the visu-
alization of 172 protein spots. By using MS and

bioinformatics, the majority of the spots were
identified as serum proteins and fragments of
serum proteins. More than 70% (122 of 172)
of all protein spots were identified as fragments
of albumin. DIGE labeling indicated a gross in-
creased expression of all proteins in the IgAN
urine except for ay-microglobulin. This expres-
sional change was unexpected and was inter-
preted as a sample handling issue. The gel im-
ages did not indicate the presence of THP. THP
is a major, dominant component of almost all
urine samples and should be present on the
DIGE images. The authors (Yokota et al*®) pur-
sued the question of down-regulation of urinary
aj-microglobulin in IgAN. a-microglobulin also
is known as protein HC and is a member of the
lipocalin family (which includes neutrophil ge-
latinase-associated lipocalin or NGAL) and has
been reported previously as a marker for glo-
merular and tubular insults. Typically o;-micro-
globulin is up-regulated in the disease condition
but notably here is down-regulated. The au-
thors were unable to confirm the down-expres-
sion using o;-microglobulin enzyme-linked im-
munosorbent assay and included DN urine
samples as disease controls. The disparity in
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Figure 7. Comparison of sample application technique with hydrophobic versus hydrophilic peptides using «-CN butylamine
salt matrix and various spotting techniques. Sample application technique was evaluated using ATIl and P14R peptides as
prototypical hydrophilic and hydrophobic peptides. The sample co-mix method resulted in the lowest observed CV for peptide ion
intensity measurements. 7, spot sample, overlay matrix (CV-ATIl = 0.37, CV-P14R = NA); &, mix sample and matrix (CV-ATIl =
0.15, CV-P14R = 0.17); [, spot matrix, overlay sample (CV-ATIl = 0.37, CV-P14R = 0.35).

DIGE and enzyme-linked immunosorbent assay
results was not fully explained but suggested
that a source of variability could be the result of
sample labeling.

MS-Based Discovery of Biomarkers

Substantial effort has been placed into direct
analyses of urine proteins by MS methods. Two
relatively high-throughput MS approaches, CE-MS
and surface enhanced laser desorption ionization,
appearing in the recent literature have identi-
fied proteomic profiles associated with renal
disease states including glomerular diseases
such as DN, IgAN, MN, FSGS, and minimal
change disease.?0-245253 These 2 MS methods
have the advantage of identifying polypeptide
masses from the peptidome mass range into the
low-molecular-weight proteome mass range.
The 2 methods suffer from low mass accuracies,
an inability to perform true top-down proteomic
analyses, and issues regarding reproducibility
with replicate sample analyses. Stringent con-
trol of sample handling and extensive develop-
ment of software to deal with technical variabil-
ity has allowed CE-MS to become a robust tool
for urinary biomarker discovery.??

The complexity of a normal human pro-

teome as analyzed by CE-MS is comparable with
that by 2DE. For instance, Wittke et al** ana-
lyzed the urine from 18 healthy individuals and
discerned a common pattern of approximately
250 polypeptides present in at least 50% of all
samples. Studies by Meier et al*> showed that
the complexity of the urine polypeptidome is
such that no one sentinel biomarker or polypep-
tide feature can discriminate between normals
and glomerular diseases such as DN, FSGS, or
minimal change disease. However, panels of
polypeptides could be used to biostatistically
sort the urine samples into defining renal dis-
ease states. This work was extended by the
same group?? to show the ability to differentiate
type 1 DM from type 2 DM from normal sam-
ples as well as defining response to angiotensin
II receptor blocker treatment for DN patients.>>
Lastly and significantly, using the CE-MS pep-
tide profiling approach, urinary biomarker stud-
ies have produced the fist prognostic biomarker
panel using purely proteomic methods. Decra-
mer et al?! analyzed the urine of infants with
ureteropelvic junction obstruction. The CEMS
data then were classified or clustered into
groups and correlated with the severity of ure-
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teropelvic junction obstruction. In a follow-up,
prospective, blinded study, these discerned bi-
omarkers performed with a 94% success rate
for identifying which newborn required correc-
tive surgery.

URINARY BIOMARKER
DISCOVERY FOR TUBULAR NEPHROPATHIES

Acute kidney injury (AKI), previously referred
to as acute renal failure, represents a significant
clinical problem with incidence rates as high as
50% among intensive care patients. Positive out-
comes for AKI are low as based on reported
morbidity and mortality rates from 25% to 70%.
The gold standard used to monitor for AKI is
serum creatinine, despite the fact that serum cre-
atinine levels are lagging indicators of renal status.
Serum creatinine levels vary with a laundry list of
factors including lean muscle mass, metabolic
state, hydration status, as well as sex and age.
Several markers of AKI have been mentioned,
with strong candidates being urinary or plasma
neutrophil gelatinase-associated lipocalin, and
kidney injury molecule-1. Although these markers
perform admirably in animal models, they await
validation in larger human studies to ensure that
they are more specific for acute tubular nephrop-
athies than for chronic nephropathies.

Two recent AKI biomarker studies used rat
models of AKI and following changes in the uri-
nary proteome by DIGE.!*!> In one case, the
animals were injected with cisplatin and uri-
nary exosomes isolated by differential centrifu-
gation. Exosomes are small vesicles (50-80 nm)
comprising a single-membrane bilayer enriched in
membrane proteins. The luminal contents of
the exosome contain cytoplasmic protein de-
rived from the cell type that exocytosed the
exosome into the urine. Specific marker pro-
teins for cell types found along the length of the
nephron have been detected in urinary exo-
somes. Hence, urinary exosomes represent a
valuable source of protein rich with potential
biomarkers. In this study almost 1,800 gel spots
were detected and 74 had a 1.5-fold statistically
significant (P < .05) expressional change. Twen-
ty-eight proteins were identified by a combina-
tion of MALDI-TOF MS and LC-MS methods.
These expressional differences were evaluated
by a complementary immunoblotting (IB)

method. Nine identified proteins had commer-
cially available antibodies. By IB analysis, the
DIGE results for 2 proteins (annexin V and
fetuin A) were confirmed. Further investigation
of fetuin A was conducted to determine the
temporal expression as a function of the cispla-
tin insult. Urinary exosomal fetuin A had a 2.75-
fold expressional increase by 24 hours, peaking
at 48 hours at 52.5-fold. The expression of fe-
tuin A remained increased past day 5 after AKI.
Fetuin A was shown to be present exclusively
in the exosomes and observed in the lumen of
detached tubular cells by day 5. Increased ex-
pression of exosomal fetuin A was confirmed in
3 human patients with AKI as compared with
hospitalized non-AKI patients.

In the second case, the model of AKI is a
sepsis model of renal failure in aged animals
(mice and rats). Sepsis is a major cause of AKI
and despite investigation remains a persistent
cause of AKI mortality. Some efforts into treat-
ing sepsis as an intervention for AKI mortality
have had good results. Holly et al'4 used a DIGE
approach to study the urinary proteome of a
sepsis model of AKI. In this model sepsis was
induced by cecal ligation and puncture (CLP).
The contents of the ligated and punctured ce-
cum are extruded into the abdominal cavity.
The model requires aged mice or rats (Sprague-
Dawley) and used CLP sepsis nonresponders as
the control for the CLP sepsis responders. DIGE
experiments were performed in triplicate. Pro-
tein spots were chosen if there was a change in
relative expression with statistical significance
(P < .05). In all, 97 protein spots were selected
for MS identification and 30 were identified.
Three groups of proteins were found to have
altered expression and included a decrease in
circulating proteins such as albumin, a decrease
in serine protease inhibitors, and an altered ex-
pression in brush-border enzymes (an increase in
aminopeptidase and a decrease in meprin-1-o). IB
analyses for meprin-1-a did not confirm DIGE
results. To test the biologic relevance of the data,
an inhibitor of brush-border enzymes (actinonin)
was used to treat CLP sepsis responders and eval-
uate the role of brush-border enzymes in AKI.
Mice treated with actinonin had a lower serum
creatinine level compared with vehicle-treated
mice at 24 hours after CLP. Together these results
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suggest the DIGE method can provide lead bi-
omarkers for AKI that can be used to design
intervention strategies.

CONCLUSIONS

Proteomics is an adaptive, unbiased methodol-
ogy that is well suited for lead discovery phases
of biomarker development. Proteomic meth-
ods, although imperfect, rapidly develop large
constrained data sets. The high dimensionality
of the proteomic data set can be offset by the
comparison of large numbers of samples, com-
parison of samples derived from phenotypic
extremes, and by the use of both unsupervised
and supervised data analyses approaches. De-
spite the recent advances in electrophoretic,
chromatographic, and mass spectrometric tech-
nologies, less biomarker development work has
been performed in the field of renal disease
when compared with other fields such as can-
cer research or cardiology. We can see from the
work here that biomarkers likely will be com-
prised of sets of discriminatory protein features
and less likely will be comprised of a single
protein. This complexity in the diagnostic pro-
cess certainly will necessitate more develop-
ment on the analytic platforms currently in wide-
spread use among hospital clinical chemistry
departments. As proteomic methods become
more widely integrated into medical research, the
ability to discern complex disease patterns will
help address the early diagnosis of renal disease.
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