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Endothelin Role in Kidney Acidification

Donald E. Wesson

Endothelin is a potent vasoconstrictor that recent studies show modulates transport in
kidney tubules, including that related to acidification. The data support a physiologic role
for endothelin in mediating enhanced kidney tubule acidification in response to an acid
challenge to systemic acid-base balance status. The data to date do not support an
endothelin role in maintaining kidney tubule acidification in control, nonacid-challenged
states. Endothelin also contributes to the enhanced acidification of some pathophysiologic
states and might have a role in some of the untoward outcomes associated with these
conditions. This reviews supports continuation of studies into the physiologic and possibly

pathophysiologic role of endothelin in settings of increased tubule acidification.
Semin Nephrol 26:393-398 © 2006 Elsevier Inc. All rights reserved.
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Enhanced net acid excretion by the kidney contributes to
correcting the disturbance in systemic acid-base status
induced by an acid challenge.!? Because a systemic acid chal-
lenge increases kidney endothelin activity®* and endothelin
increases acidification in kidney tissue in vitro,>° investiga-
tors have explored a possible physiologic role for endothelin
in mediating kidney acidification. These studies described
herein support a physiologically important role for endothe-
lin in mediating enhanced kidney acidification that occurs in
response to a systemic acid-base challenge. The data suggest
that endothelin also contributes to increased kidney acidifi-
cation observed in pathophysiologic states such as chronic
metabolic alkalosis” and chronic kidney disease (CKD).® Im-
proved understanding of the cascade of factors that contrib-
ute to enhanced kidney acidification in response to an acid
challenge and how these factors lead to increased acidifica-
tion will help in the design of better treatment strategies for
disturbances of acid-base balance. This understanding also
should enhance our understanding of pathologic changes
associated with pathophysiologic states of chronically in-
creased kidney acidification such as CKD, to which increased
endothelin activity might contribute.
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Overview of Endothelin Biology

Endothelins (ET) are a family of 21 amino acid peptides
known best as powerful vasoconstrictors. ET-1 is the major
isoform of those described (ET-1, ET-2, and ET-3) and is the
only one expressed as a protein in human kidneys.” Its pro-
duction is regulated at the level of transcription in endothe-
lin-producing tissues examined, including kidney microvas-
cular endothelium.!® Unlike other vasoactive substances,
endothelin does not accumulate in secretory granules but is
synthesized and released constitutively and/or in response to
a stimulus.!! The initial gene product is the 212 amino acid
peptide prepro-ET-1 that is converted to a 38 amino acid
peptide called big ET-1 by ET-converting enzyme.!'? Although
many enzymes convert big ET-1 to ET-1, the enzymes that
mostly do so at physiologic pH (optimum pH, 7.0) are the
family of neutral metalloproteinases.'® In turn, this locally
produced ET-1 is degraded by neutral endopeptidase.'*!>
Many tissues have both the synthetic and degradation ma-
chinery for ET-1 including kidneys,'¢ suggesting local pro-
duction and degradation of ET-1 that modulates tissue func-
tion in an autocrine/paracrine fashion (see later).

Overview of the
Kidney Response to
Acid-Base Challenges

Because altered systemic acid-base homeostasis adversely af-
fects cell function, multiple systems coordinate to help main-
tained body fluid hydrogen ion concentration ([H*]) within a
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range in which cells function optimally. Metabolically pro-
duced H* might increase body fluid [H*] and induce a phys-
iologic response designed to return [H*] to the optimal
range. Two responses intended to maintain and/or restore
optimal range of body fluid [H*] are (1) H* buffering,!” in
which body buffers bind added H* to minimize the [H"]
increase that would otherwise occur, and (2) H* excretion,!®
in which H* is removed from the body. Because H™-titrated
buffers less effectively buffer subsequently added H™, buffer-
bound H* eventually must be excreted to regenerate body
buffers and restore buffering capacity. Consequently, all
added H* eventually must be excreted to restore acid-base
homeostasis to that before H* addition. Indeed, net H* ex-
cretion in human beings is equivalent to net H* production
in the steady state and the kidney is the major route of H*
excretion.!®1 These data support the importance of explor-
ing kidney mechanisms by which H* excretion increases in
response to an H* challenge.

Most experimental models exploring the effect of a sys-
temic challenge to acid-base status have used acid challenges
that are in marked excess of that routinely encountered by
animals or human beings.?® Such studies show an important
role for enhanced acidification in the proximal tubule in me-
diating the kidney response to excrete administered acid.?°
More modest acid challenges induced by chronic dietary acid
intake, however, yield observable increases in distal nephron
acidification with little to no observable increase in proximal
nephron acidification.?! This suggests that a greater propor-
tional increase (compared with the respective steady-state) in
distal rather than proximal nephron acidification mediates
enhanced net acid excretion in response to these more phys-
iologic challenges to systemic acid-base status. Enhanced dis-
tal nephron acidification in response to these more physio-
logic acid challenges is mediated by both decreased HCO;
secretion and increased proton (H*) secretion.>?!

More physiologic acid challenges to systemic acid-base sta-
tus lead to marked increases in urine net acid excretion with
a measurable increase in distal nephron acidification but
these changes are associated with little to no measurable
changes in plasma acid-base parameters.>2! These data ques-
tion whether mediators of a sustained increase in kidney
acidification require sustained changes in plasma acid-base
parameters. Alternatively, other sensors, possibly intracellu-
lar, might be sufficient to maintain the necessary cascade of
responses that sustain an increase in kidney acidification. In
vitro studies show that intracellular pH of cultured kidney
epithelial cells chronically exposed to acid media for 48
hours was not different from control yet these cells had in-
creased Nat/H* antiporter activity.?? In vivo studies show
that a chronic dietary acid challenge that increases kidney net
acid excretion and distal nephron acidification without mea-
surable changes in plasma acid-base parameters nevertheless
increases acid content of the kidney interstitium,?? a commu-
nicating space between vascular endothelium and tubule ep-
ithelium.?* These data suggest that persistent, measurable
alterations in plasma or intracellular fluid acid-base parame-
ters are not necessary to permit a sustained increase in kidney
tubule acidification. These data further suggest that parame-

ters of increased body acid content other than plasma or
intracellular acid-base parameters serve as sensors that lead
to enhanced kidney acidification. Possible acid sensors in-
clude activated intracellular systems such as ¢-SRC, ERK,»
and Pyk2.26 Activation of these intracellular systems impor-
tantly leads to endothelin-mediated upregulation of Na*/H*
exchange activity in proximal tubule epithelia in vitro.?>:26
Consequently, chronic acid challenges might increase kidney
acidification through altering intracellular systems that lead
to increased production of substances that directly influence
components of kidney acidification. Increased endothelin ac-
tivity might be one such mechanism that is stimulated by an
acid challenge and that mediates increased kidney acidifica-
tion in this setting.

Endothelin Production
by Vascular Endothelium

Endothelin production by human vascular endothelium occurs
in arterial macrovascular,2’-2® arterial microvascular,!?2® and
venous??3? endothelium. Secretion of endothelin from vascular
endothelial cells is predominately toward their basolateral sur-
faces,?® suggesting paracrine modulation by endothelin in tis-
sues with which vasculature is associated, as suggested earlier.
There also is evidence for autocrine regulation of cellular endo-
thelin secretion by vascular endothelium.3!3?

Endothelin Production
by Kidney Parenchyma and
Its Possible Physiologic Role

Endothelin is produced by both glomerular and tubule kid-
ney cells. In addition to the previously indicated microvas-
cular endothelium of the glomerular capillary tuft endothelin
production, mesangial®? and glomerular epithelial cells>* pro-
duce and secrete endothelin. Kidney tubule epithelia that
produce and secrete endothelin in vitro include the proximal
tubule,* medullary thick ascending limb,3¢ distal tubule,”
cortical collecting tubule,*® and inner medullary collecting
duct,® with the greatest amount coming from the latter.3
Kidney tubule epithelia have endothelin receptors, predom-
inantly of the B subtype,* located predominantly on basolat-
eral surfaces.” In addition, the kidney has a system for local
endothelin degradation,'*1° consistent with paracrine*and/or
autocrine? control of kidney tubule function by locally pro-
duced endothelin. Because of the intimate relationship be-
tween kidney vasculature and tubules?* and because the
interstitial space between them contains endothelin,? this anat-
omy permits paracrine control of kidney tubule function, pos-
sibly by endothelin secreted by vascular endothelium.1°

Endothelin Production by Adrenal
Cortex and Its Possible Role in
Enhanced Kidney Acidification

The adrenal cortex synthesizes endothelins*? that stimulate
secretion of both glucocorticoids and mineralocorticoids.****
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Because glucocorticoids®#6 and mineralocorticoids*” stimu-
late H* secretion in kidney tubule epithelium, adrenal corti-
cal endothelins might increase kidney acidification indirectly
and thereby contribute to the kidney response to an acid
challenge.

Effects of Acid Challenge on
Kidney Endothelin Production

Chronic acid loading with dietary ammonium salts increases
kidney expression of endothelin messenger RNA* and kid-
ney production of endothelin.? Similarly, increased intake of
acid-producing dietary protein induces increased expression
of kidney endothelin messenger RNA and increased kidney
endothelin production.* Furthermore, dietary acid*® and in-
creased intake of acid-producing dietary protein®! each in-
crease plasma aldosterone levels. In addition, an acid extra-
cellular environment increases aldosterone secretion by
adrenocortical cells in vitro.>? If dietary acid challenges in-
crease adrenal cortical endothelin production as it does in the
kidney,? these data suggest that adrenal endothelin indirectly
contributes to enhanced kidney acidification in this setting.

Endothelin
Effects on Acidification

Cells

Endothelin increases intracellular pH of many cell types in
vitro including skin fibroblasts,>? platelets,>* vascular smooth
muscle,” glomerular mesangial,*® cardiac myocyte,” and
kidney epithelial cells.”® The Na*/H* antiporter is the cell
membrane H* transporter that is influenced most consis-
tently by endothelin in these indicated cell types. Endothelin
increases Na*/H* antiporter activity in kidney epithelial
membrane vesicles® and cortical slices.®

Kidney Tubules

In addition to enhancing H* transport across cell mem-
branes, endothelin also influences acidification across kidney
tubule epithelia. Endothelin mediates enhanced proximal tu-
bule acidification associated with chronic metabolic acidosis
induced by NH,Cl loading and does so through stimulation
of endothelin B-type receptors.*® In these studies,*® endothe-
lin did not appear to mediate proximal tubule acidification in
control, nonacid-loaded animals. Endothelin mediates the en-
hanced distal nephron acidification associated with chronic acid
loading performed by dietary ammonium salts® and acid-
producing dietary protein.**->® In addition, exogenous endo-
thelin stimulates distal nephron acidification in vivo.®® As
observed in the proximal tubule, endothelin appears not to
contribute to basal distal nephron acidification in control
animals.>> In the loop of Henle, endothelin stimulates local
nitric oxide (NO) release® and NO inhibits thick ascending
limb Na*/H" exchange,%? suggesting that endothelin indi-
rectly inhibits acidification in this nephron segment. Because
endothelin-induced NO action on thick ascending limb

Na*/H™* exchange activity might more importantly inhibit
NaCl reabsorption in this nephron segment,%® this indirect
action of endothelin action in the thick ascending limb would
increase Na* delivery to the distal nephron with an antici-
pated increase in distal nephron Na*/H* exchange activity,%*
enhancing distal nephron acidification. Consequently, the
net effect of endothelin is increased proximal tubule and
distal nephron acidification.

Direct Mechanisms by

Which Acid-Induced Endothelin
Affects Kidney Acidification

Endothelin enhances Na*/H* exchange activity in many cell
types in vitro as indicated earlier, most of which express
primarily the Na*/H™" exchanger type 1 (NHE1) isoform.® In
kidney proximal tubule, endothelin increases acidification in
acid-challenged animals and cells primarily, if not exclu-
sively, through enhanced activity of NHE3,-%° the major H*
transporter in the proximal tubule.%” Because endothelin in-
creases Na*/H* exchange activity in the distal tubule and
NHE?2 appears to be the major apical isoform in this nephron
segment,®® endothelin appears to increase NHE2 activity. Al-
though endothelin appears also to increase H*-adenosine
triphosphatase (ATPase) activity in the distal nephron,**->
no data exist to support the theory that endothelin directly
stimulates this transporter in vitro. Instead, endothelin-in-
duced stimulation of aldosterone secretion that in turn in-
creases distal nephron H*-ATPase activity appears to be the
mechanism by which endothelin-receptor antagonism leads
to reduced distal nephron H*-ATPase activity.>

Possible Indirect
Mechanisms by Which Endothelin
Increases Kidney Acidification

Because many cytokines influence distal nephron acidifica-
tion and endothelin influences levels of many of these cyto-
kines, endothelin might affect kidney acidification indirectly
as well as directly. As discussed earlier, increased endothelin
activity increases distal nephron H*-ATPase activity through
stimulated aldosterone secretion.’® Of the 3 major distal
nephron H* transporters (Na*/H* exchanger, H"-ATPase,
and H*, K*-ATPase),® increased dietary acid leads to endo-
thelin-mediated stimulation of 2 (Na*/H" exchanger and
H*-ATPase).*>> Dietary acid-induced, endothelin-medi-
ated, distal nephron acidification appears not to include
stimulated H*, K*-ATPase activity.*° Although K* deple-
tion increases H*, K*-ATPase activity,” stimulated H*, K*-
ATPase likely is not mediated by endothelin in chronic met-
abolic alkalosis associated with K* depletion.” In addition,
endothelins might indirectly enhance kidney acidification
through endothelin-stimulated secretion of glucocorticoids
and mineralocorticoids by the adrenal cortex,** which
stimulate Na*/H" exchange®™* and H*-ATPase,*’ respec-
tively, in kidney tubules, as indicated earlier.
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Figure 1 Proposed cascade by which endothelin mediates enhanced
kidney acidification in response to an acid challenge. Reprinted with
permission from Wesson et al.”

Reduced HCO; secretion contributes importantly to en-
hanced acidification induced by chronic dietary ingestion of
mineral acid®>?! and acid-producing dietary protein.*-> The
resulting reduced HCO; delivery to the terminal distal
nephron itself increases net acid excretion but this phenom-
enon also enhances NH,* secretion’! and permits secreted
H* to titrate non-HCOs buffers and thereby constitute net
acid excretion rather than HCO; recovery.?’ Endothelin re-
duces distal nephron HCOj5 secretion (which reduces distal
nephron acidification)>*° indirectly through stimulated
NO production.” Other studies show that NO stimulates
overall acidification in both the proximal” and distal™
nephron in other settings.

Figure 1 outlines a proposed cascade by which endothelin
mediates enhanced kidney acidification in response to an
acid challenge.”

Role of Endothelin

in Enhanced Kidney
Acidification Associated

With Pathophysiologic Conditions

In chronic metabolic alkalosis, proximal and distal nephron
acidification is enhanced despite the systemic alkalosis.”™
This enhanced distal nephron acidification is mediated pre-
dominantly by increased distal nephron H* secretion’®’” and
it is amelioration of this increased distal nephron H* secre-
tion that indeed corrects the disturbed distal nephron acidi-
fication that characterizes chronic alkalosis.”” Endothelins
mediate this physiologically inappropriate increase in distal

nephron acidification in chronic metabolic acidosis.” Because
total body K* depletion plays an important role in the main-
tenance of chronic metabolic alkalosis’” and because endo-
thelins mediate enhanced NHE3 activity in an autocrine fash-
ion in proximal tubule epithelium exposed to an acid
environment in vitro,”® K* depletion is likely an important
component of this effect. Indeed, K* repletion in chronic
alkalosis reduces the increased urine ET-1 excretion, a sur-
rogate of kidney ET-1 production,® which is characteristic of
this disorder.”

The reduced nephron mass of CKD challenges the remain-
ing functioning nephron mass to excrete metabolically pro-
duced acid with a reduced number of functioning nephrons.
Animals with CKD as a result of reduced kidney mass have
augmented urine net acid excretion per unit of remaining
glomerular filtration rate, consistent with increased nephron
acidification.” Indeed, animals with reduced kidney mass
have increased proximal® and distal®!#? nephron acidifica-
tion in vivo. In addition, animals with CKD as a result of
reduced kidney mass have increased urine ET-1 excretion,®
consistent with increased endogenous kidney ET-1 produc-
tion.> Endothelins mediate the enhanced distal nephron
acidification in remnant kidneys,?* an experimental model of
CKD.

Possible Endothelin

Role in Complications

of Pathophysiologic
Conditions Associated With
Enhanced Kidney Acidification

Animals with experimental models of chronic metabolic al-
kalosis develop fibrosis with subsequent calcium deposition
in kidney parenchyma.®> In addition, experimental animals
with reduced kidney mass develop glomerulosclerosis with
tubulointerstitial fibrosis.® Endothelin increases kidney ma-
trix production and fibrosis in vitro®” and might mediate
glomerulosclerosis in vivo.® Consequently, increased endo-
thelin activity in these and possibly other settings might con-
tribute to the associated progressive kidney injury. Further
studies will determine if there is an endothelin contribution
to these untoward outcomes and if endothelin should be a
pharmacologic target in the management of these conditions.
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