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a�/H� Exchangers in Renal
egulation of Acid-Base Balance

. Alexandru Bobulescu and Orson W. Moe

The kidney plays key roles in extracellular fluid pH homeostasis by reclaiming bicarbonate
(HCO3

�) filtered at the glomerulus and generating the consumed HCO3
� by secreting protons

(H�) into the urine (renal acidification). Sodium-proton exchangers (NHEs) are ubiquitous
transmembrane proteins mediating the countertransport of Na� and H� across lipid bilayers. In
mammals, NHEs participate in the regulation of cell pH, volume, and intracellular sodium
concentration, as well as in transepithelial ion transport. Five of the 10 isoforms (NHE1-4 and
NHE8) are expressed at the plasma membrane of renal epithelial cells. The best-studied
isoform for acid-base homeostasis is NHE3, which mediates both HCO3

� absorption and H�

excretion in the renal tubule. This article reviews some important aspects of NHEs in the kidney,
with special emphasis on the role of renal NHE3 in the maintenance of acid-base balance.
Semin Nephrol 26:334-344 © 2006 Elsevier Inc. All rights reserved.

KEYWORDS sodium/hydrogen exchange, renal acidification, bicarbonate absorption
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he free hydrogen ion (H�) concentration in body fluids is
regulated exquisitely around 40 nmol/L (pH 7.40)

hereas H� flux through the body greatly exceeds this mag-
itude. In a 70-kg human being at a basal state, normal
etabolic and dietary acid production rate is about 50 to 70
moles/d and respiratory volatile acid production at the

asal state is around 15,000 mmoles/d, with peak production
t maximal exercise reaching 200 mmoles/min. The flux of
� through the organism over 24 hours is 8 orders of mag-
itude greater than the total pool of free H� in total body
ater (�2 �moles). This remarkable homeostatic feat is ac-

omplished by concerted efforts of extracellular and intracel-
ular buffers, highly efficient ventilatory responses, metabolic
unctions of the liver, and renal ammoniagenic and solute
ransport mechanisms. For excretion of nonvolatile acid and
ase loads, the kidney assumes the pivotal role.
A filtration-reabsorption nephron bears an exorbitant bur-

en of having to reclaim a vast amount of valuable solutes
ndiscriminately dispensed in the filtrate; one of which of
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ourse is the approximately 4,000 mmoles of bicarbonate
HCO3

�) per day. The luminal acid disequilibrium pH im-
lies that the predominant mode of HCO3

� absorption in-
olves H� secretion, although a small concomitant degree of
irect HCO3

� reabsorption cannot be excluded.1 Two points
re noteworthy. First, complete reclamation of the approxi-
ately 4,000 mmoles of filtered HCO3

� forestalls a physio-
ogic disaster but does not lead to net acid secretion. Further
laboration of H� into the urine is necessary. Second,
hether the organism is catering to the need of excreting a
hysiologic amount of acid (eg, 50 mmoles of H� added to
he body/d) or base (eg, 50 mmoles OH� added to the body/
), the kidney is always engaged in luminal H� extrusion
ecause HCO3

� reclamation far exceeds physiologic H� or
H� excretion. Luminal H� secretion is a quintessential part
f renal homeostatic function. Extrusion of H� into the uri-
ary lumen against its electrochemical gradient is an energet-

cally costly process. Luminal H� secretion can be coupled
irectly to adenosine triphosphate (ATP) hydrolysis by the
ultisubunit V-type ATPase or to the inwardly directed

urine lumen to cell) Na� gradient because of the low cell
Na�] generated by the Na�/K�-ATPase (Fig 1).

a�/H� Exchangers
n Mammalian Kidney
n 1949, Pitts et al2 made the observation of an inverse rela-

ionship between urine pH and [Na�] (lowest urine pH with
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Na�/H� exchangers and acid-base balance 335
ighest urinary Na�) and postulated a Na�/H� exchange pro-
ess between the renal epithelium and urine. Although the
bservation is correct, we are now cognizant that the analysis
f bladder urine does not possess the resolution to permit
onclusion about such transport mechanisms. Pitts et al2 in
act were witnessing the effect of distal Na� delivery to en-
ance luminal H� secretion by the collecting duct, which can
e interpreted as a form of Na�/H� exchange. In 1976, Murer
t al3 first showed Na�-driven H� movement and H�-driven
a� movement in isolated cortical brush-border membrane

esicles, thereby definitely showing Na�/H� exchange activity
n the kidney. A subsequent report by Kinsella and Aronson4

urther characterized this process in more detail and preci-
ion. Both of these reports have been revisited as milestone
eports by the investigators.5,6 A cornucopia of data on renal
a�/H� exchange using membrane vesicles and some cul-

ured cells emerged in the 1980s that set the stage for the next
evel of research.

The era of phenomenologic analysis was supplemented by
ene- and protein-specific reagents when the first mamma-
ian NHE was cloned by Sardet et al.7 The relationship be-
ween mammalian NHE genetic sequence and those from a
ultitude of organisms is shown in Fig 2. Na�/H� exchange

cross lipid bilayers and proteins that sustain this function
re universal in prokaryotic, animal, and plant biology.
enes coding for Na�/H� exchangers have been cloned from

Na+

H+

H+

ATP

High luminal [Na +]

Generates small
[H+] gradient

Low luminal [Na +]

Generates high
[H+] gradient

High H+ flux

Low H+ flux

igure 1 Transport of H� into the urinary lumen by Na�/H� ex-
hange or H�-ATPase. In segments where the luminal [Na�] is high
eg, the proximal tubule), the electrochemical driving force can
xtrude H� via NHE uphill into the lumen by approximately 1 pH
nit. When the luminal [Na�] is relatively low and high luminal
H�] is desired (eg, the collecting duct), H� ejection into the lumen
s accomplished by direct coupling to ATP hydrolysis. The H� flux
JH

�) in proximal segments far exceeds that of distal segments. The
urnover rates of these transporters have been estimated indirectly
o be in the order of 102 s�1. The relative amount of protein expres-
ion in the proximal tubule apical membrane is unknown but the
elative JH

� for NHE versus H�-ATPase is about two thirds to one
hird.
he simplest prokaryote to the most advanced multicellular F
ukaryotes. A remarkably high degree of conservation exists
etween NHE gene sequences from different organisms (Fig 2).
lthough the identification of paralogs and orthologs has
een successfully accomplished by nucleotide homology–
ased cross-hybridization (across genera and species but not
cross orders and phyla), one common theme in breaking
round in the cloning of complementary DNAs (cDNAs) for
a�/H� exchangers is the elegant use of functional comple-
entation. One observes remarkable similarity in the ap-
roach in cloning NhaA from Escherichia coli by Goldberg
t al8 and human (NHE1) by Sardet et al.7 NHE null and NHE
ver-expressing mutant cells were generated genetically fol-
owed by functional selection. Null mutants then were res-
ued by genomic sequences derived from overexpressing
utants, and functional complementation was used as an

ndex to track down sequences coding for Na�/H� exchange
ctivity. These pioneering efforts then allowed subsequent
DNA identification by homology cloning of a multitude of
DNAs in vitro and in silico.

Mammalian NHEs that have been classified functionally to
ate are all electroneutral transporters with a 1Na�:1H� stoi-
hiometry. The putative structure of the mammalian protein
ith a 10- to 12-transmembrane N-terminus and a largely

ytoplasmic C-terminus has been discussed in recent re-
iews.9,10 Currently, the structure of the mammalian NHEs is
eally unknown. Although a low-resolution version of the
rokaryotic protein is available,11 the degree of sequence
imilarity does not permit homology modeling of the mam-
alian protein at present. Brett et al12 proposed an elegant

ategorization of mammalian NHEs into 3 classes based on
heir sequence and cell biology: (1) primarily plasma mem-
igure 2 Phylogeny of paralogs and orthologs of Na�/H� exchangers.
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336 I.A. Bobulescu and O.W. Moe
rane-residing, (2) recycling between plasma membrane and
ndosomes, and (3) intracellular organellar.

A number of mammalian NHEs have been identified in the
idney. The role of intracellular NHEs in the kidney is not
nown at the moment. Data in model systems of proximal
ubule epithelia suggest possible mediation of albumin endo-
ytosis and degradation by endosomal NHE3.13-15 Intracellu-
ar [Na�] in renal epithelia is less than 20 mmol/L, whereas
asolateral [Na�] ranges from 140 mmol/L in the cortex to as
igh as 300 mmol/L in the deep medulla. Basolateral NHEs
ndoubtedly will eject H� from the cell to the interstitium
nd hence are unlikely to contribute to luminal acidification.
ase-excreting cells (eg, �-intercalated collecting duct cells)
se H�-ATPase rather than Na�/H� exchange for H� addi-
ion into the plasma. Apical NHEs on the other hand are
oised strategically to add H� into the lumen using the in-
ard Na� chemical gradient. Luminal [Na�] decreases while

uminal [H�] increases axially toward the distal nephron to
he point at which the ion gradients will no longer support
uminal H� extrusion so the task of luminal H� extrusion is
elegated to the V-ATPase where H� pumping is energized
irectly by ATP hydrolysis (Fig 1). Because NH4

� can substi-
ute for H� as a substrate, NHEs also are important NH4

�

ransporters. NHEs also perform multiple other transport
unctions via parallel coupling with other transporters, but
hese functions are not discussed here. Five Na�/H� ex-
hanger isoforms (NHE1-4 and NHE8) are expressed at the
lasma membrane of renal epithelial cells, with specific dis-
ribution within cells and along the nephron (Fig 3).

NHE1 is expressed at the plasma membrane of most mam-
alian cells where it plays multiple roles including in cell pH,

odium and volume homeostasis, cell motility, and provision
f a platform for signaling complexes. In the kidney, NHE1 is

igure 3 Expression of plasma membrane Na�/H� exchanger iso-
orms along the nephron. NHE3 is highly expressed at the apical
luminal) membrane of the proximal tubule and TAL of the loop of
enle, and at lower levels in the thin descending limb. There is no
HE3 at the macula densa. NHE2 is expressed at the luminal side of

he TAL and distal nephron, including macula densa. NHE8 is
resent at the apical membrane of the proximal tubule. NHE1 and
HE4 are both expressed at the basolateral membrane of epithelial

ells along the nephron, with the exception of the macula densa and
ntercalated cells of the cortical collecting duct (not shown), which
bave no detectable NHE1.
xpressed at the basolateral membrane of all nephron seg-
ents (Fig 3), with the exception of the macula densa and

ortical collecting duct intercalated cells.16,17 Isolated, mi-
roperfused, thick ascending limbs (TALs) from NHE1
nockout mice have decreased HCO3

� absorption compared
ith TALs from wild-type mice.18 This was postulated as

egulatory cross-talk between basolateral NHE1 and apical
HE3 because pharmacologic inhibition of basolateral
HE1 downregulates apical NHE3 activity.19,20 The mecha-
ism of this postulated cross-talk is unclear. However, 2 dif-
erent mouse models lacking NHE1 have no overt distur-
ance of whole-body acid-base homeostasis.21,22 In addition,
HE1 potentially could mediate basolateral ammonium

NH4
�) extrusion in the TAL (Fig 4).

NHE2 is expressed at the apical membrane in the TAL
long with NHE3. It is the only luminal Na�/H� exchanger
rom the macula densa to the distal nephron (Fig 3). In con-
unction with NHE3, NHE2 contributes to acidification and

igure 4 Acid-base homeostasis by renal Na�/H� exchangers. (A) In
he proximal tubule, apical membrane NHE3 mediates ammonium
NH4

�) secretion, either by providing a H� to the ammonia (NH3)
hat diffuses passively into the tubule, or by catalyzing the counter-
ransport of NH4

� and Na�. By secreting NH4
� generated from the

itochondrial metabolism of glutamine to �-ketoglutarate, NHE3 is
ndirectly responsible for the subsequent generation of new bicar-
onate. NHE3 also mediates the absorption of most of the filtered
icarbonate in the proximal tubule by providing a H� that interacts
ith luminal HCO3

� and converts it to CO2. The functions of NHE8
the other proximal tubule apical Na�/H� exchanger) may be sim-
lar but have not yet been characterized. (B) In the TAL a significant
mount of the luminal ammonium is reabsorbed, shunting the distal
ubule, and is secreted again in the collecting duct. NHE1 and/or
HE4 may play a role in the transepithelial transport of ammonium
y mediating NH4

� extrusion at the basolateral membrane (ques-
ion marks). Apical membrane NHE3 and NHE2 are responsible for
he absorption of most of the remaining luminal bicarbonate by the
ame mechanism as in the proximal tubule.
icarbonate absorption in the TAL23 (Fig 4). However, dele-
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Na�/H� exchangers and acid-base balance 337
ion of NHE2 in mice results in no overt acid-base distur-
ance,24 and double knock-out of NHE2 and 3 does not lead
o further worsening of the metabolic acidosis observed in
HE3-/- mice.25 NHE2 thus may have a relatively minor role

n the maintenance of acid-base balance compared with
HE3.
NHE3 is expressed at the apical (luminal) membrane of

he proximal tubule, some long thin descending limbs,
nd the TAL of the loop of Henle (Fig 3), where it plays
mportant roles in bicarbonate absorption (Fig 4), salt and
olume homeostasis, and in the absorption of other sol-
tes by functional coupling to a variety of other transport-
rs. Mice with targeted disruption of NHE3 have de-
reased renal absorption of Na�, fluid and HCO3

�,
etabolic acidosis, hypovolemia, hypotension, and in-

reased mortality.26 This phenotype is ameliorated par-
ially but not abolished by rescue of the intestinal NHE3
efect.27,28 The moderate phenotype of NHE3 knockout
ice can be attributed to a number of compensatory
echanisms, including decreased filtered HCO3

� load
nd increased HCO3

� absorption in the collecting duct,
ediated by the H�-ATPase and H�-K�-ATPase.29 Com-

ensation by the Na�/H� exchange activity of NHE2 in the
AL and NHE8 in the proximal tubule theoretically is
ossible, but has not yet been supported by experimental
ndings.
A large body of literature exists addressing the regulation

f NHE3 studied at the level of the intact microperfused
ubule, renal cortical slices, enriched proximal tubules in

able 1 Summary of Acute (Minutes to a Few Hours) and Ch

Agonist
Acute

Regulation

-Adrenergic 1
cid 1
denosine 2/1*
lbumin 1
ngiotensin II 1
TP depletion 2
trial natriuretic peptide �/2†
yclic adenosine monophosphate 2
opamine 2
T-1 1
lucocorticoids 1

nsulin 1
yperosmolality 2
uabain NR
arathyroid hormone 2
hosphatidyl-inositol 3,4,5-trisphosphate 1

OTE. Study models are as follows: (a) isolated perfused proximal tu
S1 mouse proximal tubule cells; (d) opossum kidney (OKP) ce
membrane vesicles; (g) Xenopus laevis A6 cells transfected with
hamster ovary cells (AP-1) transfected with NHE3; (j) X laevis ooc
and (l) in vivo micropuncture.

bbreviation: NR, not reported.
Adenosine has inhibitory or stimulatory effects depending on the d
Atrial natriuretic peptide potentiates the inhibitory effect of dop

natriuretic peptide alone or in addition to parathyroid hormone h
uspension, brush-border membrane vesicles, cultured cells f
xpressing native NHE3 (opposum kidney OK cells and por-
ine kidney LLC-PK1 cells), various eukaryotic hosts trans-
ected with heterologous NHE3, and as purified recombinant
HE3-derived polypeptides. Table 1 lists some of the acute

nd chronic regulatory agents.
NHE4 is expressed ubiquitously at the basolateral mem-

rane of epithelial cells along the nephron, together with
HE1. NHE4 is the only basolateral NHE isoform in the
acula densa and intercalated cells of the cortical collecting
uct9,30 (Fig 3). Similar to NHE1, NHE4 may mediate NH4

�

eabsorption in the TAL (Fig 4). NHE4 knockout mice have
o documented overt disease phenotype to date.31

NHE8, the most recently identified renal NHE isoform,
s expressed at the luminal membrane of the proximal
ubule32,33 (Fig 3). In the neonate, proximal tubule NHE
ctivity is relatively high despite very low NHE3 antigen
evels.34 NHE8 expression is higher in young animals and
ower in adults, suggesting a potential role for NHE8 dur-
ng early development.33 The clear presence of apical NHE
ctivity in the double NHE2 and NHE3 knock-out mice
ay be a reflection of NHE8.35 NHE8 function may be

imilar to NHE3 (Fig 4), but its precise role in the main-
enance of acid-base balance remains to be explored.
HE8 protein expression is not increased in NHE3 knock-
ut mice,33 suggesting that it may not be regulated by
cid-base status the way NHE3 is.36

Transcripts of the more ubiquitous intracellular NHE iso-
orms are present in the kidney but their antigenic localiza-
ion and functional characterization have not been per-

Hours to Days) Regulation of NHE3

Model(s) and
Reference(s)

Chronic
Regulation

Model(s) and
Reference(s)

a, b, c70,71 NR
d59,72 1 d, e, f 36,47,48,51,73

d, g74-76 NR
d15 1 d15

a, d, f77-81 1 d82

h, i83,84 NR
f85 NR
d, i, j84,86,87 NR
a, d, f88-91 2 d92

a, d, f64,65,67,93-95 NR
a, d, f96-100 1 d98,101,102

a, d103-105 1 d105

h106 1 d107

2 k108

a, d, e, f, l109-115 2 e, f116

d117 NR

(b) primary cultures of mouse proximal tubule cells; (c) immortalized
ressing native NHE3; (e) in vivo microperfusion; (f) brush-border
(h) PS120 fibroblasts transfected with NHE3; (i) NHE-null Chinese

jected with NHE3 cRNA; (k) LLC-PK1 cells expressing native NHE3;

.75

on Na�/H� exchange in brush border membrane vesicles; atrial
effect in the same system.
ronic (

bules;
lls exp
NHE3;
ytes in

osage
amine
ormed.
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daptation to
etabolic Acidosis

ne remarkable feature of the kidney is to escalate its capac-
ty to excrete net acid in the urine when the organism is
onfronted with a sustained increment in acid load (or base
oss). This adaptation takes the coordinated tripartite form of
ncreased H� pumping (decreasing urine pH) to trap buffers,
ncreased absolute amount of urinary buffer, and reduction
or elimination) of urinary base, which is primarily bicarbon-
te and citrate. The immediate response can be a result of
inetic effects such as titration of luminal citrate from the
rivalent to divalent form to increase citrate absorption,37 and
itration of divalent to monovalent phosphate to decrease
hosphate absorption38 in the proximal tubule as a result of a
ecrease in plasma and filtrate pH. This triggers instanta-
eous reduction of base equivalents in the urine (hypocitra-
uria)38 and increased urinary buffer (hyperphosphaturia)39

o carry H�. In addition, acute acid loads in whole animals
nd in model epithelia can alter H�-ATPase and Cl�/HCO3

�

xchanger distribution to increase H� pumping and decrease
CO3

� secretion into the distal tubular lumen.40,41 These
inetic and protein trafficking events are quick in onset and
apidly reversible. More sustained acid loads elicit a more
ermanent adaptation of the tubular epithelium usually in-
olving gene transcription. For example, the suppression of
roximal phosphate and enhanced citrate absorption occur
y different mechanisms with chronic metabolic acidosis
ompared with acute decreases of luminal pH.42,43 There are
multitude of genes and gene products that are regulated by
hronic systemic metabolic acidosis in the kidney. Table 2
ummarizes some of the studies of adaptation of renal metab-
lism and transport in chronic metabolic acidosis and aims to
ighlight rather than provide an exhaustive catalogue. The

ntegrated response of increased H�-secretion results in the
ollowing: (1) increased absorption and metabolism of po-
ential base in urine such as citrate; (2) increased titration
f luminal HCO3

� to enhance lumen-to-blood HCO3
� flux;

3) increased excretion of low-pK, low-capacity buffers such
s phosphate; and (4) increased synthesis and secretion of the
igh-pK, high-capacity buffer NH3.
A significant amount of work has been devoted to studying

ow chronic low-ambient pH regulates renal Na�/H� ex-
hange. NHE1 has been shown to be stimulated by acid in
oth animals and cell culture but this is unlikely to be related
o transepithelial transport of H� equivalents.44-46 Chronic
daptation of NHE3 has been described in both the proximal
ubule (increased NHE3 activity and protein) and TAL (in-
reased NHE3 protein and transcript) in animals given a suffi-
ient acid load to chronically suppress serum [HCO3

�].36,47-53

resently it is unclear whether the signals and mechanisms
esponsible for increased NHE3 are the same for the proximal
ubule and TAL. The subsequent discussion focuses only on
roximal tubule NHE3.
Chronic metabolic acidosis in animals decreases proximal

CO3
� transport when measured by free-flow micropunc-
ure,54 but increases maximal proximal tubule HCO3
� trans- c
ort capacity measured by in vivo microperfusion when
dentical luminal HCO3

� loads are presented to the tubule
rom control or acidotic rats.55 This is an unusual example of
daptive increase in reabsorptive capacity in response to a
educed filtered HCO3

� load caused mainly by reduced ul-
rafilterable [HCO3

�] and possibly some reduction in glo-
erular filtration rate. This finding has been touted by some

s a paradox. The teleology of this increased tubular transport
apacity and increased NHE3 Vmax and protein in the face of
educed HCO3

� load is unclear because logic predicts that
apacity should change to accommodate needs. It is difficult
o fathom why the kidney in its wisdom would react to a
iminished load by escalating capacity. It is conceivable that

ncreased proximal tubule HCO3
� reabsorption is to com-

ensate for conditions other than metabolic acidosis. In re-
piratory acidosis, increased proximal HCO3

� absorption
erves to counter the high plasma CO2 tension. In potassium
eficiency, increased proximal HCO3

� absorption is needed
o minimize distal delivery of HCO3

�, which is kaliuretic.
ecause both hypercapnia and potassium deficiency may sig-
al via proximal intracellular acidification, increased NHE3

max in reaction to decreased intracellular pH may be hard-
ired into the proximal tubule cell. Could the response of
HE3 to metabolic acidosis be a mere happenstance because

ell pH is decreased?
Having indulged in the earlier-described teleologic reverie,

n alternative, and in all likelihood more probable (and de-
irable) option, is that increased NHE3 Vmax actually is adap-
ive for metabolic acidosis in addition to respiratory acidosis
nd potassium deficiency. The potential benefits to acid-base
alance are summarized in Fig 5. The purpose of increased
HE3 Vmax can be primarily to accommodate the high re-

erve of ammonia synthesis56 because a significant portion of
he NH3 synthesized reacts with H� inside the cell and is
xcreted into the lumen by NHE3 as NH4

�.57 Although the
ltered HCO3

� load is reduced in metabolic acidosis, the
ncreased HCO3

� transport capacity may serve to counteract
he interstitium-to-lumen HCO3

� backleak. In addition, the
ncreased H� transport by NHE3 does not have to engage
CO3

� in the lumen. It can contribute to the increase in
itrate absorption and decrease in phosphate absorption as
art of the integrated response to acid load (Fig 5). The net
esult is increased excretion and titration of urinary buffers.
ecause NHE3 is tethered to numerous scaffold proteins,58

ne can speculate that there may be special microlocales
here NHE3 may be associated physically with various other

ransporters to facilitate titration of substrates.
The mechanism by which a low ambient pH and HCO3

�

oncentration increases NHE3 has been studied in detail by
reisig and Alpern48,59-69 using both cell culture and animal
odels. Figure 6 summarizes the cascade based on the cur-

ent body of data. It is important to note that this is an
volving model. Either an acid load or frank systemic meta-
olic acidosis (hypobicarbonatemia) leads to a decrease in
roximal tubule cell pH, which activates proline-rich ty-
osine kinase 2 (Pyk2, a pH sensor).59 This is a direct specific
ffect because acidic solutions can activate Pyk2, but not the

losely related focal adhesion kinase, in a cell-free system.59
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able 2 Renal Adaptation to Chronic Metabolic Acidosis

Gene/Protein Primary Function Comments

lutamine transporter (SN1)118,119 1 glutamine uptake into proximal
tubule for ammoniagenesis

Increased SN1 messenger RNA and protein and
insertion into the basolateral membrane;
converts apical membrane glutamine uptake
from the filtrate to both apical and basolateral
glutamine uptake

hosphate-dependent
glutaminase120-126

1 deamidation of glutamine to
glutamate in the mitochondria
to release 1st NH3

Primary signal is intracellular acidosis, which
increases phosphate-dependent glutaminase
messenger RNA stability through a pH
responsive element at the 3=-untranslated
region

lutamate dehydrogenase127,128 1 deamination of glutamine to
�-ketoglutarate in the
mitochondria to release 2nd

NH3

An 8-base AU repeat sequence that destabilizes
the transcript; on cell acidification, z-crystall
in abundance does not change but its binding
affinity to the pH-responsive element
increases resulting in prolongation of
transcript half-life

EPCK124,129-132 1 conversion from oxaloacetate
to phospho-enol-pyruvate in the
cytoplasm. The disposal of the
carbon skeleton of glutamine
requires PEPCK

Primary signal is intracellular acidosis, which
increases PEPCK transcription; intracellular
acidification leads to activation of the p38
stress-activated protein kinase and
phosphorylation of the transcription factor
ATF-2, which binds to the CRE-1 element in
the promoter of the PEPCK gene to enhance
transcription

a�-phosphate cotransporter133-135 2 proximal phosphate uptake Increase amount of urinary buffer to furnish H�

carrier (pKa of HPO4
2�/H2PO4

� � 6.8)
a�-citrate cotransporter
(NaDC-1)42,136,137

1 citrate uptake from filtrate into
the proximal tubule cell

Increased citrate uptake at the apical membrane
is part of an integrated response of the
proximal tubule to decrease loss of potential
base in the urine

TP-citrate lyase138 1 cytoplasmic citrate
metabolism

The increased apical citrate uptake is
accompanied by increased citrate metabolism
in both the cytoplasm and the mitochondria;
in the converse situation of metabolic
alkalosis, a decrease in citrate metabolism is
sufficient to cause hypercitraturia without
adaptation of NaDC1

conitase139 1 mitochondrial citrate
metabolism

a�/H� exchanger
(NHE3)36,51-53,140

1 H� and NH4
� secretion Intracellular acidosis as a primary signal

activates a complex cascade (Fig 6), resulting
in increased H� excretion and titration of
luminal buffer (Fig 5)

�-ATPase73,141,142 1 H� secretion Decreases luminal pH to levels not achievable
using lumen-to-cell Na� electrochemical
gradients

nion exchanger (AE1)142-144 1 Base addition to plasma Increase H� pumping by H�-ATPase in the
�-intercalated cell is accompanied by
commensurate increased basolateral base exit

a-HCO3
� cotransporter

(NBC)47,145,146
1 Base addition to plasma Increased H� secretion by Na�/H� exchanger in

the proximal nephron is accompanied by
commensurate increased basolateral base exit

a�-sulfate cotransporter
(NaSi1)147

2 proximal sulfate uptake The low pK of sulfuric acid precludes its role as
a urinary buffer; increased distal SO4

2�

delivery can enhance distal H� secretion as a
nonabsorbable anion
bbreviation: PEPCK, phosphoenolpyruvate carboxykinase.
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yk2 then activates c-Src. Both Pyk2 and c-Src activation are
equired for acid to activate NHE3 activity.59-62 Downstream
rom c-Src is endothelin-1 (ET-1) production and secretion
y the proximal tubule.53,63 The mechanism by which c-Src
timulates ET-1 secretion is not yet known. ET-1 activates the
ndothelin receptor type B (ETB), which then activates
HE3 exocytosis into the apical membrane.53,64,65

ET-1/ETB mediates acid stimulation of NHE3 involving
xocytic insertion of NHE3 into the apical membrane. This
rocess requires an intact cytoskeleton,65 and is associated
ith NHE3 phosphorylation.64 The functional significance of
HE3 phosphorylation for exocytosis is not known at
resent. The effect of ET1/ETB on NHE3 required both an

ncrease in cell calcium level and intact tyrosine kinases.66,67

T-1 stimulation of NHE3 requires an intact C-terminal tail
nd the consensus sequence KXXXVPKXXXV in the second
ntracellular loop of the ETB receptor.68 ETA is not involved
n ET-1 stimulation of NHE3.64 Acid incubation has been
hown to increase NHE3 transcript and total cellular protein
n cultured cells. The role of increased NHE3 transcript in the
ntact kidney is less clear.

In parallel with the Pyk2/c-Src pathway is the acid stimu-
ation of extracellular signal related kinase (ERK) and in-
reased c-Fos/c-Jun expression, which contributes to the in-

igure 5 The potential functional significance of adaptation of the
roximal tubule NHE3 in metabolic acidosis is to increase excretion
nd titration of urinary buffers. Apical NHE3 can transport more
H4

� into the urine (bottom NHE3). The increased H� secreted
nto the lumen by NHE3 (top NHE3) can titrate a number of H�

cceptors (gray boxes). Citrate absorption can be increased by gen-
ration of the transported divalent species (pK � 5.4) or by likely
llosteric activation of NaDC-1. Titration of filtered HCO3

� will
ncrease net HCO3

� absorption to counter paracellular HCO3
�

ackleak. Titration of HPO4
2� to H2PO4

� (pK � 6.8) will decrease
hosphate absorption. H� transported by NHE3 also can contrib-
te to trapping of NH3 that diffused into the lumen as a nonionic
olute. NHE3, Na�/H� exchanger-3; NaPi2, Na�-inorganic phos-
dhate transporters 2; NaDC1, Na� dicarboxylate cotransporter.
rease in ET-1 synthesis via an AP-1 site in the ET-1
romoter.61,69 Although the presence of a second pathway is
lear, the identity of this second pH sensor is still elusive.

onclusion
enal Na�/H� exchangers, in particular the NHE3 isoform,
re paramount for the maintenance of whole-organism acid-
ase homeostasis. However, despite the exponentially grow-

ng body of data on NHE function and regulation, fundamen-
al questions remain unanswered in areas ranging from
olecular structure and detailed mechanism of ion translo-

ation to the integration of different NHE isoforms in the big
icture of renal and acid-base physiology. Although the
tudy of NHEs at the cellular and molecular level is undoubt-
dly of crucial importance, one should not lose sight of the
act that understanding the precise roles of NHEs at the
hole-organ and whole-organism level is the ultimate goal of

ny research in the field.

cknowledgment
he authors are grateful to Dr. Daniel Fuster for his help in
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igure 6 The Preisig and Alpern model of autocrine regulation of
HE3 by acidosis. A decrease in intracellular pH in the renal prox-

mal tubule activates Pyk2, which functions as a pH sensor. Pyk2
hen activates c-Src and leads to production and secretion of ET-1.

second parallel signaling cascade leading to ET-1 synthesis and
ecretion involves activation of extracellular signal–regulated kinase
RK and expression of the immediate early response genes c-Fos/
-Jun, but the identity of the second putative pH sensor is not
nown. ET-1 has an autocrine effect by binding to the proximal
ubule cell ETB receptor, which signals downstream through the
ctivation of tyrosine kinases and calcium- and calmodulin-depen-
ent protein kinases (Ca2�/CaM kinase). ET-1 activation leads to
xocytic insertion of NHE3 into the apical membrane, a process
ependent on RhoA and Rho kinase activation and associated with
tress fiber formation and tyrosine phosphorylation of focal adhe-
ion kinase (p125FAK) and paxillin.
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