Anemia is a common complication of chronic kidney disease. Although mechanisms involved in the pathogenesis of renal anemia include chronic inflammation, iron deficiency, and shortened half-life of erythrocytes, the primary cause is deficiency of erythropoietin (EPO). Serum EPO levels in patients with chronic kidney disease are usually within the normal range and thus fail to show an appropriate increase with decreasing hemoglobin levels, as found in nonrenal anemias. Studies elucidating the regulation of EPO expression led to the identification of the hypoxia inducible factor–hypoxia responsive element system. However, despite much progress in understanding the molecular mechanisms through which cells can sense oxygen availability and translate this information into altered gene expression, the reason why EPO production is inappropriately low in diseased kidneys remains incompletely understood. Both alterations in the function of EPO-producing cells and perturbations of the oxygen-sensing mechanism in the kidney may contribute. As with other anemias, the consequences of renal anemia are a moderate decrease in tissue oxygen tensions and counterregulatory mechanisms that maintain total oxygen consumption, including a persistent increase in cardiac output.

KEYWORDS: erythropoietin, anemia, hypoxia, inducible factor, chronic kidney disease, hypoxia

Adenosine triphosphate (ATP) serves as the primary energy currency of the cell. In most cells at least 90% of the molecular oxygen consumed is used for oxidative phosphorylation to produce ATP, and the remaining oxygen is used in a wide variety of specialized metabolic reactions. This is such an efficient system that the total ATP yield is 38 per mole of glucose oxidized, whereas anaerobic glycolysis produces only 2 ATP per mole of glucose.

In human beings at rest, about 250 mL of oxygen are consumed and 200 mL of carbon dioxide are produced per minute. During exercise, these quantities increase 10-fold. The red blood cells (erythrocytes) carry hemoglobin (Hb) in the circulation and play an essential role in oxygen delivery. Oxygen is relatively insoluble in water, and the development of Hb makes possible the transportation of a hundred times as much oxygen as could be carried by the plasma alone.

In 1893 the scientist Friedrich Miescher, who later discovered DNA, reported a reproducible increase in his Hb concentration and red cell count when entering a sanatorium in the Alps. He realized that this increase occurred in response to reduced oxygen availability. Studies in the 1950s showed that there was a humoral factor stimulating erythropoiesis. Hypoxia-induced erythropoiesis in rats was diminished by bilateral nephrectomy, and this experiment clarified the role of the kidney in producing erythropoietin-stimulating factor, later called erythropoietin (EPO).

EPO was purified in 1977 using a concentration of 2,550 L urine from patients with aplastic anemia. The human EPO gene was cloned in 1983, and this enabled the expression of the mature glycoprotein hormone from Chinese hamster ovary cells and the mass production of recombinant human EPO (epoetin) to be available for clinical use. The development of epoetin as a therapeutic agent is one of the major advances in the management of patients with renal failure over the past few decades. In fact, renal anemia nowadays can be considered as the consequence of chronic kidney disease (CKD), that is most accessible to therapeutic intervention. Nevertheless, the reasons for inappropriately low EPO production by diseased kidneys are still far from clear.

Epidemiology of Renal Anemia

In 1836, Bright first described the association between anemia and chronic renal failure, and Brown and Roth later
concluded in 1922 that the anemia of chronic nephritis was caused by decreased bone marrow production. By 1933 Parsons and Ekola-Strolberg recognized that the Hb concentration in uremia had roughly the same prognostic significance as the creatinine level. Before epoetin became available, about 25% of hemodialysis (HD) patients needed regular transfusions of red blood cells.

Anemia commonly contributes to poor quality of life in patients with CKD. Although the prevalence of anemia increases with diminishing renal function, a normochromic and normocytic anemia already can be observed at a relatively early stage of renal dysfunction. There is usually hypoplasia of the erythroid precursors in the bone marrow with normal leukopoiesis and megakaryocytopoiesis. Both the Third National Health and Nutrition Examination Survey III and the National Kidney Foundation: Kidney Early Evaluation Program showed that the risk of anemia significantly increases when the glomerular filtration rate decreases to less than 60 mL/min/1.73 m². Although 5% of the US population with a glomerular filtration rate between 30 and 59 were anemic, 44% of patients with a glomerular filtration rate between 15 and 29 mL/min per 1.73 m² showed a decrease in Hb level. Analysis of data from the Invecchiare in Chianti (InCHIANTI) study, a population-based study performed in a sample of community-dwelling older persons living in Italy, also revealed that both men and women with a creatinine clearance of 60 mL/min or less were significantly more likely to have anemia compared with individuals with a creatinine clearance of more than 90 mL/min. However, when the confounding effect of age on the relationship between kidney function and anemia was removed from the analysis, only participants with a creatinine clearance of 30 mL/min or less showed a higher prevalence of anemia in this population.

Production of EPO in the Kidney

The gene encoding human EPO is located on chromosome 7 and encompasses about 3,000 base pairs. It contains 5 exons and 4 introns and encodes for a 193–amino-acid polypeptide. The recent cloning of the EPO gene from the puffer fish showed that the synteny of genes at the EPO locus is highly conserved during evolution.

A 27–amino-acid leader sequence at the N-terminal part and a carboxy-terminal arginine molecule of human EPO are cleaved off during secretion so that the mature 34-kd glycoprotein contains 165 amino acids. Roughly 30% to 40% of the molecular mass is made up of carbohydrate chains, which are important to prevent degradation and delay clearance of EPO from the circulation and therefore are necessary for in vivo activity. Epoetin used clinically is therefore highly glycosylated, although its carbohydrate chains are not identical to that of natural EPO. Darbepoetin, a pharmacetically engineered EPO, has a significantly longer half-life because it contains more glycosylation sites on the polypeptide backbone and has more carbohydrate chains than natural EPO.

The body contains no significant stores of EPO, and any change in the serum EPO concentration results from a change in the rate of production. Circulating EPO in the normal adult is produced mainly by the peritubular fibroblast-like interstitial cells of the kidney. When the hematocrit level is in the normal range, the kidney produces a low level of EPO, with EPO expression limited to a small number of these fibroblasts in the deep cortex and superficial outer medulla. The increased production of EPO under anemic circumstances involves progressive recruitment of additional interstitial fibroblasts in a pattern that spreads outward from the deep cortex toward the capsule. Even at maximal stimulation, less than 20% of cortical fibroblast-like cells in the cortical labyrinth express EPO and thus it is possible that only a yet-unidentified subgroup of specialized interstitial cells produces the hormone. The explanation of why the mammalian kidney, a nonerythropoietic organ, plays the important role of producing EPO is not immediately obvious. One clue may lie in the evolutionary history, since erythropoietic tissue is found only in the kidney of most teleosts, chondrosteans, and holosteans. An alternative explanation may be that changes in renal blood flow influence both oxygen delivery and—via alterations in filtered sodium load—oxygen consumption, which renders renal partial pressure of oxygen (Po₂) to some extent independent of changes in blood flow.

The relative contribution of the liver to erythropoiesis is primarily age dependent. The liver is the predominant production site during fetal, and in some species also early, postnatal life. The liver does not normally compensate for failure of the renal production of EPO in adults.

EPO Receptor and Signaling

EPO is considered an essential growth factor for late erythroid progenitor cells. This view has been confirmed by observations in patients developing anti-EPO antibodies in response to epoetin. The occurrence of such antibodies leads to an almost complete cessation of red cell production, with an absence of erythroid progenitors from the bone marrow, very low reticulocyte counts, and regular transfusion dependence.

Physiologically, activation of the EPO receptor on the immature erythroid cells by EPO generates an intracellular signal that promotes the survival of these cells, which otherwise would undergo apoptosis. The EPO receptor is a member of the cytokine-receptor superfamily. Dimerization of the receptor results in autophosphorylation and activation of several kinases that initiate multiple signal transduction pathways. The phosphorylation of signal transducer and activator of transcription 5 (STAT5) leads to its homodimerization, which then allows the receptor to enter the nucleus and enhance the transcription of various genes, including antiapoptotic Bcl-XL. The phosphorylation of phosphatidylinositol 3-kinase activates its kinase activity, which in turn phosphorylates protein kinase B (Akt). Akt then will induce cytoplasmic retention of forkhead box O transcription factors through their phosphorylation, and therefore inhibit proapoptotic molecules, such as Fas ligand or Bim. Akt also will phosphorylate and inactivate other proapoptotic molecules, such as glycogen synthase kinase-3β, caspase 9, or Bad. Moreover, inhibitor of nuclear factor-κB (NF-κB) also is
phosphorylated by Akt, which allows the release of the transcription factor NF-kB. Translocation of NF-kB into the nucleus results in transcription of many target genes including antiapoptotic molecules, such as X-linked inhibitor of apoptosis and cellular inhibitor of apoptosis protein 2 (c-IAP2). EPO also promotes cell proliferation by activation of the Ras/mitogen-activated protein kinase pathway.

Regulation of EPO Expression by Hypoxia-Inducible Transcription Factors

The main determinant of EPO synthesis is the transcriptional activity of its gene, which is related to local oxygen tensions. EPO production is regulated inversely to oxygen availability, so that an effective feedback loop is established, which controls erythropoiesis. In isolated perfused kidneys, EPO messenger RNA and EPO secretion are modulated in response to alterations of oxygen delivery to tissues. Thus, although humoral signals from extrarenal sensing systems may contribute to the renal control of EPO production under certain conditions, all the components necessary for the detection of hypoxia and production of EPO are equipped within the kidney.

The oxygen-dependent control of EPO production is achieved by hypoxia-inducible transcription factors (HIFs), consisting of a constitutive β-subunit and 1 of 2 alternative oxygen-regulated HIF α subunits (HIF-1α and HIF-2α). In the presence of oxygen (normoxia) the HIF α subunits are hydroxylated, which targets them for proteasomal degradation. Under hypoxia, because of the lack of molecular oxygen, HIF cannot be hydroxylated and thereby is stabilized. Accumulated HIF binds to the key sequence among several regulatory DNA sequences in the neighborhood of the EPO gene, the hypoxia responsive element to the HRE. It is composed of the nucleotides [AVG]CGTG. Binding of HIF to HRE activates the transcription of EPO.

Although most cell types express HIF-1α and HIF-1β, HIF-2α (also called EPAS: Endothelial Per-ARNT-Sim domain protein, or HLF: HIF-1α-like factor) shows a more restricted pattern of expression. Whether HIF-1α and HIF-2α have distinct roles is an interesting and important subject for investigation. By using microarray analysis, Hu et al showed unique regulation of some glycolytic genes by 1 HIF isoform. Several endothelial cell–specific genes have been shown to be regulated exclusively by HIF-2α. Although HIF-1α was the first transcription factor identified through its ability to bind to an enhancer sequence of the EPO gene, more recent evidence suggests that HIF-2α is responsible for the regulation of EPO. Analysis of HIF-2α knockdown mice revealed that EPO gene expression was affected significantly, in parallel with HIF-2α expression. A predominant role of HIF-2α in the regulation of EPO expression in cell lines also was shown in a study using RNA interference to determine the contribution of HIF-1α versus HIF-2α to the hypoxic gene induction. Although most genes tested were responsive only to the HIF-1α short interference (si)RNA, EPO showed responsiveness only to HIF-2α knockdown.

In addition, in rat kidneys in vivo, HIF-1α and HIF-2α were detected in different cell populations. Although HIF-1α was expressed in epithelial cells, HIF-2α was found in peritubular fibroblasts and endothelial cells. The detection of HIF-2α in the EPO-producing renal fibroblasts further supported a regulatory role of HIF-2α in the regulation of EPO expression.

Other Transcriptional Regulators of EPO

Although HIF-1α and HIF-2α can activate the EPO gene, GATA-2 and NF-kB inhibit EPO gene transcription.

Imagawa et al showed that GATA-2 inhibits EPO gene transcription by binding to the EPO promoter under normoxic conditions. For example, the nitric oxide synthase inhibitor N(G)-monomethyl-L-arginine decreases EPO production by increasing GATA-2 DNA binding. In contrast, the addition of L-arginine inhibited the binding activity of GATA-2 and rescued decreased expression of EPO. Evidence suggests that both GATA-2 and NF-kB are involved in the inhibition of EPO gene expression under inflammatory conditions. The administration of a GATA-specific inhibitor also ameliorated anemia induced by a variety of inflammatory cytokines in mice. Because uremia is a proinflammatory status, it is possible that these inhibitory transcriptional factors also contribute to the regulation of EPO expression in vivo.

EPO Deficiency and Renal Anemia

Normal serum EPO concentrations in human beings are of the order of 10 to 30 mU/mL as determined by radioimmunoassays, which corresponds to between 2 and 7 pmol/L. EPO concentrations are increased under a variety of conditions, largely reflecting alterations of oxygen delivery to tissue.
The expected compensatory response to anemia is a heightened rate of erythropoiesis, with an inverse relationship between the concentration of the hormone and the Hb concentration. In severely anemic patients, up to 1,000-fold increases in EPO levels can be found.

Although the anemia of chronic renal failure is a complex disorder in which many factors may play a role (Table 1), the main defect is absolute or relative EPO deficiency. In most patients with substantially impaired renal function, EPO production is impaired at any given hematocrit concentration. In severely anemic patients, up to 1,000-fold increases in EPO levels can be found.

Values for serum EPO levels in patients with renal disease may vary with the assay method used, but an important point is that even the occasional increased EPO levels actually are decreased in relation to the degree of anemia. Fehr et al studied 395 patients randomly chosen from more than 5,000 consecutive patients investigated by coronary angiography at a single center. Although Hb negatively regulated EPO in patients with a creatinine clearance of more than 40 ml/min, EPO levels remained stable below this cut-off level. Serum EPO concentrations are also very low in anephric patients, and EPO probably is produced by the liver in this situation.

Why EPO production remains inappropriately low in patients with kidney disease is unclear. In principle, this could be because the EPO-producing cells are lost, because they experience higher levels of oxygen for a given hematocrit level, or because the relationship between local oxygenation and EPO production is altered. Several lines of evidence suggest that diseased kidneys are hypoxic and that this chronic decrease in oxygen availability in fact may contribute to disease progression. This could indicate that a defect in EPO production rather than a lack of the hypoxic stimulus leads to the failure of EPO production. On the other hand, preliminary evidence suggests that treatment with a pharmacologic inhibitor of HIF degradation can stimulate EPO production in CKD patients, which clearly suggests that the production capacity for the hormone is maintained.

Table 1 Pathogenic Factors of Renal Anemia

| EPO deficiency |
| Hemolysis |
| Absolute iron deficiency |
| Functional iron deficiency |
| Folic acid deficiency |
| Carnitine deficiency |
| Chronic inflammation |
| Aluminium intoxication |
| Hyperparathyroidism with myelofibrosis |
| External blood loss |
| Bone-marrow suppression induced by retained toxic metabolites |

Drugs

Impaired EPO Production in Diabetic Nephropathy

Although renal anemia develops largely independent of the underlying cause of kidney disease, anemia appears to develop earlier and to be more severe in patients with diabetes. Bosman et al compared 27 type 1 diabetic patients with nephropathy and 26 nondiabetic patients with glomerulonephritis and persistent proteinuria. Although one half of the diabetic nephropathy patients were anemic, none of the glomerulonephritis patients showed a decrease in Hb levels. In the diabetic nephropathy group, serum EPO concentrations failed to increase in response to anemia compared with the response seen in patients with microcytic anemia, indicating that the anemia of the diabetic nephropathy group was associated with EPO deficiency. Craig et al studied 62 patients with type 2 diabetes for a median follow-up period of 7 years. Although only 16% of subjects in the group were overtly anemic, all subjects had an ongoing small but significant decrease in Hb level since presentation. Furthermore, subjects in this study lacked the expected reticulocyte response. El-Achkar et al used National Kidney Foundation Kidney Early Evaluation Program 2.0 screening data to determine the prevalence of anemia by level of kidney function and diabetes status. Their analysis of 5,380 participants showed that anemia prevalence in stages II to V of kidney disease [ie, with descending estimated glomerular filtration rate (e GFR)] were 8.7%, 7.5%, 22.2%, and 52.4%, respectively, in participants with diabetes, compared with 6.9%, 5.0%, 7.9%, and 50.0%, respectively, in persons without diabetes. In a multivariable model, those with diabetes had significantly increased odds of anemia.

The precise mechanisms of the early development of anemia in diabetic patients are unknown. Thomas et al obtained clinical data on 604 patients with type 2 diabetes in a single clinic at Austin Health in Melbourne, Australia and found that even in the absence of renal impairment, 71% of anemic patients had functional EPO deficiency. Their findings confirmed the failure of the kidney to produce EPO in response to a decreasing Hb level as a key component to anemia in diabetes. In addition to EPO deficiency caused by tubulointerstitial changes, which is an early morphologic alteration of diabetic nephropathy, increased serum advanced glycation end-products may participate in the pathogenesis of anemia in diabetic kidney disease. Recent studies by Katevetin et al showed that high glucose levels blunted activation of the HIF-HRE pathway in cultured tubular cells. Restoration of the HIF-HRE activity by antioxidant α-tocopherol indicated that inhibition of the HIF-HRE pathway by high glucose levels is mediated by oxidative stress. Although autonomic neuropathy also may be involved, observations in patients with renal transplants and experimental data indicate that no essential control of EPO production occurs via the renal nerves.

Increased Destruction of Red Blood Cells in Uremia

Although insufficient production of EPO by the diseased kidneys is the primary cause of renal anemia, additional factors contribute to renal anemia.

Hemolysis in the terminal stages of kidney disease was
observed by several investigators,62,63 and Eschbach et al64 observed a diminished red blood cell lifespan in HD patients using P-labeled di-isopropyl fluorophosphate. A correlation between red blood cell survival time and serum blood urea nitrogen level was inverse,65 and exposure to uremic serum shortens the survival of erythrocytes from healthy subjects.66,67 These various studies have estimated that red blood cell survival may be as low as half of normal levels.

The primary cause of hemolysis in renal failure may be the retention of uremic solutes in plasma. The inhibitory effects of uremic plasma on the activity of membrane calcium ATPase68 have been suggested as contributing to hemolysis. Alterations in the structure and function of erythrocyte plasma membrane including reduced membrane fluidity and impairment of metabolic parameters also may shorten the erythrocyte lifespan in uremia.69 Oxidative stress associated with kidney failure also may contribute to uremic anemia by shortening erythrocyte survival.

It should be noted, however, that normally increased bone marrow production could easily offset the mild to moderate hemolysis that occurs in uremia. Only in the presence of depressed erythropoiesis does the reduced red blood cell lifespan become an important contributor to the development of renal anemia.

In addition to destruction of erythrocytes, uremia contributes to renal anemia via anorexia, leading to a reduced intake of hemoglobin substrates such as vitamins and iron.

Uremic Suppression of Erythropoiesis

The role of uremic suppression on erythropoiesis remains controversial.70 The presence of inhibitors of erythropoiesis in uremic plasma was postulated in the light of the report that anemia improves after HD is started.71 It was shown later that the hematocrit level increases after the start of regular dialysis despite a significant decrease in endogenous serum EPO levels, suggesting that HD removes a bone marrow inhibitor.72,73 Adequacy of dialysis is a key to correcting anemia and optimizing the use of recombinant human EPO (rHuEPO) in a number of HD patients.74

Despite these reports, sheep and human erythroid progenitor cells, regardless of whether they were from a uremic or nonuremic environment, were not suppressed by autologous uremic sera.75 Furthermore, assessment of the erythropoietic response to EPO showed that the acute response to EPO was similar in 22 normal subjects and 24 HD patients.76 These results suggest that chronic uremia does not alter the responsiveness to EPO in vivo.

Iron Deficiency

Iron is a critical body substance, transporting oxygen to tissues via Hb and functioning as a cofactor in a number of enzyme systems. The most common factor that confounds renal anemia is iron deficiency, whether it is related to or independent of blood loss from repeated laboratory testing, needle punctures, or blood retention in the dialyzer and tubing at the end of each dialysis treatment.77 It has been estimated that 1 to 3 g of iron are lost annually from these causes,78 and uptake of iron by intestinal mucosal cells and iron retention also may be impaired in dialysis patients.

Deficient available iron is the most common cause of initial poor response to epoetin, as well as acquired refractoriness to this agent. A recent multicenter trial of peritoneal dialysis patients also showed that iron-treated patients showed a calculated net EPO dose decrease compared with untreated control subjects.79 The administration of iron to 47 patients with CKD resulted in an increase of Hb level, and 26 patients reached the target Hb level of 12 g/dL even without EPO.80

Chronic Inflammation

Uremia is a chronic inflammatory state,81,82 and thus patients with renal failure may develop anemia and become refractory to EPO because of mechanisms associated with chronic inflammation.83 A significant association has been shown between hyporesponsiveness to EPO and high levels of inflammatory markers in HD patients.84–86 Hyporesponsiveness to EPO in patients with chronic inflammation often can be explained by functional iron deficiency. This is characterized by apparently insufficient available iron to keep up with the demands of erythropoiesis.

The mechanisms of functional iron deficiency may involve increased levels of circulating cytokines that are capable of inducing macrophages of the reticuloendothelial system to more avidly take up and hold on to iron. Cytokines also may decrease endogenous EPO production as described earlier, or decrease the responsiveness of erythroid precursor cells to endogenous or exogenous EPO. In particular, interleukin-1 \(\beta \) and tumor necrosis factor- \(\alpha \) have been shown to have both of these effects.87,88

Recent studies have indicated a potential contribution of hepcidin in dysregulation of iron metabolism in patients with kidney disease.89,90 Heparidion evolves as a potent regulator of the body’s iron distribution, piloting the flow of iron via, and directly binding to, the cellular iron exporter ferroportin.89 Heparidion is expressed in the liver, distributed in blood, and excreted in urine. The hepcidin-ferroportin axis dominates the iron egress from all cellular compartments that are critical to iron homeostasis. The gene that encodes hepcidin expression is subject to regulation by proinflammatory cytokines, such as interleukin-6 and interleukin-1, and excessive hepcidin production contributes to the functional iron deficiency and associated anemia during inflammatory states. A semiquantitative assay for hepcidin using surface-enhanced laser desorption ionization time of flight mass spectrometry revealed accumulation of hepcidin in the serum of HD patients.90 The level of serum hepcidin correlated well with the levels of serum ferritin and serum interleukin-6. Thus, accumulation of hepcidin may contribute to the pathogenesis of renal anemia by decreasing the available iron for hematopoiesis.
Other Contributing Factors

In patients with renal disease, agents that block the renin-angiotensin system also may contribute to reduced EPO levels and anemia.\(^{91}\) Sophisticated experiments by Kato et al\(^{92}\) showed a molecular interaction of erythropoiesis and the renin-angiotensin system in transgenic mice. Although animals carrying both the human renin and human angiotensinogen genes displayed persistent erythrocytosis, the introduction of both transgenes into the AT1a receptor null background restored the hematocrit level in the compound mice to the normal level. Plasma EPO levels and kidney EPO messenger RNA expression in the double transgenic mice were increased significantly compared with those of the wild-type control, whereas the increased plasma EPO levels were attenuated significantly in the compound mice. These results provide clear genetic evidence that the activated renin-angiotensin system enhances erythropoiesis through the AT1a receptor and that this effect is at least in part mediated by the increase of plasma EPO levels. In the Reduction of Endpoints in non-insulin dependent diabetes mellitus (NIDDM) with the Angiotensin II Antagonist Losartan (RENAAL) study in patients with overt nephropathy, Hb levels were a mean of 0.4 g/dL lower in patients treated with the angiotensin receptor antagonist, losartan, than in those receiving placebo.\(^{93}\)

Other factors that may contribute to the development of renal anemia include severe hyperparathyroidism,\(^{94}\) aluminum overload, carnitine deficiency, and myelosuppressive agents, particularly in transplant recipients.

Consequences of Renal Anemia

Anemia in CKD patients is associated inversely with quality of life and life expectancy and associated directly with cardiovascular morbidity and progressive loss of renal function. To which extent these relationships reflect causality so that anemia correction improves patient well-being and outcome is a matter of ongoing investigation and debate.

From a pathophysiologic point of view it is clear that unless anemia is very severe (Hb level <4 g/dL) whole-body oxygen consumption is not reduced, despite the reduction in oxygen-carrying capacity. This mainly is because of 2 compensatory mechanisms: first, an increase in oxygen extraction and, second, an increase in cardiac output. The former inevitably will reduce tissue oxygen tensions. In fact, the production of EPO in the normal kidney shows how sensitive cells and tissues can be to such changes in oxygen tensions, even if the Hb concentration is reduced only very mildly. The second mechanism (ie, a chronic increase in cardiac output) is considered as one of the possible mechanisms through which anemia may promote cardiac workload and left ventricular hypertrophy.

References

27. Scholz H, Schurrck HJ, Eckardt KU, et al: Oxygen-dependent erythro-
Pathogenesis of renal anemia

267

