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Uric Acid in Chronic Heart Failure

Wolfram Doehner* and Stefan D. Anker*,'

The pathophysiologic understanding of chronic heart failure (CHF) has shifted from a mere
hemodynamic disorder to a much more complex approach including changes and imbal-
ances in neurohormonal, immune, and metabolic functions. Among metabolic abnormali-
ties, hyperuricemia is a constant finding in CHF. The xanthine oxidase metabolic pathway
increasingly is appreciated as an important contributor to both symptoms of CHF as well as
progression of the disease. Recent data suggest hyperuricemia to be an independent
marker of impaired prognosis in CHF. In this article, the significance of the xanthine oxidase
metabolic pathway in CHF is discussed. Data on xanthine oxidase inhibition are reviewed,
which suggest a beneficial effect of therapeutically targeting this enzymatic pathway.
Semin Nephrol 24:61-66 © 2005 Elsevier Inc. All rights reserved.

hronic heart failure (CHF) is a leading cause of both

morbidity and mortality in Western society with in-
creasing numbers in prevalence and health care costs. During
the past 10 to 15 years, our understanding has changed from
a mere hemodynamic disorder to a much more complex ap-
proach, including neuroendocrine and immune activation.
Not only the cardiovascular system is affected in the long-
term course of the disease, but also peripheral tissues and
organs contribute to both symptoms and progression of the
disease. Recent findings on metabolic imbalances and hor-
monal abnormalities occurring in CHF! add further to the
increasingly complex picture of CHF pathophysiology. Hy-
peruricemia is a constant finding in CHF.? Uric acid levels
increase in parallel to disease severity (Fig 1) and are associ-
ated with main clinical symptoms such as impaired exercise
capacity® and decreased peripheral blood flow and vascular
resistance.? Those data suggest a role of the xanthine oxidase
metabolic pathway in the pathophysiology of CHF. More
recently, prognostic implications for hyperuricemia in CHF
are discussed. This article focuses on the role of hyperurice-
mia and of the xanthine oxidase metabolic pathway in CHF.
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The Xanthine Oxidase
Metabolic Pathway in CHF

In humans, uric acid is the metabolic end point of purine
degradation. The last metabolic steps in this process (from
hypoxanthine to xanthine and from xanthine to uric acid)
are promoted by the enzyme xanthine oxidoreductase
(EC1.1.3.22). This enzyme is a flavoprotein that contains
both iron and molybdenum and uses NAD* as an electron
acceptor. It exists in 2 interconvertible forms: xanthine
dehydrogenase and xanthine oxidase (XO). In its oxidase
form, this enzyme can transfer the decreasing equivalent
to molecular oxygen as redox partner generating free ox-
ygen radicals (superoxide anion and hydrogen peroxide,
which can be converted to free hydroxyl radicals). In
1968, the cytosolic XO was the first documented putative
biologic generator of oxygen-derived free radicals.* Since
then, it has been established that XO is a major source of
free oxygen radical production in the human body.>57
This metabolic pathway is of particular significance in
conditions of tissue hypoxia and ischemia/reperfusion®
because increased degradation of adenosine triphosphate
via adenosine leads to increased substrate load for XO.°
Accordingly, an increase in serum uric acid level has been
observed in hypoxic states such as obstructive pulmonary
disease,'® neonatal hypoxia,'’!? cyanotic heart dis-
ease,’>!* and acute heart failure.’ Uric acid levels have
been shown to increase also in the coronary sinus after
consecutive balloon inflations during angioplasty!®!'7 and
during coronary bypass surgeries.!® Simultaneously, in
ischemia/hypoxia, xanthine dehydrogenase increasingly is
converted to XO, which further adds to accelerated radical
production.>!?
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Figure 1 Serum uric acid levels in healthy subjects and in CHF
patients subgrouped according to New York Heart Association
(nvHA) functional class. *P < .05, **P < .001, ***P < .0001 versus
control group. Adapted from Doehner et al.?

In CHF, increased uric acid levels therefore might be ex-
pected because patients with CHF have impaired uptake of
oxygen at rest and during exercise. This has been confirmed
by the consistent finding of hyperuricemia in CHF being a
direct measure of impairment of oxidative metabolism.>?°
High serum uric acid levels indicate the degree of XO activa-
tion in CHF?! and occur independently of the effects of di-
uretics and renal dysfunction.’ Indeed, measurement of sol-
uble plasma XO?? and of endothelium-bound X023 have
shown increased XO enzyme activity in CHF compared with
healthy controls. As described earlier, an increased free rad-
ical oxygen load can be predicted in patients with CHF,
which indeed has been observed.?*2>:26

In CHF, endothelial dysfunction and decreased vasodila-
tor capacity are characteristic features that relate closely to
prominent clinical symptoms such as decreased exercise ca-
pacity and early muscle fatigue.?”-?® Decreased perfusion of
skeletal muscle in CHF is neither primarily related to central
hemodynamic abnormalities?®* nor to arterial hypoten-
sion,® but, more importantly, to endothelial dysfunction??
and inflammatory activation.®’ Increased oxidative stress is a
major factor responsible for the impaired regulation of vas-
cular tone because it diminishes vasoactive nitric oxide.>*3°
XO-generated free oxygen radicals interact with endotheli-
um-derived nitric oxide to form peroxynitrite (in itself a
highly active oxygen radical), starting a cascade of detrimen-
tal oxygen radical effects (Fig 2). Endothelial dysfunction has
been shown to be related to increased scavenging (ie, degra-
dation) of nitric oxide by free oxygen radicals rather than
impaired generation of nitric oxide.® Notably, in humans the
tissue with the highest activity of XO (besides the epithelium

of the mammary gland) is the capillary endothelium and the
endothelium of the small arteries.?¢->"

Increasing evidence suggests that the xanthine oxidase
metabolic pathway is not merely the final step in the purine
degradation with the formation of uric acid as a metabolically
inert waste product. In humans, the organs with the highest
XO activity are the intestine and the liver, with low or unde-
tectable levels in the brain, kidney, lung, and muscle.?® The
localization of XO primarily in the endothelial cells of the
capillaries suggests that XO is involved in specific functions
of the vascular system.>® Given the capacity to generate free
oxygen radicals, this enzyme might have a role in bactericidal
defense mechanisms,>>* especially at the barrier between
intestinal lumen and the body tissues. This physiologic
mechanism may provide an acute adaptive response to envi-
ronmental factors. One could hypothesize, however, that
long-term stimulation of XO may result in chronic activation
of this mechanism, leading to maladaptive processes and
eventually damaging effects. The latter provides the patho-
physiologic link of hyperuricemia with a large variety of det-
rimental processes, including increased cytokine production,
cell apoptosis, and endothelial dysfunction, all of which oc-
cur in CHF patients."-*>:%3 Indeed, in a prospective series of
studies on patients with CHF, it has been shown that hyper-
uricemia is a marker of impaired oxidative metabolism and
hyperinsulinemia,® inflammatory cytokine activation,* and
impaired vascular function.?*

XO Inhibition—a
Therapeutic Target in CHF?

The therapeutic option to inhibit increased XO activity in
CHF might be useful to counteract maladaptive chronic up-
regulation of the XO metabolic pathway. In fact, it has been
shown that in CHF patients with hyperuricemia, treatment
with the XO inhibitor allopurinol improved endothelial func-
tion and peripheral blood flow,*#" whereas markers of free
oxygen radical generation were decreased.*® In a placebo-
controlled, randomized, double-blinded, cross-over study
we showed that allopurinol (100 mg/d) after 1 week of treat-
ment decreased uric acid levels by 39%, while vasodilator
capacity improved in arm and leg vascular beds by 24% and
23%, respectively.*0 Plasma XO activity was decreased by
49%.%8 It was found that the treatment-induced decrease of
uric acid significantly correlated with the improvement of
vasodilator capacity. This raises the possibility that indepen-
dent of the oxygen radicals, uric acid itself may have an
adverse effect on the regulation of peripheral vascular tone
(see later). It has been shown that allopurinol treatment can
improve forearm blood flow and endothelial dysfunction also
in other conditions such as type 2 diabetes mellitus and mild
hypertension.* In the context of reperfusion injury, XO-
derived free oxygen radicals are a major contributor to im-
paired blood flow and tissue damage; allopurinol may exert
protective effects against these reperfusion injuries.>® Benefi-
cial effects of allopurinol treatment for reperfusion injury
after digital reimplantation surgery has been reported (de-
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creased infection rate, postoperative pain, and chronic swell-
ing).!

Besides its effect on peripheral vascular tone, inhibition of
XO appears to directly influence myocardial performance in
CHF. In animal models, allopurinol decreases myocardial
oxygen consumption® and improves systolic function,’>>*
resulting in increased myocardial energy efficiency. Recently,
this has been confirmed in human CHF.>> Although the un-
derlying mechanism is not yet understood fully, some inves-
tigators have suggested a specific effect of allopurinol to sen-
sitize cardiac myofilaments to Ca?*.>° Treatment with
allopurinol is, however, not free of problems. It can induce
attacks of gout, kidney dysfunction, or skin reactions.
Whether new, more specific, XO antagonists will be estab-
lished in the future as a regular treatment option remains to
be seen.

Hyperuricemia in CHF

Recent experimental studies suggest that uric acid itself might
contribute to cardiovascular pathophysiology. The direct as-
sociation between a decrease in uric acid level and improved
vasodilator capacity was described earlier. We previously
showed that high uric acid levels in CHF predict impaired
peripheral blood flow and decreased vasodilator capacity.?

l

increased
vascular resistance

rived free radicals. In CHF, increased
substrate supply and XO/XH imbal-
ance lead to up-regulated XO activity,
resulting in increased free oxygen rad-
ical production. Superoxide anions re-
act with endothelium-derived nitric
oxide, causing impaired nitric oxide—
dependent regulation of vascular tone
and hence increased peripheral vascu-
lar resistance.

Notably, these findings are independent of renal dysfunction
and diuretic dose, which are known to contribute to increas-
ing the serum uric acid level and this may partly account for
higher uric acid levels in patients with CHF. Thiazide and
loop diuretics in particular, by increasing tubular reabsorp-
tion of uric acid, may cause decreased excretion. It has been
shown that in hypertensive patients, bendrofluazide at a dose
of 2.5 mg/d may cause an increase in serum uric acid levels of
9% .5" However, this is not sufficient to explain the substantial
increase of uric acid level observed in CHF patients. For
furosemide treatment in CHF patients®® as well as for to-
rasemide,” even in larger doses (100-400 mg) as used in the
treatment of chronic renal failure, changes in uric acid levels
were reported as clinically insignificant. Similar renal impair-
ment might increase serum uric acid levels owing to dimin-
ished excretion. However, this might not be a dominant fac-
tor for hyperuricemia observed in CHF patients because
associations of uric acid with pathophysiologic alterations in
CHEF (see earlier) constantly were found independent of pa-
rameters of renal function??

A detrimental impact of chronic hyperuricemia has been
reported. Uric acid potently stimulates vascular smooth mus-
cle cell proliferation in vitro, an effect mediated by stimula-
tion of mitogen-activated protein kinases, cyclooxygenase-2,
and platelet-derived growth factor.®%61.52 In a mouse model it
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was shown that uric acid infusion caused increased endotoxin- References

stimulated tumor necrosis factor-a production and hence
proinflammatory immune activation.®*> Recently, uric acid
was identified as an endogenous danger signal to activate the
immune system.* However, the discussion is ongoing
whether there is also an antioxidant effect and hence a pro-
tective effect of uric acid.

Hyperuricemia as a
Novel Prognostic Marker

There is increasing evidence suggesting prognostic signifi-
cance for the XO metabolic pathway. Recently, it was shown
that in CHF patients high uric acid levels are a predictor of
impaired survival, independently of and better than other
well-established parameters such as the clinical status, exer-
cise capacity, parameters of kidney function, and effect of
diuretic therapy.®® Data indicated a stepwise increase of mor-
tality risk in parallel to increasing uric acid levels (Fig 3). This
is in line with the finding in a recent retrospective study that
examined the effect of allopurinol in CHF on mortality and
hospitalization.® In these patients, long-term high-dose al-
lopurinol (=300 mg/d) was associated with a better all-cause
mortality (adjusted relative risk, .59; 95% confidence inter-
val, .37-.95; P < .05) than low-dose allopurinol (<300 mg/d),
assuming a dose-related effect of allopurinol.

Summary

The traditional view of CHF as a mere pumping disorder has
shifted to a more complex approach including hormonal,
immune, and metabolic aspects, and secondary changes. In-
creasing data suggests that the XO metabolic pathway is a
significant contributor to the pathophysiology of CHF with
both symptomatic and prognostic implications. Preliminary
results suggest a beneficial effect of decreasing uric acid by
XO inhibition. Whether one also could use uricosuric treat-
ments (to increase excretion of uric acid) or newer, more
selective XO inhibitors potentially with less side effects in
acute or chronic heart failure needs further study.
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