The Role of Nitric Oxide in Renal Transplantation

By Ingrid H. C. Vos, Jaap A. Joles, and Ton J. Rabelink

This review discusses the concept that nitric oxide synthase (NOS) may orchestrate both the inflammatory
response to the renal allograft and anti-inflammatory defense in the graft itself. NO is produced by endothelial,
epithelial, as well as inflammatory cells. In the setting of transplantation, the endothelium is the first lining to be
subjected to the early response to injury. In turn, activated endothelial cells facilitate leukocyte recruitment,
immune-mediated injury, and angiogenesis. On activation by inflammatory stimuli, endothelial cells up-regulate
multiple vasoactive substances, oxygen radicals, cytokines, chemokines, and growth factors. Therefore, endo-
thelial integrity, especially the expression of protecting vasoactive agents, such as NO, may be a key factor in
resistance or sensitivity to transplantation-mediated injury. Thus, evaluating the mechanisms by which NO is
involved in either protecting or injuring the transplanted allogeneic kidney is important for our understanding of
renal allograft rejection. This review focuses on the role of NO in the inflammatory endothelial-leukocyte interac-

tions, which are implicated in acute and chronic rejection of the transplanted kidney.
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IDNEY TRANSPLANTATION has im-
proved survival and qudity of life for pa-
tients with end-stage renal failure. On transplanta-
tion and during graft rejection, protection by
endothelium-derived nitric oxide (NO) appears to
be defective because vasoconstriction, inflamma-
tion, thrombosis, and intimal proliferation are com-
mon features in graft vasculopathy.1-3 Acute phe-
nomena, before the inflammatory response and
endothelial dysfunction, are leukocyte-endothelial
interactions including the expression of cell adhe-
sion molecules,* and release of chemokines,5¢ cy-
tokines,” and growth factors.®2 The cell adhesion
molecule-mediated process of leukocyte recruit-
ment often results in endothelial cell dysfunction,
manifested asimpaired endothelium-dependent va-
sorelaxation in arterioles, excess fluid filtration in
capillaries, and enhanced protein extravasation in
venules 911
Hence, the condition of the endothelium and its
release or deficit of vasodilating agents, such as
NO, have been implicated in a variety of vascular
disorders such as ischemial/reperfusion injury,12
vasculitis in acute alograft dysfunction,1© as well
as hypertension,13 angiogenesis,4 and arterioscle-
rosis? in chronic alograft dysfunction. This review
discusses these aspects for the transplanted kidney
as observed in the subsequent phases of ischemia/
reperfusion, acute rejection, and chronic vascu-
lopathy.

NO SYNTHASE IN THE
TRANSPLANTED KIDNEY
Role of Endothelial NO Synthase

Contribution of the different NO synthase
(NOS) isoforms can be distinguished either by
selective pharmacol ogic inhibition or by knockout
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models. The protective properties of NO derived
from constitutive NOS are well established in rena
transplantation.1215-19 |nhibition of NO production
by al NOS isoforms, with the L-arginine ana-
logues N(G)-nitro-L-arginine methyl ester and L-
NNA, decreased renal allograft survivalis20 either
by aggravation of the allo-immune response or by
graft ischemia. Aortic alografts deficient in endo-
thelial NOS (eNOS) were associated histologically
with marked graft allo-arteriosclerosis, compared
with grafts from inducible NOS (iNOS)-deficient
mice.2t Functionally, genetic deficiency of eNOS
expression was correlated with hypertension in hu-
man recipients.22 Thus, NO production by NOS is
essential for maintaining graft function.

Role of INOS

The role of iINOS in the kidney graft is both
advantageous and disadvantageous.2® Severa in
vitro and in vivo investigations have shown that
selective inhibition of NO production by iNOS
could prevent NO-mediated renal transplant injury.
Tubules isolated from iINOS knockout mice, or
treated with anti-sense iINOS, were resistant to
hypoxic and ischemialreperfusion injury, in con-
trast to tubules from eNOS knockout mice.2425
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Selective iINOS blockade by iminoethyl-lysine and
butylhexahydro-azepin-imine protected the trans-
planted kidney from tubulointerstitial macrophage
infiltration and injury.26 The deleterious effect of
iINOS aso has been seen in acute rejection of
lung?” and heart.22 However, long-term iNOS in-
hibition,2° as well as targeted deletion of the INOS
gene in heart mouse recipients,3® was shown to
correlate with graft allo-arteriosclerosis. Moreover,
transduction with iINOS by using an adenoviral
vector completely suppressed the development of
myointimal hyperplasia in chronic cardiac and
aorta allograft rejection.2t29 |nterestingly, Mi-
namoto and Pinsky3! showed that tracheal trans-
plants into iINOS-deficient recipients selectively
showed reduced intima proliferation leading to
graft occlusion. In contrast, alografts donated
from iNOS(—/—) knock-out mice transplanted into
WT alograft recipients were not protected from
rejection, suggesting that recipient-derived iNOS
expressed by graft-infiltrating leukocytes modu-
lated and promoted rejection.

NO Availability: Production Versus Degradation

NO availability can be reduced by a decrease in
NO production and/or increase in NO degradation.
Less NO is produced when eNOS activity is re-
duced, either owing to a deficiency of the NOS
substrate L-arginine3233 or the NOS cofactor tet-
rahydrobiopterin (BH,).1734 NOS may be depleted
from L-arginine owing to competitive inhibition by
endogenous asymmetric and symmetric dimethyl-
arginine, which has been found to be increased in
chronic rena failure.353 BH, depletion can occur
on ischemialreperfusion owing to degradation by
oxygen radicals.37

However, the predominant cause of impaired
NO bioavailability might be increased degradation
of NO by superoxide (O, "), directly or indirectly
by inactivating BH,, rather than impaired forma-
tion of NO. In the context of transplantation, this
pathol ogic imbalance between NO and O, is crit-
ically involved in ischemia/reperfusion-associated
endothelial injury and leukocyte recruitment, pro-
viding a key component for rejection. Thus, we
postulate that NO-mediated effects, either benefi-
cia or detrimental, are dependent on the relative
availability of NO versus vasoconstrictors. By def-
inition, NO availability depends on net NO pro-
moting versus NO degrading conditions in the mi-
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croenvironment, as well as the site of production,
hence, the microenvironment itself.

Collectively these findings lead to 3 important
conclusions about NOS in transplant rejection:

1. NO produced by eNOS is protecting the allo-
graft: on unselective NOS inhibition, the pro-
inflammatory and vasoconstriction effects by
inhibiting the eNOS isoform probably offset
the beneficial effect of inhibiting iINOS, which
has been associated with macrophage cytotox-
icity;

2. NO produced by iNOS is an intriguing mod-
ulator of vascular rejection, depending on
temporal and spatial patterns. (a) The early
detrimental features of iINOS oppose the late
protective potential of iINOS. The latter acts
mainly by suppressing inflammatory cell re-
cruitment and neointimal smooth muscle cell
accumulation. (b) Whether iNOS acts as a
beneficial NO-producing enzyme depends on
sufficient cofactor availability. Detrimental ef-
fects of INOS are related to peroxynitrite for-
mation on insufficient cofactor and/or antiox-
idant capacity in the microenvironment;

3. Recipient-derived iNOS, expressed by graft-
infiltrating leukocytes, exerts the dominant in-
fluence on rejection outcome rather than the
potentially beneficial donor-derived iNOS, ex-
pressed by graft resident parenchymal cells.

ISCHEMIA/REPERFUSION
Oxidative Stress: Free Radical Formation

Ischemia and subsequent reperfusion are inevi-
table events in organ explantation and implanta-
tion. However, ischemialreperfusion injury in or-
gan transplantation is a magjor cause of delayed
graft function. Ischemia, and in particular reoxy-
genation during reperfusion, disturb severa meta-
bolic systems, thereby inducing massive genera-
tion of reactive oxygen-derived species (ROS).
Free radical production secondary to ischemia (ie,
reductive stress) and reperfusion (ie, oxidative
stress) primarily is a direct consequence of aden-
osine triphosphate depletion. Adenosine triphos-
phate degradation into adenosine diphosphate,
adenosine monophosphate, adenosine, and, ulti-
mately, hypoxanthine, creates a substrate that will
be oxidized by xanthine oxidase on reoxygenation,
leading to the formation of superoxide anion (O, ")
and hydrogen peroxide (H,0,).3 When O, reacts
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Fig 1. Renal NO production and macrophage influx in the allogeneic transplanted kidney 24 hours after
ischemia/reperfusion. Left, NO has been measured specifically in renal tissue by the NO spin trap Fe-MGD complex
in control (m) and transplanted rat kidney. NO content is expressed as arbitrary U/mg wet weight of kidney tissue,
showing that treatment with the BH, precursor sepiapterin (hatched bars) increased NO availability compared with
saline-treated kidney allograft (). Right, the number of ED1+ monocytes/macrophages infiltrated in the perivas-
cular area of intrarenal vessels, showing that BH, supplemented allograft (hatched) is associated with reduced
monocyte influx on ischemia/reperfusion compared with the untreated allograft (CJ). Data shown are mean + SEM.

Data from Huisman et al.5°

with H,0,, catalyzed by free iron, which has been
accumulating during the preceding period of isch-
emia, hydroxyl radical (OH™) is formed.3® This
enhanced generation of ROS will lead to destruc-
tion of biomolecules in membranes (lipid peroxi-
dation), in enzymes (protein oxidation), and DNA
(strand breaks and cross-links to other molecul es)#°
in endothelium, and underlying parenchymal tissue
in the reperfused kidney.1341 However, recently we
found that intrarenal infusion of O, by hypoxan-
thine plus xanthine oxidase causes a marked in-
crease in fractional sodium excretion without a
decrease in glomerular filtration rate, mimicking
the natriuresis often seen after ischemia/reperfu-
sion. Remarkably, this effect was fully reversible
and occurred in the absence of glucosuria or pro-
teinuria. Thus, initially O, has functional effects
on sodium transporters before the development of
structural changes.+2

Superoxide Production by NOS: Uncoupling
Concept

With low L-arginine substrate or low BH, co-
factor, degradation of NO by oxygen-derived free
radicals was even more pronounced.#3 In fact, in
conditions of insufficient L-arginine** or BH 4,4
NOS itself may produce O, (instead of NO*), a
process called NOS uncoupling, as oxidation of the
reduced form of nicotinamide-adenine dinucle-

otide phosphate at the reductase domain and sub-
sequent electron shift are uncoupled from NO syn-
thesis from L-arginine at the oxygenase domain.
Sensitivity of NOS isoform dimer stability to L-
arginine and BH,, deficiency in vitro varies mark-
edly,4” showing that eNOS association depended
most on L-arginine, whereas iNOS association de-
pended more on BH, binding. Substantial amounts
of O,  are generated by uncoupled eNOS, as we
showed in patients with hypercholesterolemia.48
Uncoupled iNOS recently has been shown to be a
peroxynitrite-generating enzyme in in vitro and in
vivo conditions.49.50

Although (i)NOS uncoupling in the setting of
transplantation remains to be investigated further,
blockade of BH, synthesis (by inhibiting
guanosine triphosphate cyclohydrolase) resulted in
increased O, production with a reciprocal reduc-
tion of NO production by eNOS in ischemia/reper-
fusion injury in coronary arteries.5! In the trans-
planted rat kidney, BH, deficiency appears to be
the underlying condition of iNOS uncoupling be-
cause in vivo sepiaterin (ie, BH, precursor) injec-
tion of the recipient decreased renal O, release
while enhancing basal NO production (Fig 1).5°
Moreover, this was associated with a reduction of
the primary inflammatory response to the graft.
Consistently, activated mononuclear infiltrate, pro-
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ducing high levels of both O, and NO, were
colocalized with 3-nitrotyrosine in early rat26 and
human kidney graft rejection.s2

Antioxidant Capacity of the Renal Transplant

Under normal conditions, free radicals are scav-
enged by endogenous antioxidants such as cata-
lase, glutathione peroxidase, and superoxide dis-
mutase,*® or exogenous antioxidants such as
vitamins C and E.33 However, antioxidant capacity
of rena tissue was decreased significantly after
transplantation,>* with lower enzymatic activity of
catalase, glutathione peroxidase, and superoxide
dismutase.5> MacMillan-Crow et al>* showed that
manganese superoxide dismutase was tyrosine ni-
trated and inactivated during human kidney allo-
graft rejection, leading to increased levels of O,
and concomitant increases in peroxynitrite
(ONOQ"). Interestingly ONOO™, generated from
O, and NO in a diffusion-limited reaction with a
rate constant of >6.7 X 10° mol/L - s~*,° would
be the most potent biological oxidant to inactivate
enzymatic activity of manganese superoxide dis-
mutase as well as to destroy proteins, DNA, and
lipids on ischemia/reperfusion. Indeed, intravenous
administration of superoxide dismutase before
reperfusion increased graft survival.5¢ Moreover,
N-acetylcysteine (a potent antioxidant) and phos-
phoramidon (an endothelin-converting enzyme in-
hibitor) synergistically attenuated renal ischemia/
reperfusion injury with the NO donor nitroprusside
by protecting cells against free radical damage.ss
Thus, ROS may underlie ischemialreperfusion in-
jury by causing oxidative degradation of NO.

Site of Oxidative Stress

In our model of acute rena alograft reection,
sdective iNOS inhibition diminished tubulointersti-
tia injury and nitrotyrosine staining in tubular epi-
thelium and infiltrating cells despite aminor decrease
of vascular and glomerular injury. However, in the
same transplant model, chronic inhibition of al NOS
isoforms increased scores for vascular injury much
more than for parenchymd lesions.’> The lesonsin
both compartments, however, were accompanied by
severe T-cell and monocyte/macrophage infiltration.
Because macrophages account for one haf of the
infiltrating leukocytes, and macrophage activation
markers appeared to be indicative of the severity of
(sub)clinical renal alograft rejection,5” the invad-
ing macrophages probably are a primary site of
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NADP(H)-dependent oxidative stress in the trans-
plant. In addition, infiltrating monocytes and iINOS
expression have been found to be colocalized in
the transplanted kidney,58 indicating macrophages
as the primary site of iINOS production in this
model. Thus, activated macrophages produce both
NO and O, radicals via activation of iINOS and
NADP(H)oxidase, accounting for macrophage cy-
totoxicity.5°

In chronic NOS deficiency, rena cortical O,
activity was increased markedly after 3 weeks and
associated with rena injury and increased blood
pressure. ROS formation was attenuated by the
O, scavenger vitamin E.53 Application of antioxi-
dants cannot identify the primary source or site of
oxidative stress. Although uncoupling of eNOS
implies that the vasculature is the source of free
radical formation, we recently showed that in
chronic NOS inhibition in the kidney the extravas-
cular compartment was the responsible site. By
means of a novel lipophylic ROS-sensitive probe
we could link O, -mediated lipid peroxidation to
the tubular epithelium.s® Moreover, attenuation of
lipid peroxidation to control levels by use of the
selective NADPH-antagonist apocynin, implied
that in the tubules NADPH oxidase is the source of
O,". This approach has not yet been applied to
models of acute or chronic alograft rejection.
Thus, it is unknown to what extent the tubular
compartment is contributing the oxidative stress
responses in the transplanted kidney.

ACUTE REJECTION

Acute rejection can occur in the first days to
months posttransplantation and is cell mediated.s!
Recruitment, adhesion, and extravasation of leuko-
cytes into tissue are critical for norma healthy
immune surveillance, as well as inflammatory re-
sponses in ischemialreperfusion injury, vasculitis,
and alloimmune responses to the graft. Endothelial
cells actively recruit inflammatory cells by produc-
ing cytokines and cell adhesion molecules that
assist transendothelial migration into the parenchy-
mal compartment. In addition, early endothelial
injury will facilitate random as well as antigen-
driven inflammation and rejection by increasing
graft immunogenicity,52 as depicted in Figure 2A.
We postulate a central role for NO through nuclear
factor k B (NF-«B) (Fig 2B).
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NF-kB and NOS

Posttransplantation endothelial injury elicits an
inflammatory response by neutrophils, macro-
phages, platelets, as well as alo-activated T cells.
Recruitment of activated T cells and effector cells
into the renal alograft has been shown to involve
locally expressed chemokines®63 and leukocyte-
endothelial adhesion molecules.# Peritubular cap-
illary vascular cell adhesion molecule-1 is reported
to be associated specifically with chronic rejec-
tion.”64 NF-«B appears to be the key upstream
component of leukocyte recruitment because it is
activated by oxygen-derived free radicals and pro-
inflammatory cytokines such as tumor necrosis
factor-a and interleukin-1. In turn, NF-«B facili-
tates inflammation by transcriptional activation of
iNOS, various cytokines (interferon-y, tumor ne-
crosis factor-«, interleukin-2, and interleukin-6),
adhesion molecules (intercellular adhesion mole-
cule-1, vascular cell adhesion molecule-1, E-selec-
tin), and chemokines monocyte chemotactic pro-
tein-1 [MCP-1], macrophage inflammatory protein

Donor
endothelial cells

Pro-angiogenesis /—\
molecules, factors: Vascular cells, ti
dieinskings > Coao coan T\ donerirecipient » graft
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[MIP]-1a) in endothelial and (tubular) epithelial
cells.®5 The fact that NF-«B enhances immunoge-
nicity by up-regulating major histocompatibility
complex (MHC)-II expression, reveals NF-«B as
an important effector mechanism in alograft rejec-
tion. Importantly, NO itself isinvolved in a nega-
tive feedback loop inhibiting NF-«B.% This im-
plies that NO could be used to modulate rejection
(Fig 2B).

Immunogenicity and NOS

Persistent host alloresponsiveness is reported in
kidney allografts despite adequate maintenance of
immune suppression. First, the recipient-derived
leukocytes create a continuous immunologic stim-
ulus leading to destruction of donor endothelial
cells. Assuch, the donor-derived dendritic cells (ie,
passenger leukocytes) are critical for the direct
T-cell alorecognition response to the graft endo-
thelial and epithelial cells. Second, in particular,
the antigen-specific recall responses by donor alo-
antigen presentation to self-MHC restricted T cells
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(indirect pathway) are critical for the effector
mechanism of rejection.768 |n the context of an-
tigen-specific leukocyte recruitment, it is very in-
teresting that iINOS activation in the recipient is
reported to be essential for indirect platelet antigen
processing.69.70

Endothelial Permeability, Vascular Endothelial
Growth Factor, and NOS

Because mononuclear cells infiltrate the acutely
rejecting kidney, and within the kidney foster ox-
idative stress and a cytokine-enriched milieu, they
themselves are implicated in changed permeability
of the endothelium.”® Alteration in the endothelial
junctions can be induced by leukocyte-derived
thrombin, bradykinin, histamine, vascular endothe-
lia growth factor (VEGF), and inflammatory cy-
tokines. One of the key players that regulate acute
changes in endothelial permeability is NO because
endothelial cells that were pretreated with NOS
inhibitors lose their ahility to respond to VEGF.72
The pro-angiogenesis factor VEGF is produced by
endothelia cells, vascular smooth muscle cells, as
well as macrophages and T cells. VEGF is acti-
vated by various stimuli such as hypoxia, some
cytokines, and CD40 (on endothelia cells and
monocytes) with CD40 ligand (on activated T
cells) binding.” Moreover, NO generated by iNOS
enhances synthesis of VEGF in vascular smooth
muscle cells and macrophages.” Recent evidence
in bovine retina microvascular endothelia cells
and in umbilical vein endothelial cells revealed
that VEGF is critically involved upstream of NF-
kB-induced pro-inflammatory genes. VEGF stim-
ulated activated protein-1 (AP-1) and NF-«xB ac-
tivity, respectively, in a concentration- and time-
dependent manner.”s

Thus, on endothelia cell activation a cellular
stress response is triggered with up-regulation of
VEGF and activation of endotheliad NF-«B. The
subsequent cytokine-adhesion molecule cascade
promotes an initial inflammatory response with
infiltration of leukocytes, activation of macro-
phages, hence, up-regulation of iINOS, and produc-
tion of diverse pro-inflammatory cytokines. Be-
cause NF-«B is involved in the expression of
priming cytokines, MHC antigens, as well as
iNOS, it may provide positive feedback in im-
mune- and injury-mediated inflammation.
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CHRONIC TRANSPLANT VASCULOPATHY
Chronic Inflammation

Graft failure develops over time in most vascu-
larized allografts. The leading risk for chronic a-
lograft nephropathy are acute rejection episodes
and donor age.”s77 Chronic rejection occurs after
months or years and may be injury-mediated rather
than being solely driven by a continuing immuno-
logic process. This slowly progressing allograft
nephropathy is characterized by vascular oblitera-
tion owing to proliferation and scarring of intima
and media in the renal vessels, and membrane
multilayering in the peritubular capillaries. The
interstitium also shows gradual fibrosis and gener-
ation of extracellular matrix. Tubules develop atro-
phic features.”® INOS messenger RNA and protein
were found in resident vascular smooth muscle and
mesangia cells, as well as in invading macro-
phages and lymphocytes in patients with chronic
alograft nephropathy.79.8 Frequency of acute re-
jection episodes, in particular vascular rejection,
is a major risk linking acute and chronic graft
falure 577 Inflammation as the driving process of
atherosclerosis in general has been well accepted.
Chronic inflammatory processes adso may be the
mechanism of function in the development of
graft arteriosclerosis and late alograft dysfunction.
Mediators of inflammation, including activated mac-
rophages and lymphocytes, cytokines, chemokines,
and growth factors, can befound at different stages of
progressive chronic rejection.68.14

Angiogenesis

Angiogenesis, the formation of new blood ves-
sels from preexisting ones, is characteristic for an
ongoing healing inflammatory process. This angio-
genic response could be involved in chronic endo-
thelial activation leading to arteriosclerosis-like
chronic alograft nephropathy (Fig 2A and 2B).
Shahbazi et al8! reported that genotypes encoding
higher VEGF production were strongly associated
with acute renal alograft rejection. Grone et alg2
reported expression of VEGF in human recipients
with renal vascular disease and chronic renal allo-
graft regection. In particular, macrophages are
thought to play an important role in angiogenesis
in the chronically reecting allograft. Pronounced
VEGF expression colocalized with monocyte/mac-
rophage infiltration into the parenchyma of human
renal alografts with evidence of interstitia fibro-
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sis.1#4 This concurs with observations in rodent
models of cardiac allotransplantation; sprouting of
microvessels was increased markedly in the ex-
panded intima of the donor vessels compared with
the recipient’s own arteries.83 Also, in patients,
neovascularization was colocalized with VEGF-
producing inflammatory cells that had infiltrated
the outer layers of the intima in cardiac allograft
arteriosclerosis.8485 Moreover, angiogenesis in the
arteriosclerotic lesions provides a site of entry for
leukocytes, thereby sustaining the ongoing inflam-
matory process.

THERAPEUTIC INTERVENTIONS BASED ON
THE NO SYSTEM

Early inflammatory events may be an effective
target for therapeutic intervention with long-term
goals. One may postulate that blocking the initial
inflammatory responses associated with ischemia/
reperfusion injury and acute rejection may be of
significant clinical importance to maintain graft
morphology and function over time. The NO sys-
tem plays a key role in kidney allograft rejection.
Various factors that directly or indirectly are in-
volved in/related to the NO system could affect the
pathophysiologic response to kidney transplanta-
tion/kidney transplantation outcome. We showed
recovery from initial inflammatory responses and
inhibition of acute graft rejection by supplement-
ing the NOS cofactor BH,*° or the NOS substrate
L-argining® and by inhibiting the transcription
factor NF-kB8” or iNOS,26 respectively. Hence,
diminution of inflammatory proregjection condi-
tions can be achieved by modulating the NO sys-
tem in experimental renal transplantation. How-
ever, long-term effects of BH, supplementation or
iNOS inhibition on rena allograft function have
not yet been reported.

L-Arginine-NO Pathway in Renal Transplantation

In experimental acute renal failure, decreased
renal plasma flow and glomerular filtration rate
levels were associated with decreased tissue L-
arginine levels, eNOS |11 expression, NO forma-
tion, and nitrite excretion.1® Therefore, L-arginine,
the substrate of NO, was suggested to be beneficial
in acute renal failure as well as hypertension, ure-
teral obstructive nephropathy, and cyclosporin A
nephrotoxicity. The outcome of L-arginine supple-
mentation in kidney transplant recipients was not
uniform in experimental and human studies. Sev-
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eral studies focusing on reduced renal perfusion
and filtration188 or on increased blood pressure
levels® reported beneficial hemodynamic effects
of L-arginine supplementation immediately after
kidney transplantation. L-arginine infusion aso in-
creased renal vasodilatation and natriuresisin renal
transplant patients under long-term cyclosporine
treatment, indicating that L-arginine counteracts
the antinatriuretic effect of cyclosporin.2© How-
ever, Zhang et al°192 reported that late L-arginine
treatment either by infusion or long-term oral sup-
plements failed to reverse cyclosporine-induced
renal vasoconstriction in patients with established
chronic graft dysfunction. Similar negative find-
ings were reported in heart transplant patients.®3
Preliminary results in a kidney transplant model
showed that long-term L-arginine supplementa-
tion, starting before the onset of chronic transplant
failure, protected the graft from developing focal
glomerulosclerosis and proteinuria.®4

CONCLUSION

Multiple strategies that can modulate the NO
pathways need to be evaluated in terms of their
efficacy in reducing the initial inflammatory re-
sponse to injury and hence long-term graft sur-
vival. Balancing the cytoprotective and cyto-oxi-
dative actions of NO will remain amajor challenge
in the coming years.
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