Nitric Oxide, Oxidative Stress, and Progression of Chronic
Renal Failure

By Paul S. Modlinger, Christopher S. Wilcox, and Shakil Aslam

Cellular injury or organ dysfunction from oxidative stress occurs when reactive oxygen species (ROS) accumulate
in excess of the host defense mechanisms. The deleterious effect of ROS occurs from 2 principal actions. First,
ROS can inactivate mitochondrial enzymes, damage DNA, or lead to apoptosis or cellular hypertrophy. Second,
nitric oxide (NO), which is a principal endothelial-derived relaxing factor, reacts with superoxide anion (O, ~) to yield
peroxynitrite (ONOO™), which is a powerful oxidant and nitrosating agent. The inactivation of NO by O, creates NO
deficiency. Oxidative stress can promote the production of vasoconstrictor molecules and primary salt retention
by the kidney. Several hypertensive animal models showed increased activity of nicotine adenine dinucleotide
phosphate (NADPH) oxidase, which is the chief source of O, in the vessel wall and kidneys. NO regulates renal
blood flow, tubuloglomerular feedback (TGF), and pressure natriuresis. Animal models of NO deficiency develop
hypertension, proteinuria, and glomerulosclerosis. Evidence is presented that chronic renal failure (CRF) is a state
of NO deficiency secondary to decreased kidney NO production and/or increased bioinactivation of NO by O,~.
Patients with CRF show decreased endothelium-dependent vasodilatation to acetylcholine, have increased mark-
ers of oxidative stress, and diminished antioxidant activity. Therapy for oxidative stress has focused on antioxi-
dants and agents that modify the renin-angiotensin system. The effects of such treatments are more compelling
in animal models than in human studies.
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XIDATIVE STRESS occurs when the for-

mation of reactive oxygen species (ROS) ex-
ceeds the body’s ability to metabolize them. The
most important ROS include superoxide anion
(O,7), hydrogen peroxide (5D,), and hydroxyl
radical (OH"). Oxidative stress causes cell injury.
It has been linked to the development of athero-

tiating inflammation and foam cell formatic:4
ROS activate critical transcription factors includ-
ing nuclear factorkB, activator protein-1 (AP-1)
and hypoxia inducible factored (HIF-1«), which
have widespread effects including an increase in
vascular smooth muscle cell (VSMC) hypertrophy
and hyperplasia.

sclerosis, hypertension, neurodegenerative disease, A second important effect of O is the inactiva-
aging, and malignancy. As a consequence of thesetion of the endothelium-derived relaxing factor nitric
conditions, the formation of ROS is increased, oxide (NO). NO increases renal blood flow, blunts

leading to a potential positive feedback response.

Oxygen radicals inactivate mitochondrial enzymes,
directly damage DNA and DNA repair enzymes
and transcription factors, and lead to cell desth.

ROS-mediated lipid peroxidation is a first step in
the development of atherosclerotic disease, by ini-
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tubuloglomerular feedback (TGF), and promotes
pressure natriuresis.,O reacts with NO to form a
very powerful oxidant and nitrosating agent, per-
oxynitrite (ONOQO ). ONOO ™ oxidizes lipids, DNA,
and proteins, and can inactivate proteins by forming
3-nitrotyrosine (3-NT) residués.This reaction of
O, generates toxic molecules while diminishing the
generally protective functions of NO.

Oxidative stress may contribute to the progres-
sion of renal disease indirectly by promoting hy-
pertension and atherosclerosis or directly by induc-
ing glomerular damage and renal ischemia. Much
interest centers on the concept that the dramatic
increase in mortality in patients with chronic renal
failure (CRF) may be secondary to the deleterious
cardiovascular effects of oxidative strés3his
review focuses on the role of NO as a regulator of
kidney function, the ability of oxidative stress to
alter kidney function, and the evidence that renal
insufficiency is a state of increased oxidative stress
and functional NO deficiency that contributes to
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progressive damage of the kidneys and cardiovas-
cular system.

NO: REGULATOR OF KIDNEY FUNCTION

NO is produced from L-arginine by nitric oxide
synthase (NOS). This enzyme is expressed as 3
isoforms, all of which have been isolated from the
kidney: endothelial NOS (eNOS), neuronal NOS
(nNOS), and inducible NOS (iNOS). iNOS has
low basal expression until activated by an immune
response, whereas eNOS and nNOS are expressed
constitutively, although both are regulated by spe-
cific factors. The kidney is unusual in having sig-
nificant basal expression of iNOS, which may be a
consequence of the production of cytokines by the
tubules of normal kidneys. Moreover, the kidney
produces 2 distinct but homologous transcripts for
iINOS.” eNOS has been localized to the endothelial
cells of the rena vasculature, including the glo-
merulus, arcuate vessels, and arterioles, and to a
lesser extent to tubular cells® nNOS is heavily
expressed in the macula densa cells of the juxta
glomerular apparatus but also is expressed in Bow-
man’s capsule, efferent arterioles, thick ascending
limbs, and collecting ducts.®11 iNOS is expressed
in vascular smooth muscle cells (VSMCs), mesan-
gid cdls, interstitial cells, tubular cells of the thick
ascending limbs, inner medullary collecting ducts,
cortical collecting ducts, proximal and distal tu-
bules, and in intrarenal nerves.101213 For further
details see Wilcox.14

Infusion of the NOS inhibitor, N®-nitro-L-argi-
nine methyl ester (L-NAME) into a normal rat
causes systemic hypertension, an increase in affer-
ent and efferent arteriolar resistance, and a de-
crease in filtration coefficient and single-nephron
glomerular filtration rate.2>17 Over time these an-
imals develop proteinuria and glomerulosclerosis.
L-NAME enhances the contraction of the afferent
arteriole to angiotensin 11 (Ang 11).2> Moreover,
micropuncture studies show that NO produced by
NNOS in the macula densa antagonizes the vaso-
constriction generated by the action of TGF on the
afferent arteriole.® TGF is activated by chloride
delivery and reabsorption at the macula densa,
which leads to the release of mediators that include
adenosine and adenoside triphosphate, which con-
strict the afferent arteriole and decrease the single-
nephron glomerular filtration rate.1® Wilcox et al®
first showed that the release of NO by the macula
densa occurs only during high NaCl delivery and
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reabsorption. Braam and Koomans'® showed that
NO opposes Ang ll-induced vasoconstriction of
the afferent arteriole.1® Further studies have shown
that NO blunts TGF only during normal or high
salt intake.2° Thus, NO can cause vasodilatation of
the afferent arteriole, buffer its responses to vaso-
constrictors, and defend against salt sensitivity dur-
ing salt loading. These studies distinguish NO as a
significant regulator, and in many cases protector,
of renal blood flow, glomerular filtration rate, and
salt and fluid homeostasis. NO becomes especially
important under conditions of enhanced afferent
arteriole vasoconstriction (congestive heart failure,
cirrhosis, nonsteroidal inflammatory use) and dur-
ing salt loading.

The ability of NO to protect kidney function is
highlighted by recent studies by Gschwend et al2*
who used a 5/6 nephrectomy rat model of CRF.
The rena insufficiency in this model is accompa
nied by hyperfiltration injury of the remaining
nephrons and increased intraglomerular pressure.
The investigators studied the endothelium-depen-
dent vasodilatation of the interlobar artery at the
time of nephrectomy. They found that the degree
of this vasodilatation was correlated inversely to
the animal’s subsequent development of protein-
uria and renal insufficiency. In contrast, endothe-
lium-independent vasodilatation with sodium ni-
troprusside was not correlated to renal injury. They
concluded that the endothelium, and its release of
NO, protected rats from glomerular injury.

NO iscritical for the kidney’ s ability to maintain
salt and water homeostasis. NOS inhibitors, when
infused locally into the kidney, reduce sodium
excretion and urine flow, which can be reversed by
an NO donor.13 NO inhibits tubular NaCl transport
in the thick ascending limbs,22 collecting ducts,
and proximal tubules.1314 NO aso can influence
salt and water handling in the kidney indirectly by
regulating medullary blood flow. Infusion of L-
NAME,*> nNOS antisense, or local iNOS inhibi-
tion in the rena medulla?® decreases medullary
blood flow and causes salt-dependent hyperten-
sion. NO aso increases rena intertitial hydro-
static pressure independent of medullary blood
flow,24 which diminishes tubular NaCl transport.
The pressure natriuresis response itself is linked to
kidney NO production.13

On the contrary some studies suggest that NO
has antinatriuretic properties. Knockout mice lack-
ing eNOS and iNOS have defective tubular
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NaHCO; absorption and develop metabolic acido-
sis.25 Normal rats infused systemicaly with NOS
inhibitors have an induced diuresis and natriuresis,
but this may be secondary to an increase in blood
pressure. These conflicting studies exemplify the
many sites at which NO can interact to alter salt
and water excretion.14

PRODUCTION OF NO IN CRF

L-arginine is a semi-essential amino acid. It is
formed from citrulline, which isaproduct of amino
acid metabolism in the gut wall.26 L-arginine is
converted from L-citrulline via argininosuccinate
synthetase and argininosuccinate lysase predomi-
nantly in the proximal tubules of the kidney.27.28
Although increased levels of citrulline have been
documented in patients with CRF,2” normal L-
arginine levels are found in mild renal insuffi-
ciency, likely secondary to hypertrophy of the rem-
nant proximal tubular cells.827 Arginine levels are
decreased in end-stage rena disease (ESRD).29.30
ESRD places alimitation on total body L-arginine
production and reduces L -arginine concentration.3°
Normally, plasma arginine levels are determined
primarily by arginine degradation. Metabolism
of arginine by arginase-1 in hepatic cells to orni-
thine and urea is limited by the expression of the
cellular transporter cationic amino acid transferase
(CAT)-2A .3 The activity of NOS in the macula
densa and kidney is limited during salt restriction
not by nNOS or eNOS expression, which actually
are increased,32 but rather by arginine delivery and
uptake via CAT-1.20 Thus, studiesin salt-restricted
rats have shown that microperfusion of L-arginine,
and its tubular uptake, enhances macula densa NO
generation and blunts TGF.2° Likewise, intrarenal
L-arginine infusion and uptake via CAT increases
renal blood flow selectively in salt-restricted rats.33
Therefore, the generation, delivery, metabolism,
plasma levels, and uptake of L-arginine into spe-
cific cellsare regulated heavily2¢ and determine the
activity of NOS, which is a key enzyme for blood
pressure and salt homeostasis. These facts led
Kitiyakara et al34 to propose that L-arginine be
considered a hormone.

The kidney’s central role in the production of
the NO precursor, together with the anorexia and
protein catabolism of advanced chronic rena in-
sufficiency and the development of oxidative
stress, place these patients at high risk for NO
deficiency. However, the available data for total
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NO production in CRF are conflicting and suggest
that NO deficiency is a regional rather than a
global defect. On the one hand, studies of the
platelet dysfunction of uremiain anima models of
CRF have concluded that excess NO production
inhibits platelet aggregation.s A study by Aiello et
al®¢ in a rat model of CRF found that, although
there was decreased renal production of NO, there
was an increase in total body NO production sec-
ondary to increased systemic vascular NOS activ-
ity. These investigators suggested that this up-
regulation of vascular NOS activity might be
caused by guanidinosuccinate, which isatoxin that
accumulates in CRF and can increase NO produc-
tion in cultured endothelial cells. Such a finding
also could account for the platelet dysfunction.
Clearly, any increased NO production would be a
protective mechanism against the development of
hypertension in CRF. However, Vaziri et al2837
argued that it was the severe hypertension rather
than renal failure in the anima model by Aiello et
al3¢ that increased vascular NOS. These investiga
tors created a rat model of CRF with only mild
hypertension and found significant reductions in
both the renal and vascular production of NO.
However, established hypertension is accompanied
by endothelial dysfunction3® and NO deficiency
that can be ascribed to the effects of Ang Il acting
on AT, receptors®® and to the development of
oxidative stress.4°

Studies in patients with CRF or ESRD show a
substantial decreasein NO generation. Blum et al4!
studied 3 groups of patients with different kidney
function and concluded that renal NOy excretion
(metabolites of NO) correlated with creatinine
clearance. However, plasma NOy levels were
higher than in healthy controls. The investigators
concluded that CRF isastate of NO deficiency, but
that NO, and NO; accumulate in the plasma be-
cause of decreased rena excretion. Schmidt and
Baylis et al4243 placed hemodialysis (HD) patients
on a fixed NOy intake and accounted for all NOy
elimination by measuring NOy in the urine and
dialysate42 They concluded that NO generation
was reduced substantially in ESRD.42 These inves-
tigators also showed that patients receiving perito-
nea dialysis have a 60% reduction in NO genera-
tion, a 25% reduction in plasma L-arginine levels,
and a 5-fold increase in asymmetric dimethylargi-
nine (ADMA), an endogenous NOS inhibitor.30
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These investigators later studied factors in the
plasmaof dialysis patients that affected endothelial
cells in culture. They reported that the plasma
contained factors, including urea, that impaired
L-arginine uptake into these cells, and factors, in-
cluding ADMA, that impaired L-arginine metabo-
lism by NOS.4445

Probably the most accurate method to quantitate
NO generation in humans is from the rate of con-
version of administered [*°N]-L-arginine to [*°N]-
L-citrulline or [*N]-NOy. Such studies have
shown a 50% reduction in NO generation in pa-
tientswith CRF#6 and a strictly similar reduction in
patients with essential hypertension.4” These find-
ings collectively document a profound reduction in
L-arginine availability and metabolism to NO in
CRF, and raises the hypothesis that this may be
mediated in alarge part by the effects of prolonged
hypertension. Indeed, in a recent study, Wang et
al*8 contrasted endothelia function and NOS ac-
tivity of small vessels dissected from fat biopsy
specimens from humans with essential hyperten-
sion or autosomal-dominant polycystic kidney dis-
ease (ADPKD). Endothelia dysfunction and re-
duced NOS activity were found in patients with
ADPKD even before development of hypertension
or rena insufficiency. However, with the develop-
ment of hypertension, these defects became more
severe. The group with hypertension and azotemia
were no more impaired than those with hyperten-
sion alone, and were similar to those with essential
hypertension. These studies showed that ADPKD
causes endothelial dysfunction and reduced NOS
activity and that it is the development of hyperten-
sion, rather than azotemia, that leads to a sharp
further decrease in function.

NO production may be decreased in patients
with CRF secondary to increased plasma levels of
ADMA. ADMA is a natural product formed by
methylation of arginine. It is a competitive inhib-
itor of L-arginine uptake into cells and of L-argi-
nine metabolism by NOS. Although some ADMA
is excreted in the urine, the majority is metabolized
by an enzyme dimethylarginine dimethylaminohy-
drolase that is coexpressed with NOS in endothe-
lial cells of blood vessels and in renal tubular
cells.32 Infusion of ADMA into the brachia artery
of healthy volunteers decreases forearm blood
flow, most likely secondary to a decrease in local
NO production.2® In patients with CRF an increase
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in ADMA combined with a decrease in L-arginine
may inhibit the production of NO.2° If this hypoth-
esis were true, endothelial dysfunction in CRF
should be reversed by infusion of L-arginine
whereas studies generally have shown little differ-
ence in the response to L-arginine in such pa
tients.#° This suggests that other factors, notably
the effects of prolonged hypertension, dydlipide-
mia in those with the nephrotic syndrome, or the
disease process itsdlf in those with ADPKD, and
especially the effects of oxidative stress, are the
major contributors to the NO deficiency of CRF.

THE IMPACT OF OXIDATIVE STRESS ON NO
AND ENDOTHELIAL FUNCTION

The ability of NO to preserve endothelium-de-
pendent vasodilatation depends not only on its
production but also on itsrate of bicinactivation. In
a reduced cell state, NO can maintain endothelial
function, scavenge the low concentrations of ROS,
and terminate the lipid peroxidation radical cas-
cade.r However, under conditions of oxidative
stress, NO is depleted and ONOO™ accumulates
and can lead to a cascade that results in vasocon-
striction, inflammation, and impaired vascular and
renal function.

ROS are produced as a normal byproduct of mi-
tochondria enzymes and by nicotine adenine dinu-
cleotide phosphate (NADPH) oxidase, xanthine oxi-
dase, various arachidonic acid monoxygenases
including lipoxygenase and epoxygenase, and even
NOS itself. NOS fails to complete the 2 electron
transfers, and thereby generates O, rather than NO,
when depleted of its substrate, L-arginine, or cofac-
tor, tetrahydrobiopterin (BH,).>° Oxidative stress in-
creases the conversion of BH, to dihydrobiopterin
(BH,), thus potentially perpetuating the production of
ROS in endothelid cells. NADPH oxidase is the
chief producer of O,  in VSMCs152 and kidney
cortex and medulla.33-5¢ NADPH oxidase in endothe-
lid and VSMCs differs somewhat from the NADPH
oxidase in phagocytes that generates the oxidative
bust to destroy bacteria Endothelid NADPH
oxidase consists of 5 components. On activation, the
cytoplasmic p47°"® assembles with p40P™™ and
p67°"°% which under the influence of rac, joins with
p22P"°% and gp91P™**, V SMCs express a homologue
of gp91P"* called NOX-1. The normal kidney con-
tains dl these components as well as NOX-4.56
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Oxidative Stress in Animal Models of
Hypertension

The inactivation of NO by ROS has been impli-
cated in hypertension. Increased levels of ROS
have been documented in humans with essential
hypertension.> Animal models of hypertension
have increased production of O, and increased
NADPH oxidase activity. Zalba et al57 showed that
the blood vessels of the spontaneously hyperten-
sive rat (SHR) have increased O, levels and up-
regulation of p22P"> messenger RNA, whereas in
the kidney the primary up-regulation is p47°" s6
Up-regulation of NADPH oxidase and O,  pro-
duction in the kidneys occurs in mice infused with
Ang 115859 |nterestingly, the hypertension, in-
creased O,  production, and increased NADPH
oxidase expression in these animals is reversed by
administering the AT, receptor antagonist losar-
tan.5® This suggests that NADPH oxidase is under
hormonal control and implicates oxidative stress as
a cause of hypertension in this animal model. Re-
cently, we confirmed the presence of oxidative
stress in mice undergoing a slow pressor response
to Ang I1.58 Co-infusion of tempol, a cell permeant
superoxide dismutase (SOD) mimetic, prevented
the oxidative stress as well as the hypertension and
the afferent arteriolar vasoconstriction. Recent
studiesin rats infused for 2 weekswith Ang Il a a
slow pressor rate show oxidative stress accompa-
nied by up-regulation in the kidneys of the mes-
senger RNA for p22P"* and Nox-1, and down-
regulation of EC SOD.®° These effects all are
prevented by the AT,-receptor antagonist, cande-
sartan, whereas PD-123,319, which is an AT,-
receptor antagonist, enhances oxidative stress and
p22P"°% expression. These data implicate Ang I
type | receptors in the kidney as causing oxidative
stress and show that type 2 receptors may have an
important protective role.

NADPH oxidase activity and O, production is
not confined to models of hypertension with excess
Angll. Arteriolesfrom rats on ahigh-salt diet have
increased levels of oxidative stress, impaired en-
dothelium-dependent vasodilatation, and increased
activity of NADPH oxidase.®* Similarly, the de-
oxycorticosterone acetate—salt rat model of miner-
acorticoid excess and low Ang Il has increased
NADPH oxidase activity and increased O, in
aortic rings.52 Furthermore, inhibition of NADPH
oxidase with apocyanin decreases O, production
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and blood pressure in these animals. Thus, a-
though the cause of increased NADPH oxidase
activity in animal models of hypertension still is
unclear, accumulating evidence suggests that it
may be causative of hypertension. Chabrashvili et
alsé documented an increase in renal p47°™* mes-
senger RNA and an increase in lipid peroxidation
in young SHR before the development of hyper-
tension.

ROS-Mediated Vasoconstriction

Decreased NO under conditions of oxidative
stress inhibits cytochrome P450 enzymes, which
could favor production of vasoconstrictor mole-
cules. The w/w-1-hydroxylase cytochrome P450
enzymes metabolize arachadonic acid into hy-
droxyei cosatetraenoic acids. This enzyme is inhib-
ited by NO. The SHR, deoxycorticosterone ac-
etate-salt, and Ang Il-infused rat models all have
increased levels of 20-hydroxyeicosatetraenoic
acid, which likely is important for hypertension
because inhibition of w/w-1-hydroxylase reduces
their blood pressure.t3

High concentrations of NO normally inhibit cy-
clooxygenase,! whereas a decrease in NO or an
increase in ONOO™ enhances its activity.150 Cy-
clooxygenase metabolizes arachadonic acid into
prostaglandin H, (PGH,), which is metabolized
further to thromboxane A, (TxA,), a potent vaso-
constrictor, or prostacyclin,, avasodilator, or pros-
taglandin E,. O,~ and ONOO™ enhance the activ-
ity of thromboxane synthase and the production of
TxA, while inhibiting prostacyclin synthase and
prostacyclin-2 production.150.64 Arachadonic acid
also can be oxidized directly by O, to form
8-isoprostane prostaglandin F,, (PGF,,) (8-1s0),
which is a vasoconstrictor that acts through the
thromboxane receptor. 8-1so0 is used in animal and
human studies as a marker of oxidative stress.

O, and Salt Balance

O, may also affect blood pressure by regulat-
ing the renal handling of salt and water. The SHR
has an enhanced TGF response that may contribute
to hypertension through rena afferent arteriolar
constriction and salt and water retention. The en-
hanced TGF can be corrected by micro-infusion of
the nitroxide SOD mimetic tempol.5° Indeed, in-
travenous infusion of tempol normalizes blood
pressure in the SHR.%5 Zou et a3 showed that
tempol increased medullary blood flow and urinary
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salt excretion in the absence of NO production.
These results were corroborated by Majid and
Nishiyama®® in the dog. Makino et al>* showed that
increased medullary oxidative stress decreased
medullary blood flow and led to chronic hyperten-
sion. Studies of the isolated perfused thick ascend-
ing limb have shown that O,  enhances NaCl
reabsorption.22

Cellular Defense Against Oxidative Stress

The deleterious impact of oxidative stress on
NO hioavailability and endothelia function is at-
tenuated by cellular enzymatic and nonenzymatic
antioxidants that scavenge ROS. The most impor-
tant defense derives from SOD, which converts
O, to H,0,. H,0, is converted further to O, and
water by catadlase and glutathione peroxidase,
which uses reduced glutathione (GSH) as its major
substrate. Nonenzymatic ROS scavengers include
ascorbic acid (vitamin C), and a-tocopherol (vita-
min E), and glutathione (GSH), all of which have
been evaluated as possible therapies against oxida-
tive stress. GSH is an intracellular thiol that can
scavenge ROS and regenerate other antioxidants.5”
Vaziri et a®8 showed that normal rats given buthi-
onine sulfoximine to inhibit GSH production be-
came hypertensive and developed oxidative
stress,58 which these investigators attributed to NO
inactivation from ROS. Ganafa et al®° found that
rats administered buthionine sulfoximine had in-
creased renal O, production accompanied by de-
creased plasma prostacyclin-2 and increased TxA..
These studies testify to the importance of the an-
tioxidant system in defense against oxidative
stress.

OXIDATIVE STRESS IN CRF

Oxidative stress has been documented in animal
models and in patients with rena disease. Some
suggest that oxidative stress may play a causative
role in the induction or maintenance of renal in-
sufficiency. Recently, the increased oxidative
stress in these patients has been associated with
their markedly increased cardiovascular mortality.

The 5/6 nephrectomized rat has increased blood
pressure, accompanied by increased malondialde-
hyde (MDA), a marker of lipid peroxidation, in-
creased tissue 3-nitrotyrosine (3-NT),7 and de-
creased SOD and up-regulation of gp91PM™*.71
Hasdan et al72 showed that 5/6 nephrectomized rats
developed early hypertension that was prevented
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with intraperitoneal tempol.”2 Resistance vessels
from these rats with renal failure exhibited a mark-
edly decreased endothelial-dependent relaxation
that was improved by SOD. Gaertner et a3
showed increased O, , H,O,, and OH™ produc-
tion in the anti-Thy 1.1 glomerulonephritis rat,
which isamodel of mesangioproliferative glomer-
ulonephritis. The increase in ROS was accompa-
nied by an increase in NADPH oxidase activity
and a decrease in activity of SOD, glutathione
peroxidase, and catalase.

Studies of forearm blood flow in patients with
CRF or ESRD consistently showed significant en-
dothelial dysfunction. Patients with moderate
CRF7 or those with ESRD on peritonea dialysis’>
have diminished endothelium-dependent vasodila-
tation of the brachia artery but retain a normal
response to the direct vasodilator, sodium nitro-
prusside. The interpretation of these studies is
confounded by co-expression of risk factors for
increased endothelial dysfunction such as hyper-
tension, diabetes, and hypercholesterolemia in
those with CRF. However, a recent study of
normotensive children (mean age, 12 y) with ad-
vanced CRF and no risk factors also found defec-
tive endothelial-dependent forearm vasodilata-
tion”® that correlated positively with markers of
oxidative stress and cellular oxidative status, and
negatively with total antioxidative activity.””

There are many studies of patients with CRF or
ESRD that show increased markers of oxidative
stress including 8-1so, MDA, and breath ethane,
and often and association with altered antioxidant
levels.71.78-81 Mimic-Oka et a8 found increased
levels of H,O, and decreased catalase activity in
HD patients. Some studies reported normal levels
of vitamin A and E in ESRD patients,”87° but one
study detected a decreased vitamin C level in pa-
tients on HD.” Another study found decreased
plasma GSH levels and glutathione peroxidase ac-
tivity in patients with CRF.82 Interestingly, one
study of peritoneal dialysisand HD patients did not
detect an increase in MDA levels but found in-
creased antioxidant activity as measured by ferric
reducing/antioxidant power.8® This may have pro-
tected these patients against oxidative stress. The
discrepancy between this study and others may be
dueto the difference in patient populations, param-
eters studied, or assaying techniques.

Oxidative stress may contribute to progression
of renal disease through the generation of ad-
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vanced glycation end products (AGES). AGEs are
formed nonenzymatically by the reaction of car-
bonyl compounds with a free amino group from
proteins, lipids, or amino acids. AGEs are in-
creased in diabetes, aging, and renal insufficiency.
They participate in the pathogenesis of atheroscle-
rosis through activation of an AGE receptor, which
increases expression of vascular endothelial adhe-
sion molecules that attract inflammatory cells. The
components of oxidative stress that increase AGES
by increasing the formation of carbonyl groups are
termed carbonyl stress.83 AGEs have been shown
to accumulate in the mesangium of rats and hu-
mans with diabetic nephropathy.8485 Exogenous
administration of AGESs to rats decreases glomer-
ular volume and increases proteinuria and glomer-
ulosclerosis.8485 Furthermore, interaction of AGES
with AGE receptors increases oxygen radical for-
mation, thus causing a feed-forward cycle.8>

Oxidative stress has been linked to increases in
plasma C-reactive protein and hypoal buminemia,
both of which are independent risk factors for
cardiovascular events in the renal failure popula-
tion. C-reactive protein may be a marker for leu-
kocyte activation, which generates large quantities
of O, , whereas low albumin levels may diminish
plasma antioxidant capacity. In HD patients, C-re-
active protein correlates with levels of F,-isopros-
tane and thiobarbituric acid—reducing substance,
which are markers of lipid peroxidation.8> Malnu-
trition in patients with CRF increases the plasma
levels of markers of oxidative stress.8385 Thus,
increased oxidative stress in rena failure patients
may be at the root of the increased mortality rate,
and may provide an explanation for some of the
correlates of cardiovascular risk in this special
population.

TREATMENT OF OXIDATIVE STRESS

Therapy for oxidative stress has focused on an-
tioxidants and renin-angiotensin antagonists. The
dramatic effects in animal models have not yet
been reproduced so clearly in clinical studies.

Attiaet al®s showed that rats receiving L-NAME
infusion for 3 weeks developed severe hyperten-
sion, renal failure, proteinuria, endothelia dys
function, and increased O,  levels. Vitamin E
therapy prevents renal failure and proteinuria and
decreases O, production, but it has no effect on
endothelia function or hypertension. Supplements
of vitamins C and E in hypercholesterolemic pigs
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decrease the oxidizability of low-density lipopro-
tein and improve endothelium-dependent renal
blood flow.87 Vaziri et al7° showed in 5/6 nephrec-
tomized rats that vitamin E improved blood pres-
sure, increased tissue NO levels, and decreased
tissue 3-NT deposition. Buthionine sulfoximine—
fed rats given palm oil, which isrich in vitamins A
and E, have decreased levels of 8-1so and TxA,.88

Simvastatin, a 3-hydroxy-3-methylglutaryl co-
enzyme-A inhibitor given to hypercholeterolemic
patients reduced 8-1so levels significantly, but vi-
tamin E produced no further reduction.8® The in-
vestigators suggested that previous trials of vita-
min E therapy were hampered by failure to
measure oxidative stress, accounting for lipid per-
oxidation.

L-arginine has been studied as a possible ther-
apy for oxidative stress in renal failure because its
depletion with arginase in animal models increases
proteinuria and glomerular injury.?0 L-arginine
supplementation to 5/6 nephrectomized rats re-
duced proteinuria and hypertension, and increased
urinary NOy. It was as effective as captopril .92
This renoprotective effect of L-arginine may be
similar in mechanism to angiotensin-converting
enzyme inhibitors because L-arginine has been
shown to decrease glomerular capillary pressure
and efferent arteriolar resistance.92 Diabetic rats
that were administered L-arginine had less glomer-
ular hyperfiltration and proteinuria than control
rats.23 Although L-arginine is a promising therapy,
one study of oral supplementation®4 and one study
of intravenous infusion of L-arginine*® failed to
show any improvement of endothelia function in
renal failure patients.

Administration of captopril to 5/6 nephrecto-
mized rats decreased plasma levels of MDA and
deposition of 3-NT in the cerebral cortex.®> Rats
with streptozotocin-induced diabetes have in-
creased plasma lipid peroxidation products, in-
creased tissue deposition of 3-NT, and increased
renal expression of p47°™*. All these changes of
oxidative stress are prevented by 1-month admin-
istration of an angiotensin-converting enzyme in-
hibitor or angiotensin receptor blocker (ARB)
treatment. These effects are independent of blood
sugar or blood pressure.®¢ The defective endothe-
lial function of SHRs is reversed by the ARB
valsartan and/or the angiotensin-converting en-
zyme inhibitor enalapril. A combination of treat-
ments has the greatest effect.9” Thus, these 2 meth-
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ods to interrupt the renin-angiotensin system may
exert their cardiac and renal protective effects
through limiting oxidative stress and improving
NO bioavailability in the kidney and blood ves-
sels.39

An HD treatment can reduce the levels of oxi-
dized protein thiols.7282% Moreover, HD treat-
ments reverse the increased levels of oxygen rad-
ical production by neutrophils in the blood of
patients with ESRD.%8 |n contrast, 2 studies failed
to detect any effect of HD to reduce the high levels
of F,-isoprostanes in these patients.”880 The inves-
tigators suggested that the increased levels may
relate primarily to a failure of rena clearance in
ESRD patients.”® There are conflicting data relat-
ing to the importance of hemodialysis membrane
on oxidative stress. Bioincompatible membranes
(cellulose membranes), which have been shown to
activate complement and cause inflammation, did
not significantly affect F,-isoprostanes compared
with biocompatible membranes.80.82.98 However,
as described earlier, these studies are confounded
by the finding that F,-isoprostanes themselves are
not affected by HD, whereas other indices of oxi-
dative stress appear to be reversed in full.

Another study quantitated oxidative stress by the
8-hydroxy-2'-deoxyguanosine in the DNA of leu-
kocytes as a marker of oxidative damage to
DNA.? These investigators found that bioincom-
patible cellulose membranes induced substantially
more oxidative stress than biocompatible polysul-
phone membranes.1® |n a further report, vitamin
E—bonded cellulose membranes reduced plasma
MDA levels and oxidized low-density lipoprotein
levels compared with normal cellulose mem-
branes.?° Moreover, the vitamin E—bonded mem-
branes slowed the rate of aortic calcification (an
index of atherosclerosis) over 2 years.101 However,
it was not possible to dissect whether vitamin E
bonding had a specific protective role because the
reduction in oxidative stress induced by vitamin
E—bonded cellulose membranes was found to be
comparable with the reduction with biocompatible
membranes.®® However, more recent studies com-
paring vitamin E—coated biocompatible dialyzers
with uncoated biocompatible dialyzers have shown
areduction in oxidative stress after repeated use as
measured by oxidized low-density lipoprotein and
MDA192 gand ascorbyl free radical/vitamin C ra
ti0.103 Thus, vitamin E—coated dialyzers may exert
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a specific anti-oxidant effect but this will need to
be evaluated in larger trias.

The use of GSH supplementation was evaluated
recently in patients with peripheral vascular dis-
ease and claudication.’4 A GSH infusion im-
proved endothelium-dependent vasodilatation to
the lower extremities with a concomitant decrease
in symptoms, although oxidative stress parameters
were not measured.

The SPACE (Secondary Prevention with Anti-
oxidants of Cardiovascular disease in End-stage
renal disease) trial randomized 196 HD patients
with pre-existing coronary disease to receive vita-
min E 800 1U/d or placebo for 519 days.1%5 There
was a 50% decrease in cardiovascular eventsin the
therapy group, but no significant difference in mor-
tality. Markers of oxidative stress were not mea-
sured. These positive results contrasted to 3 earlier
studies involving patients without renal failure but
a high risk for vascular disease and increased
oxidative stress who did not show any benefit from
vitamin E supplementation.® The available data do
not provide consistent guidelines for therapies for
oxidative stress. Anti-oxidant trials have been dis-
appointing, but this may indicate that they have not
been used in sufficient doses for sufficient time to
reverse oxidative stress. The results of the SPACE
trial require confirmation but do suggest that vita-
min E 800 IU/d may be beneficial for HD patients.
More trias are required to evauate the effects of
angiotensin-converting enzyme inhibitors and
ARBSs on oxidative stress before they can be rec-
ommended specifically to reduce oxidative stress
in these patients. Clinicians must not forget the
importance of diet and exercise because a recent
study showed that 45 to 60 minutes of exercise 3
times per week in combination with a low-fat,
high-fiber diet, reduced lipids and 8-1so levels, and
increased urinary NOy levels in obese men.106

CONCLUSIONS

The major pathophysiologic effects of ROS and
NO deficiency are summarized in Figure 1. NO
regulates the function of the blood vessels and
kidneys. Its deficiency in anima models causes
hypertension, vascular disease, and kidney dam-
age. Reduced kidney mass that limits L-arginine
synthesis, the accumulation of endogenous NOS
inhibitors such as ADMA, the accumulation of
L-arginine uptake inhibitors such as urea, the an-
orexiaof uremia, and the development of oxidative
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stress place CRF patients at high risk for NO
deficiency. Oxidative stress plays a significant role
in the pathogenesis of hypertension in animal mod-
els, in part by inactivation of NO and by generation
of 20-hydroxyeicosatetraenoic acids. Oxidative
stress is marked not only by the loss of the potent
vasodilator/natriuretic pathway based on NO, but
also by the generation of vasoconstrictor molecules
and primary salt retention by the kidneys. There is
evidence that CRF is a state of NO deficiency,
increased oxidative stress, and endothelial dys-
function. It is possible that increased oxidative
stress and endothelia dysfunction in ESRD
patients are at the root of their increased cardio-
vascular mortality. Antioxidant therapy has been
disappointing in clinical trias, but early studies
from angiotensin-converting enzyme-I, ARBSs, and
3-hydroxy-3-methylglutaryl coenzyme-A trials are
more promising.
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