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Role of Nitric Oxide in Diabetic Nephropathy

By Sharma S. Prabhakar

iabetic nephropathy is the leading cause of end-stage renal disease in the Western hemisphere. Endothelial
ysfunction is the central pathophysiologic denominator for all cardiovascular complications of diabetes including
ephropathy. Abnormalities of nitric oxide (NO) production modulate renal structure and function in diabetes but,
espite the vast literature, major gaps exist in our understanding in this field because the published studies mostly
re confusing and contradictory. In this review, we attempt to review the existing literature, discuss the contro-
ersies, and reach some general conclusions as to the role of NO production in the diabetic kidney. The complex
etabolic milieu in diabetes triggers several pathophysiologic mechanisms that simultaneously stimulate and

uppress NO production. The net effect on renal NO production depends on the mechanisms that prevail in a given
tage of the disease. Based on the current evidence, it is reasonable to conclude that early nephropathy in diabetes

s associated with increased intrarenal NO production mediated primarily by constitutively released NO (endothe-
ial nitric oxide synthase [eNOS] and neuronal nitric oxide synthase [nNOS]). The enhanced NO production may
ontribute to hyperfiltration and microalbuminuria that characterizes early diabetic nephropathy. On the other
and, a majority of the studies indicate that advanced nephropathy leading to severe proteinuria, declining renal
unction, and hypertension is associated with a state of progressive NO deficiency. Several factors including
yperglycemia, advanced glycosylation end products, increased oxidant stress, as well as activation of protein
inase C and transforming growth factor (TGF)-� contribute to decreased NO production and/or availability. These
ffects are mediated through multiple mechanisms such as glucose quenching, and inhibition and/or posttrans-

ational modification of NOS activity of both endothelial and inducible isoforms. Finally, genetic polymorphisms of
he NOS enzyme also may play a role in the NO abnormalities that contribute to the development and progression
f diabetic nephropathy.
2004 Elsevier Inc. All rights reserved.
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HE INCIDENCE and prevalence of diabetes
is increasing worldwide at an alarming rate so

hat many consider it a global epidemic. Diabetic
ephropathy is a major microvascular complica-
ion of diabetes and progression to end-stage renal
isease (ESRD) almost always is inevitable unless
reventive strategies are implemented in the very
nitial stages of nephropathy. Diabetes as a cause
f ESRD has surpassed all other diseases, account-
ng for approximately 40% of all cases of ESRD in
he United States. Currently, diabetic nephropathy
s incriminated as the leading cause of ESRD not
nly in the United States but in the entire Western
emisphere and is emerging as one of the major
iseases resulting in ESRD even among develop-
ng nations. Although the reasons for the global
pidemic of diabetes mellitus remain an enigma,
ew insights into pathogenesis and therapeutic
trategies continue to emerge that potentially might
ake a difference in this devastating medical prob-

em.
Several factors have been incriminated in the

athogenesis of diabetic renal disease. Uncon-
rolled hyperglycemia, systemic and intrarenal hy-
ertension, hyperlipidemia, and activation of re-
in-angiotensin are the most important among
hose factors. Previous studies suggested that
hronic inhibition of nitric oxide (NO) played a

ole in the development and progression of chronic

eminars in Nephrology, Vol 24, No 4 (July), 2004: pp 333-344
enal failure in diabetes.1,2 The synthesis of NO in
he kidney and its role in renal functions is dis-
ussed in another section of this issue. Briefly, NO
s an inert gas, with an extremely short life that is
ynthesized from its sole precursor, L-arginine,
hrough the action of nitric oxide synthase (NOS),
f which there are 3 isoforms. These include neu-
onal NOS (nNOS or NOS I), inducible NOS
iNOS or NOS II), and endothelial NOS (eNOS or
OS III), type I and II being expressed constitu-

ively and all 3 isoforms have been shown to exist
n the kidney. Alterations in intrarenal NO synthe-
is theoretically may play an important role in the
forementioned as well as other pathogenetic fac-
ors of diabetic nephropathy. This article reviews
he current evidence from experimental and clini-
al studies that support the pathogenetic role of
bnormalities of NO in the development and pro-
ression of diabetic nephropathy.
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SHARMA PRABHAKAR334
Diabetic nephropathy is diagnosed clinically by
he onset of proteinuria that usually is determined
y dipstick detection of protein in a random urine
ample. However, a long period of subclinical mi-
roalbuminuria, often lasting years, precedes the
linical diabetic nephropathy during which glo-
erular hyperfiltration and hypertrophy are evi-

ent. Several pathogenic mechanisms are incrimi-
ated in this early phase of nephropathy including
ctivation of the renin-angiotensin system. With
ncreasing proteinuria, nephropathy progresses to
n advanced clinical state characterized by hyper-
ension, renal failure, and glomerulosclerosis. In
he past decade, innumerable studies have accumu-
ated in the literature that examined the role of NO
n diabetic kidney. However, these studies, which
ere both in vitro and in vivo models, have ex-
anded our understanding of the interaction of the
iabetic state with intrarenal NO and more specif-
cally the role of NO in the pathophysiology of
iabetic nephropathy. But these studies unfortu-
ately also significantly added to the confusion that
xists regarding this subject, in view of contradic-
ory findings reported. This article aims to outline
alient studies that support the evidence for the role
f NO in diabetic kidney disease and also point out
ome of the controversies in this field.

RENAL NO SYSTEM IN EXPERIMENTAL
DIABETIC MODELS

Experimental studies that examined the effect of
iabetes on the intrarenal NO system included in
ivo studies as well as in vitro studies in the cell
ulture and isolated kidney models. The in vitro
odels particularly dealt with effects of glucose

nd other biochemical sequelae of the diabetic
tate such as advanced glycation end products
AGE) and activation of angiotensin II. Although
ost in vitro models suggested a depressed renal
O system or NO availability, most in vivo models

howed enhanced NO production.

O in Diabetes Mellitus: In Vitro Models

Hyperglycemia is considered a major patho-
hysiologic mediator of renal injury in diabetic
ephropathy.3 Most studies that examined the ef-
ects of high ambient concentrations of glucose on
he kidney in vitro including cell cultures,4,5 glo-

erular explants,6,7 and renal vasculature,8,9 and
solated kidneys in vitro10 showed that NO produc-

ion is impaired significantly in such models. Cell t
ulture studies examining the effects of glucose
ave reported impaired NO production or de-
reased NO bioavailability. Several mechanisms
ave been shown or hypothesized to mediate this
ffect. Mesangial cells cultured in high glucose
howed decreased inducible NO production (NOS
I) or availability,11,12 although enhanced produc-
ion was shown by other investigators.13,14 How-
ver, in all these studies, iNOS messenger RNA
nd protein were unaffected by high glucose levels.
tudies from our laboratory12 have shown that high
lucose levels resulted in a posttranslational inhi-
ition of mesangial iNOS owing to decreased sta-
ility and hence availability of tetrahydrobiopterin
BH4), a cofactor for NOS enzyme (Figs 1A and
B). Other mechanisms that have been offered to
xplain the inhibition of NO activity by high glu-
ose levels include activation of protein kinase
,6,7,15 glucose quenching of NO,16 and inhibition
f NOS activity,4,5 with generation of reactive ox-
gen species diminishing the NO availability.15

ecent studies by Trachtman et al17 showed that
lthough glucose directly inhibited mesangial NO
roduction, growth factors such as insulin-like
rowth factor-1, and epidermal growth factor op-
osed this effect of high glucose, suggesting that
ome peptide growth factors modulate the mesan-
ial NO production in the diabetic state. However,
he same investigators found no such modulation
f high glucose effects on mesangial NO synthesis
y vascular endothelial growth factor.18 Other in-
estigators found that although incubation of glo-
erular endothelial cells in 30 mmol/L glucose

esulted in a rapid increase in NO release in peri-
ds up to 6 hours, exposure beyond 12 hours
lunted the NOS activity in the cells19 compared
ith cells grown in standard (5 mmol/L) glucose.
Glycosylation of proteins and formation of AGE

s a consequence of long-term exposure of tissue
roteins to high glucose concentrations and may
ontribute to decreased renal NO synthesis and/or
vailability. Some studies have shown that forma-
ion of AGE in rat glomeruli was associated with
ncreased nitrites and nitrates (NOx) in the urine,21

nd increased iNOS expression20 and eNOS activ-
ty. However, most studies22 have confirmed that
GE accumulation resulted in reduced NO levels
y several mechanisms including increased degra-
ation of eNOS messenger RNA,23 decreased
NOS protein expression,24,25 decreased eNOS ac-

4 26,27
ivity, quenching and/or inactivation of NO,
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NO IN DIABETIC NEPHROPATHY 335
nd increased oxidative stress.28 In a cell culture
odel, AGEs were found to block the cytostatic

ffect of NO on aortic smooth muscle and renal
esangial cells27 and based on such findings
ogan et al argued that NO inactivation and con-

equent blockade of antiproliferative effects of NO
y AGE may be a common pathway in the devel-
pment of accelerated renal and vascular disease in
iabetes. Studies from our laboratory have shown
hat long-term exposure of mesangial cells resulted
n inhibition of iNOS-derived NO, an effect that
as reversed partially in the presence of an inhib-

Fig 1. (A) Effects of tetrahydrobiopterin (BH4) on
Ox accumulation in MMC. **P < .001. L � T versus
G and HG � BH4 � L � T versus HG � L � T, n � 12

n each group. (B) Western blotting showing effects of
G on iNOS protein expression. The immunoblot rep-

esents similar results from 3 other experiments. Den-
itometric image analysis revealed no significant dif-
erences between the bands seen in lane LG � (L � T)
nd lane HG � (L � T). Reprinted with permission from
rabhakar SS: Tetrahydrobiopterin reverses the inhi-
ition of nitric oxide by high glucose in cultured mu-
ine mesangial cells. Am J Physiol 281:F179-F188,
001.12
tor of AGE formation 2,3 diamno-phenazine (un- d
ublished observations). This effect was associated
ith a reduction in the formation of peroxynitrite,

ndicating that AGE-induced NO inhibition was
elated partly to increased formation of reactive
xygen species.

O in Diabetes Mellitus In Vivo Models

OS Isoforms in Diabetic Kidney

Extensive literature documented the significance
f NO and NOS expression in in vivo studies of
iabetic animal models. Although some studies
ave shown increased expression of all isoforms of
OS in diabetic kidneys,29 most studies have

hown increased eNOS expression21,30,31 and
NOS activity,32,33 especially in kidneys from the
arly stages of diabetes. Similar observations were
ade in streptozotocin-induced diabetic rats with

he in vivo hydronephrotic kidney technique.30 In
his study, the investigators showed that urinary
Ox was increased along with increased eNOS

xpression in the total kidney (immunocytochem-
stry) and in isolated renal arteries (Western blot-
ing). Other studies have shown that eNOS and
NOS expression is decreased in diabetic kid-
eys.34,35 Taken together the aforementioned stud-
es strongly indicated increased eNOS activity with
ugmented basal NO release, which might explain
ntrarenal vasodilation and hyperfiltration seen in
arly diabetes. With reference to nNOS (NOS I),
ecreased levels of urinary NOx along with de-
reased nNOS expression were found in kidneys of
treptozotocin diabetic rats that were not treated
ith insulin.34 These changes were noted 30 hours

fter the induction of diabetes, with reduction in
otal NOS activity of renal cortex and diminished
mmunocytochemical expression of nNOS and
NOS in the kidney. Furthermore, some studies
ave shown reduced iNOS expression31,36 or un-
hanged iNOS32,37 in diabetic kidneys. Thus, it
eems reasonable to summarize that eNOS expres-
ion is increased especially in early diabetes, and
NOS and iNOS are expressed variably in diabetic
idneys.
To explain the decreased eNOS activity and

NOS expression in hyperfiltering glomeruli ob-
erved in some studies, the activity of nNOS was
xamined by some investigators.38 By using S-
ethyl-L-thiocitrulline, a nNOS-specific blocker,

hey showed a stronger renal vasoconstriction in

iabetic rats than in control rats and addition of the
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SHARMA PRABHAKAR336
onspecific blocker L-NAME did not affect the
lomerular filtration rate (GFR) any further. Addi-
ionally, S-methyl-L-thiocitrulline–treated moder-
tely hyperglycemic streptozotocin diabetic rats
ad a higher GFR along with increased nNOS
ositive cells compared with control rats.39 Based
n these data, they argued that nNOS might be the
ajor isoform of NOS involved in mediating hy-

erfiltration of early diabetes. Other studies sup-
orted this argument as well.37,40

The significance of iNOS in diabetic kidneys
as overlooked and its importance was disre-
arded in some recent reviews.41 Early studies
howed increased expression of iNOS, mediated
y tumor necrosis factor-� in diabetic rat glomeruli
t 52 weeks after diabetes induction by streptozo-
ocin.36 The investigators correlated this effect to
GE formation because aminoguanidine reversed

hese changes. A similar increase in iNOS expres-
ion in the kidney was seen in rats fed with a
igh-fructose diet, which was associated with in-
reased glomerular size and filtration rate.42 These
hanges were prevented by simultaneous adminis-
ration of the NOS inhibitor NG-nitro-L-arginine
ethyl ester (L-NAME). Because aminoguanidine

s also a potent iNOS-specific inhibitor, it had been
rgued often that the renoprotective benefits of
minoguanidine in diabetic nephropathy were due
o iNOS inhibition rather than to AGE inhibition.
owever, this view was shown to be incorrect in a

tudy performed specifically to address this ques-
ion.43 On the other hand, there are several recent
tudies that documented that exposure to high glu-
ose impaired iNOS activation in mesangial11,12

nd vascular smooth muscle and endothelial
ells.44-46 Decreased iNOS expression in renal cor-
ex was described in diabetic rats.31 Furthermore,
GE formation has been shown to inhibit iNOS in
roximal tubular cells4 and mesangial cells (Prab-
akar, unpublished observations). Recently, Tra-
htman et al47 examined the role of iNOS in
57BL/6 and iNOS knockout mice with a strepto-
otocin-induced diabetic state. After 40 weeks of a
iabetic state without insulin both mice had similar
egrees of proteinuria, serum creatinine levels, and
enal hypertrophy. Both groups showed decreased
xpression of iNOS and increased eNOS in the
idneys by immunostaining. However, knockout
ice had decreased urinary NOx, increased tubu-

ointerstitial fibrosis, and mesangial expansion than

57BL/6 mice. These data suggest that iNOS- i
erived NO modulated glomerulosclerosis in
hronic streptozotocin diabetic nephropathy and a
ack or inhibition of iNOS accelerated diabetic
ephropathy. Thus, most studies that examined
NOS in diabetic milieu found inhibition of expres-
ion or activity of the enzyme in in vitro studies.

ntrarenal NO and Renal Hemodynamics

The increased expression and activity of eNOS
n the diabetic state is believed by some investiga-
ors to explain the functional and glomerular he-
odynamic changes associated with early diabetic

ephropathy. These include increased renal plasma
ow, hyperfiltration, and filtration fraction. Evi-
ence for such hypothesis was sought by in vivo
tudies examining the effects of general and iso-
orm-specific NOS inhibitors on renal hemody-
amics. The pilot observation that the NOS inhib-
tor L-NAME resulted in a greater vasoconstriction
n renal vasculature of diabetic rats than in control
ats was made in Brenner’s laboratory,48 suggest-
ng a strong influence of renal NO levels on renal
nd glomerular hemodynamics. This finding was
ollowed by a series of publications that suggested
hat the hyperfiltration of early diabetes was asso-
iated with increased vasodilatation of renal mi-
rovasculature and increased NO synthesis as re-
ected by urinary NOx.49-51 The concept was
onsolidated further by observations from other
tudies that showed that vasodilation induced by
cetylcholine, an NO-mediated process, was am-
lified in diabetic kidneys33 and that L-NAME
ignificantly decreased glomerular hyperfiltra-
ion.21,31,52

However, many other studies did not support
his concept53-55 and showed that the vascular re-
ponses to NO or L-NAME were rather blunted
ith decreased urinary NOx, suggesting that renal
O production is defective and contributed to re-
al injury in diabetes. By using videomicroscopic
tudies, Pflueger et al56 showed that responses to
-NMMA and L-arginine were blunted in diabetic
idneys, particularly in the cortex, indicating that
enal NO production is impaired in diabetes. By
sing acetylcholine infusion, an eNOS-specific ag-
nist, Wang et al57 showed that vascular responses
o acetylcholine were impaired in diabetic rats,
hich were not restored with insulin treatment.
hese data underscore the importance of dimin-
shed bioavailability of NO in diabetic renal vas-



c
a

m
t
s
t
C
i
t
c
d
u
i
t
e
L
t
t
i
t
c
h
(
p
s
r
w
t
b
a
p
r

i
s
r
u
j
b
a
(
t
i
p
i
d
i
d

i
u
f
s
a
t
u
f
o
p
w
t
A
f
a
e
p
d
i
T
n
d
c
c
p
c
n
r
t
t
c
t
H
c
f
k
e
t
o
f
w
s
s
s
r

A

NO IN DIABETIC NEPHROPATHY 337
ulature and defects in receptor-mediated eNOS
ctivation.

Several studies have suggested that long-term
odulation of the renal NO system may influence

he progression of diabetic nephropathy. Most such
tudies indicated that NO might play a renoprotec-
ive role in the course of diabetic nephropathy.
hronic NOS inhibition was shown in earlier stud-

es to be associated with renal structural and func-
ional damage.58,59 Because the kidney is the prin-
ipal source of L-arginine levels in plasma,
ecreased arginine synthesis in chronic renal fail-
re, especially if dietary arginine content is lim-
ted, might result in arginine deficiency and con-
ribute to a NO-deficient state. The study by Reyes
t al60 showed that long-term administration of
-arginine decreased proteinuria and hyperfiltra-

ion in diabetic rats. Although there were flaws in
his study, Lubec et al61 have shown similar find-
ngs in diabetic kk mice. Other studies58 showed
hat treatment with L-NAME, a NOS blocker, ac-
elerated proteinuria and was associated with
igher levels of transforming growth factor
TGF)-�, implicating the latter in diabetic ne-
hropathy. Furthermore, Fujihara et al62 had
hown similar findings in a nephrectomy model of
enal failure in nondiabetic rats, in which L-NAME
orsened proteinuria and glomerular injury, but

hese changes were ameliorated with angiotensin
lockade with losartan. The beneficial role of L-
rginine in diabetic nephropathy was discussed
reviously in a review by Klahr63 and in a separate
eview in this issue.

HUMAN STUDIES

As opposed to in vitro and animal studies, clin-
cal studies examining NO production in diabetic
ubjects are limited, although rapidly increasing in
ecent years. Earlier studies have shown increased
rinary NOx in normo-albuminuric diabetic sub-
ects with increased GFR compared with nondia-
etic healthy controls and this change was associ-
ted with increased immunostaining for eNOS
NOS III) in the glomeruli.64 These data suggested
hat increased NO produced by eNOS might be
nvolved in hyperfiltration of early diabetic ne-
hropathy. Dalla Vestra et al65 have shown that
nfusion of L-NAME into type 2 diabetic subjects
id not decrease the GFR and filtration fraction as
n control nondiabetic subjects, whereas the car-

iac index was decreased in all the groups. The o
nvestigators concluded that modulation of glomer-
lar hemodynamics is different and independent
rom NO-regulated cardiac effects. However, other
tudies indicated that patients with type II diabetes
nd microalbuminuria have decreased NO produc-
ion as measured by stable NO metabolites in the
rine of the patients.66 By using a new high-per-
ormance liquid chromatography–Greiss method
f measuring NOx, Maejima et al67 showed that
lasma NO availability was impaired in diabetics
ith advanced microvascular complications and

he decreased NO bioavailability correlated with
GE formation and reactive oxygen species. De-

ective endothelial-dependent vasodilatation in di-
betic nephropathy subjects was established sev-
ral years ago.68 Duplex sonographic studies in
atients with diabetic nephropathy have shown re-
uced renal vasodilatory response to nitroglycer-
ne, a NO donor, compared with healthy controls.69

hese data suggested that altered renal hemody-
amic responses in diabetic nephropathy were me-
iated by impaired NO release or availability. De-
reased NO availability also may be due to
onversion of NO to peroxynitrite (ONOO�) in the
resence of superoxide (O2

�) in conditions of un-
ontrolled hyperglycemia. Subsequently, ONOO�

itrosylates tyrosine residues on protein molecules,
esulting in tissue injury. Recent studies confirmed
hat in renal biopsy specimens from diabetic pa-
ients, immunostaining for nitrotyrosines is in-
reased compared with normal kidneys and is par-
icularly evident in proximal tubules and in loop of
enle.70 These data support the concept of de-

reased NO bioavailability consequent to increased
ormation of reactive oxidative species in diabetic
idneys. Human studies examining the role of
NOS gene polymorphisms in diabetic nephropa-
hy have been controversial. The allele of intron 4
f the eNOS gene has been reported to be more
requent in dialysis-dependent diabetics compared
ith diabetics with no renal disease.71 Similar re-

ults were reported in type 2 diabetic nephropathy
ubjects from Japan.72 On the other hand, other
tudies reported such associations in nondiabetic
enal disease but not in diabetic nephropathy.73

EFFECTS OF OTHER FACTORS IN DIABETIC
MILIEU ON RENAL NO SYSTEM

ngiotensin

The diabetic state is associated with activation

f the intrarenal renin angiotensin system. The
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SHARMA PRABHAKAR338
herapeutic success of angiotensin blockade with
ngiotensin converting enzyme (ACE) inhibitors
nd angiotensin receptor blockers (ARB) in retard-
ng the progression of diabetic nephropathy testi-
es the pathophysiologic significance of angioten-
in activation in diabetic kidney disease. The
ffects of such blockade on renal NO synthesis and
f such effects mediate the beneficial consequences
een with ACE inhibition and ARB in diabetic
ephropathy have been the subject of investigation
f several studies. The evidence is conflicting
bout the angiotensin effects on renal NO synthe-
is. Angiotensin has been shown to increase NO
roduction in proximal tubular cells,74 renal cor-
ex,75,76 renal medulla,77 and isolated renal arter-
es.78 In all these studies, it was argued that en-
anced renal production is a defense mechanism
gainst the detrimental effects of angiotensin.
owever, several recent studies, including one

rom our own laboratory, have shown that angio-
ensin II inhibited NO synthesis in different renal
ells in culture.79-81 Although the isoform involved
n all of these studies was iNOS (NOS II), consti-
utively expressed NOS was involved in the studies
n which angiotensin stimulated NO synthesis. Fur-
hermore, data from our laboratory (unpublished
bservations) and other studies79 indicated that an-
iotensin alone in the absence of cytokines had no
ffect on mesangial or renal NO synthesis. It ap-
ears reasonable to conclude that angiotensin may
ave stimulatory effects on constitutive NOS, but
n the presence of cytokines that often are activated
n the diabetic milieu, angiotensin may exert an
nhibitory effect on iNOS, and probably the whole
idney NO production. Results from our laboratory
ndicating that losartan enhanced NO production in
esangial cells concur with observations of Fuji-

ara et al,62 who showed that angiotensin inhibi-
ion with losartan slowed renal injury functionally
nd structurally in a renoprival model of renal
ailure. An additional mechanism by which angio-
ensin II impairs NO availability is through in-
reased oxidative stress. Wilcox et al82 showed that
arly diabetic proteinuric nephropathy was associ-
ted with increased expression of p47phox compo-
ent of the reduced form of nicotinamide-adenine
inucleotide phosphate oxidase and eNOS with
ncreased H2O2 formation in the kidney and treat-

ent with an ACE inhibitor or ARB reversed these

hanges with amelioration of proteinuria. These b
ndings confirm the strong angiotensin-NO inter-
ctions in the kidney and potential implications in
iabetic nephropathy. Furthermore, Forbes et al83

howed that both ramipril (an ACE inhibitor) and
minoguanidine decreased AGE formation in dia-
etic rat kidneys as determined by immunohisto-
hemistry and fluorescence and these changes
orrelated with reduction in nitrotyrosine accumu-
ation in the kidney. Based on these observations,
he investigators proposed a linkage between AGE
nd the renin-angiotensin system in diabetic ne-
hropathy, mediated by oxidative stress.

nsulin

Hyperinsulinemia is an important and indepen-
ent risk factor for the cardiovascular complica-
ions of diabetes. Hyperinsulinemia is seen not
nly in type II but also in type I diabetes and is
ncriminated in the development of hypertension
nd cardiovascular risk in such patients. However,
he effects of insulin per se on renal NO synthesis
s far from clear. Insulin in the physiologic range
timulates NO release from the kidney84 whereas
yperinsulinemia was noted to inhibit renal excre-
ion of NO metabolites in the urine.85 We recently
ave shown that insulin in physiologic concentra-
ions enhanced iNOS activity and NO synthesis in
ormal human mesangial cells and further that the
ugmented cellular uptake of L-arginine mediated
his effect of NO production.86 However, in the
linical state of advanced diabetic nephropathy, it
s very likely that the cellular resistance to the
ffects of insulin prevents the augmentation of NO
ynthesis despite hyperinsulinemia. NO regulates
he release of insulin from pancreas87 but the role
f different isoforms in the regulation of insulin
elease is not well understood. Studies including
hose from our laboratory have shown that NO
eleased from both constitutive and iNOS mediate
igh glucose-stimulated insulin release from islet �
ancreatic � cells. However, studies from our lab-
ratory first noted that at maximal activity of
NOS, the cytopathic effects of cytokines on pan-
reatic islet cells result in a paradoxic decrease in
nsulin secretion.88 Furthermore, recent observa-
ions from our laboratory show that enhanced in-
ulin secretion seen with ACE inhibition and ARB
s mediated by augmented NO release from islet

eta cells.
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NO IN DIABETIC NEPHROPATHY 339
rotein Kinase C

That diabetes mellitus is associated with activa-
ion of protein kinase C is well established.89,90

he activity of NOS, particularly eNOS, is regu-
ated by highly harmonized phosphorylation and
ephosphorylation of serine, threonine residues of
he eNOS enzyme. Protein kinase C phosphory-
ates Threonine 495 and dephosphorylates Serine
77 residues of the eNOS enzyme, thereby inhib-
ting eNOS catalytic activity.91 These data provide
n explanation for the widely believed concept that
dvanced diabetic nephropathy is a NO-deficient
tate.

GF-�

Diabetic metabolic milieu is associated with ac-
ivation of TGF-� in the kidney92 and such activa-
ion has been shown to mediate mesangial expan-
ion and extracellular matrix expansion in human
nd experimental diabetic nephropathy.93 Angio-
ensin94 and hyperglycemia have been incrimi-
ated in activation of TGF-� in diabetic kidney. In
act, several metabolic and pathophysiologic con-
equences of angiotensin II and hyperglycemia are
elieved to be mediated by activation of TGF-�.
igh glucose–induced activation of TGF-� was

hown to be mediated through increased throm-
ospondin-1 expression, which in turn is regulated
y a NO–cyclic guanosine monophosphate–de-
endent protein signaling pathway.95 We recently
ave shown that in the presence of angiotensin,
nducible NO production from cytokine-stimulated
esangial cells was blocked and this was associ-

ted with increased TGF-� expression shown by
mmunocytochemistry. Furthermore, the inhibitory
ffects of angiotensin on iNOS were reversed in
he presence of anti-TGF antibodies (Figs 2A, 2B,
nd 2C). These data from our laboratory and oth-
rs96 support the hypothesis that TGF-� may mod-
late the pathophysiologic phenomena in diabetic
ephropathy and the therapeutic effects of angio-
ensin blockade may involve modulation of TGF-�
ctivity in the kidney.

GENETIC POLYMORPHISMS OF NOS AND
DIABETIC NEPHROPATHY

Susceptibility to diabetic nephropathy mostly is
etermined genetically. Endothelial dysfunction is
he pathophysiologic denominator of vascular

omplications of diabetes including nephropathy. f
ecause NO regulates endothelial function it is
mperative to conceptualize that abnormalities of
he NOS gene would influence the development of
iabetic nephropathy. Indeed, several studies were
ublished that examined the association of NOS
ene polymorphisms, especially the eNOS iso-

Fig 2. (A) Effects of angiotensin II on NO produc-
ion in mouse mesangial cells and mediation through
GF-�. T, tumor necrosis factor-�, L, bacterial lipo-
olysaccharide, NOx, nitrites and nitrates in the me-
ia. *P < .01 versus control, n � 12 in all groups. (B, C)

mmunocytochemical expression of TGF-� in mouse
esangial cells stimulated with tumor necrosis fac-

or-� and bacterial lipopolysaccharide in the (B) ab-
ence and (C) presence of angiotensin II.
orm, with susceptibility to diabetic nephropathy.
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pecifically, Glu298Asp mutation at exon 7 and a
7-bp variable number tandem repeat in intron 4
nsertion/deletion polymorphism of the eNOS gene
ere evaluated in the majority of these studies.

nterestingly, similar to the preceding sections, lit-
rature is confusing with controversial findings and
vidence both supporting and disputing the role of
enetic polymorphisms in diabetic nephropathy.
ost studies that examined the prevalence of

NOS genetic polymorphisms compared diabetics
ith nephropathy (advanced chronic renal failure
r proteinuria) with diabetics with no renal disease
control). Although a significant association was
escribed in some studies,72,97-101 other studies
ave reported no such association with progression
f nephropathy in type 2 diabetes.102-105 Similar
ssociations were described to affect the progres-
ion of nephropathy in type I diabetes106 and non-
iabetic renal disease.72 On the other hand, a recent
tudy has disputed the association of NOSIII gene
olymorphisms in type I diabetes with renal dis-
ase.104 Some other studies that examined the
OS-II gene in type I diabetes, particularly
CTTT-repeat polymorphisms, reported such vari-
tions confer protection from development of dia-
etic nephropathy.107 Although these data from the
arlier-cited conflicting studies may not be recon-
iled easily without incriminating differences in

he type of patient populations studied, stage of e
enal failure, and so forth, more systematic and
arge-scale population studies are needed to con-
rm such genetic associations in diabetic nephrop-
thy.

SUMMARY

The literature pertaining to the role of NO ab-
ormalities in diabetic nephropathy is vast but
omposed of confusing and conflicting data. The
ontroversies stem from several issues that involve
ifferent models studied, various NOS isoforms
nd species studied, stage of renal disease in dia-
etes, and methodologies used, and many more.
he in vitro studies, though being very valuable in
nderstanding the pathophysiology, do not reflect
he net effect of coordinating and regulatory influ-
nces of several signaling systems that act in con-
ert with each other as in whole animal or in vivo
tudies. However, despite these differences, some
eneral patterns seem to emerge when the data are
nalyzed carefully. Diabetic metabolic milieu trig-
ers a variety of autocrine and paracrine mecha-
isms that modulate the renal NO system, both
timulatory and inhibitory signals acting in paral-
el. The net influence on renal NO availability
epends on the balance between these opposing
nfluences. Most evidence suggests that during the

Fig 3. Schematic repre-
sentation of NO changes in
early and advanced diabetic
nephropathy and various
pathophysiologic triggers for
such changes.
arly phases of hyperfiltration and increased GFR,
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he net result of these opposing signals is to aug-
ent renal NO production, often contributing to

hese glomerular hemodynamic changes. This ef-
ect is mediated by activation of constitutively
eleased NO, mediated by eNOS and to a lesser
xtent nNOS. As the nephropathy progresses in
iabetes with increasing proteinuria and decreasing
enal function, a state of renal NO deficiency sets
n, which results from decreased production and/or
ecreased availability of NO as a consequence of
ultiple mechanisms (Fig 3). In general, insuli-

openia and the degree and duration of impaired
etabolic control are the major factors that facili-

ate mechanisms that suppress NO availability to
revail in advanced diabetic nephropathy. Such
echanisms include decreased activity of NOS

soforms, often as a result of activation of protein
inase C, high ambient glucose levels, or de-
reased cofactor availability (eg, BH4), activation
f TGF-� both by high glucose and angiotensin II
evels, increased formation of NOS inhibitors such
s asymmetric dimethyl arginine, and reactive ox-
gen species often secondary to angiotensin and
GE effects. Thus, gradual accumulation of AGE

nd induction of plasminogen activator inhibitor-1
ead to decreased eNOS activity and reduced NO
roduction resulting in endothelial dysfunction.24

vidence suggests that NO from all NOS isoforms
ay be depressed including iNOS, which often has

een considered insignificant hitherto. The role of
enetic polymorphisms of NOS enzymes and de-
reased arginine in the kidney as a contributor to
O deficiency in advanced diabetic nephropathy is

ppealing but needs further confirmation.
The role of the renal NO system in the physiol-

gy of the kidney and specifically in the patho-
hysiology of diabetic nephropathy remains a
omplex area with conflicting observations and
onstitutes a very challenging and fertile field for
uture investigation. Specific questions that need to
e investigated include signaling mechanisms that
nfluence renal NO production, direct in vivo as-
essment of NO changes in the diabetic kidney,
nd the role of genetic factors that influence renal
O generation. The global epidemic of diabetes
arrants concerted efforts to decipher the mecha-
istic pathways leading to diabetic vascular com-
lications, which would in turn facilitate discovery

f novel therapeutic interventions. v
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