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Nitric Oxide Synthesis in the Kidney: Isoforms, Biosynthesis, and
Functions in Health

By Bruce C. Kone

itric oxide (NO) is a gaseous free radical that serves cell signaling, cellular energetics, host defense, and
nflammatory functions in virtually all cells. In the kidney and vasculature, NO plays fundamental roles in the control
f systemic and intrarenal hemodynamics, the tubuloglomerular feedback response, pressure natriuresis, release
f sympathetic neurotransmitters and renin, and tubular solute and water transport. NO is synthesized from
-arginine by NO synthases (NOS). Because of its high chemical reactivity and high diffusibility, NO production by
ach of the 3 major NOS isoforms is regulated tightly at multiple levels from gene transcription to spatial proximity
ear intended targets to covalent modification and allosteric regulation of the enzyme itself. Many of these
egulatory mechanisms have yet to be tested in renal cells. The NOS isoforms are distributed differentially and
egulated in the kidney, and there remains some controversy over the specific expression of functional protein for
he NOS isoforms in specific renal cell populations. Mice with targeted deletion of each of the NOS isoforms have
een generated, and these each have unique phenotypes. Studies of the renal and vascular phenotypes of these
ice have yielded important insights into certain vascular diseases, ischemic acute renal failure, the tubuloglo-
erular feedback response, and some mechanisms of tubular fluid and electrolyte transport, but thus far have

een underexploited. This review explores the collective knowledge regarding the structure, regulation, and
unction of the NOS isoforms gleaned from various tissues, and highlights the progress and gaps in understanding
n applying this information to renal and vascular physiology.

2004 Elsevier Inc. All rights reserved.
(
S
T
h
t
m
t

i
o
d
t
P
T
(
N
s
1
a

U
t

F
o
4

ITRIC OXIDE (NO) is an important molec-
ular mediator of numerous physiologic pro-

esses in virtually every organ. In the kidney, NO
lays prominent roles in the homeostatic regulation
nd integration of glomerular, vascular, and tubu-
ar function, as well as a variety of fundamental
ellular functions, including cell proliferation,
ranscription, and energy metabolism.1-4 In the vas-
ulature, NO functions not only as a vasodilator,
ut also has antithrombotic, anti-inflammatory, an-
iproliferative, and antioxidant properties. Al-
hough NO serves beneficial roles as a messenger
nd host defense molecule, excessive NO produc-
ion can be cytotoxic, the result of NO’s reaction
ith reactive oxygen and nitrogen species, leading

o peroxynitrite anion, nitroxyl radical, and hy-
roxyl radical production, and protein tyrosine ni-
ration.5,6 Excessive NO production contributes to
he pathogenesis of a variety of renal and vascular
iseases characterized by inflammation and injury,
ncluding glomerulonephritis,7-9 tubulointerstitial
enal disease,10 postischemic renal failure,11,12 ra-
iocontrast nephropathy,13 obstructive nephropa-
hy,14 and renal allograft rejection.15,16 Many of
hese diseases are the subject of reviews in this
ssue of the journal.

NO exerts its actions by chemical modification
f targets, preferentially interacting with thiol
roups, transition metals, and free radicals. In ad-
ition to its well-characterized signaling effects

ediated by cyclic guanosine monophosphate

eminars in Nephrology, Vol 24, No 4 (July), 2004: pp 299-315
cGMP), NO and several NO-derived species can
-nitrosylate cysteine residues in target proteins.17

his redox-based posttranslational modification
as been implicated in the cGMP-independent con-
rol of a broad spectrum of cellular functions, and
ay function in a manner akin to phosphorylation

o regulate proteins.

NO SYNTHESIS AND NOS STRUCTURE-
FUNCTION RELATIONSHIPS

NO is metabolized from L-arginine by the NOS
soforms in a complex reaction requiring molecular
xygen, the reduced form of nicotinamide-adenine
inucleotide phosphate (NADPH), flavin nucleo-
ides, tetrahydrobiopterin (BH4), a cytochrome
450-type heme moiety, and calmodulin (Fig 1).18

he 3 principal NOS isoforms—neuronal NOS
nNOS), inducible NOS (iNOS), and endothelial
OS (eNOS)—are encoded by different genes and

hare �55% to 60% amino acid homology (Table
). A mitochondrial NOS also has been reported,19

nd it consistently was identified recently as full-
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BRUCE C. KONE300
ength nNOS with specific posttranslational modi-
cations. nNOS and eNOS are inactive until intra-
ellular Ca2� levels increase sufficiently to
romote calmodulin binding. In contrast, iNOS
inds calmodulin at resting intracellular Ca2� con-
entrations, and thus its activity has been viewed
ypically as Ca2� calmodulin independent. The
enes and complementary DNAs encoding the 3
OS isoforms have been cloned and characterized,

he reaction mechanisms and crystal structures of
he NOS isoforms have been solved, and mice
earing targeted deletions of each of the 3 major
OS isoforms and an nNOS/eNOS double knock-
ut have been generated (Table 1).
All the NOS isoforms are NADPH- and calmod-

lin-dependent and contain consensus binding sites
or flavin adenine dinucleotide (FAD), flavin mono-
ucleotide (FMN), BH4, and a heme complex (Fig 1).
hey are only active as homodimers. Nonetheless,

hey differ to a large extent in their cellular localiza-
ion, regulation, catalytic properties, and inhibitor
ensitivity. Structurally, NOS enzymes are modular
roteins in which the N-terminal oxygenase domain,
hich contains binding sites for heme, BH4, and
-arginine, is linked by a calmodulin-recognition site

o a C-terminal reductase domain, which contains
inding sites for FAD, FMN, and NADPH.18 Elec-
rons are donated by NADPH to the reductase do-
ain of the enzyme and proceed via FAD and FMN

edox carriers to the oxygenase domain. There they
nteract with the heme iron and BH4 at the active site
o catalyze the reaction of oxygen with L-arginine,
enerating citrulline and NO as products. Electron
ow through the reductase domain requires the pres-

2�

Fig 1. Structural organization of NOS. Binding sites
leotide (FMN), flavin adenine nucleotide (FAD), and NADP

he disulfide bond (SS) in the coordinating zinc-tetrath
his zinc-tetrathiolate center plays a key role in stabili
he BH4 binding site of iNOS are shown. Amino acids
nce of bound Ca /calmodulin. At subsaturating e
-arginine or BH4 concentrations or in the presence
f certain NOS inhibitors, NOS can, under at least in
itro conditions, catalyze NADPH oxidation that is
ncoupled from NO formation, forming superoxide
nion.20 It remains to be established whether these
ncoupled reactions are biologically meaningful in
ivo.

Crystal structures have been solved for truncated
xygenase domains of murine iNOS,21 and for
ull-length human iNOS,22,23 and eNOS.23 Studies
f iNOS and eNOS show conservation of quater-
ary structure, tertiary topology, and substrate and
ofactor binding sites, and the importance of a
oordinating zinc-tetrathiolate center,22,23 in which
zinc is positioned at the interface of the 2 mono-
ers and coordinated by 2 cysteines from each
onomer. This zinc-tetrathiolate center plays a key

ole in stabilizing intersubunit contacts and in
aintaining the integrity of the BH4 binding site of

NOS. In the structure of the murine iNOS oxy-
enase domain (amino acid residues 66-498),
lu371 is critical for substrate binding and interac-

ions of Arg375, Trp457, Trp455, and Phe470 influ-
nce tetrahydrobiopterin binding.24 Site-directed
utagenesis also has shown that iNOS Cys200 is

ssential for dimer stability,25 and the regions R501

o A532 and I1121 to L1144 function as domains for
almodulin26 and NADPH27 binding, respectively.

Considerable functional information regarding
he contributions of the individual NOS isoforms
nd their compensatory responses has been gener-
ted from studies of NOS isoforms knockout mice.
he principal extrarenal and renal phenotypes of

hese mice are summarized in Table 1 and refer-

-arginine (ARG), CAM, calmodulin), BH4, flavin mononu-
ndicated. The position of the heme iron (FE) group and
enter positioned at the interface of the 2 monomers.

tersubunit contacts and in maintaining the integrity of
mbered.
for L
H are i
iolate c
zing in
are nu
nces therein.
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NO SYNTHESIS IN THE KIDNEY 301
All NOS isoforms potentially are subject to in-
ibition by endogenously produced asymmetric
imethylarginines (ADMA), which are synthesized
n vivo by N-methyltransferases, a family of en-
ymes that methylate L-arginine residues within
pecific proteins. Free ADMA is released during
roteolysis of methylated proteins, and it can be

Table 1. Nitri

Gene
Human
Locus

Primary Tissue
Distribution Under
Basal Conditions

I
D
B

NOS
1439 aa

12q24.21 Neurons
Skeletal muscle
Macula densa

segment
Bronchial and

tracheal epithelium

Ma
Col
Ren

NOS
1153 aa

17q11.2-q12 Bronchial airway
epithelium, alveolar
macrophages

Ileum
Uterus
Platelets

Pro
(f
e

NOS
1203 aa

7q35-q36 Endothelium
Hippocampal CA1

neurons
Cardiac myocytes

End
in
e
a

Pro
Thic

li
Col
etected in plasma and urine. ADMA is metabo- e
ized by the enzyme dimethylarginine dimethyl-
minohydrolase, and inhibition of dimethylargin-
ne dimethylaminohydrolase activity results in in-
reased ADMA levels. Plasma levels of ADMA
re increased in end-stage kidney disease, and in
ther conditions characterized by endothelial dys-
unction such as atherosclerosis, hypercholesterol-

28,29

e Synthases

l Protein
ion Under
onditions

Phenotype of
Knockout Mice

nsa37,185

ducts38,186

is37

Renal
Defective proximal tubule HCO3

� and
fluid transport155

Extrarenal
Hypertrophy of the pyloric sphincter187

Increased aggressive behavior in men188

Bladder-urethral sphincter dysfunction189

Relative protection from ischemic
neurologic events190

Accelerated neointimal formation and
constrictive vascular remodeling191

Impaired resetting of TGF192

ubule
al

e)35

Renal
Kidneys protected against ischemic

injury193

Lower fluid and bicarbonate
reabsorption in proximal tubules35

Protection or proximal tubules from
hypoxic injury194

Extrarenal
Increased susceptibility to infection with

intracellular pathogens and less
susceptibility to sepsis-induced
hypotension195

Limited infarct-sparing effect of late
phase of ischemic preconditioning196

Attenuated neointima formation after
perivascular arterial injury197

m,
g afferent,
arterioles
a recta37

ubules
nding

ducts

Renal
Hypertension, hyperlipidemia, insulin

resistance199

Impaired NaCl transport in TALH198

Extrarenal
More vulnerable to cerebral and

myocardial ischemia200

Bicuspid aortic valves, congenital septal
defects, heart failure201,202

Pulmonary hypertension with chronic,
mild hypoxia203

Deficient growth factor–induced
angiogenesis204

Markedly decreased bleeding times79
c Oxid

ntrarena
istribut
asal C

cula de
lecting
al pelv

ximal t
unction
videnc

otheliu
cludin
fferent
nd vas
ximal t
k asce

mbs198

lecting
mia, hypertension, and heart failure.
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BRUCE C. KONE302
NET CONSTRAINTS ON NO IMPACTING
FUNCTION

In considering the influence of NO on renal and
asculature function, it is important to consider the
ollective constraints on its ability to mediate a
unctional change. Controls on NOS synthesis and
egradation, L-arginine uptake, NOS dimerization
nd association with BH4, signal transduction
vents, and presence of ADMA are all important
actors in this regard. In addition, the sensitivity of
oluble guanylyl cyclase,30 and the end-product
ioavailability of NO31 (ie, is it bioinactivated
rom reaction with O2

� or other reactive species?)
ust be considered.

LOCALIZATION OF NOS ISOFORMS IN
KIDNEY

A variety of methods ranging from protein and
essenger RNA (mRNA) localization methods to

unctional studies in isolated or in situ microper-
used nephron segments have been used to identify
OS expression in the kidney. These results have
een somewhat variable and not always internally
onsistent in terms of a correlation between the
ene product identified and its function (usually
udged by inhibitor sensitivity or function in
nockout compared with wild-type mice). Ideally,
ultiple independent observers unequivocally
ould identify NOS isoform protein expression in

pecific regions of the intact kidney, and this would
e correlated with functional studies of that region
sing NOS isoform-selective inhibitors, which are
vailable for iNOS and nNOS, and/or knockout
ice. This full set of criteria has been met infre-

uently (Table 1). The following examples high-
ight the problem. First, data generated about
RNA expression and distribution have not al-
ays been corroborated by protein expression data.
or example, our laboratory32,33 and others34 re-
orted basal expression of iNOS mRNA in the rat
idney, yet there has been no consistent demon-
tration of iNOS protein in the normal rat kidney.
lthough this simply may be an issue of sensitivity
f the assays used for mRNA versus protein ex-
ression, it does highlight the need for caution for
nterpreting gene expression data. Second, there
ave been numerous examples of reports of NOS
soform protein expression in the kidney that have
aried depending on the antibody used for the
tudy. Finally, there have been a few functional

tudies that strongly have implicated the activity of b
specific NOS isoform in a specific nephron seg-
ent, which has not been shown convincingly to

xpress protein for that isoform. For example,
tudies in the in situ perfused proximal tubule in
NOS knockout mice clearly have shown a role for
NOS in fluid and HCO3

� transport in this seg-
ent,35 yet iNOS protein has not been observed

onsistently there.
With those caveats in mind, immunocytochem-

cal studies have shown that all 3 isoforms of NOS
re expressed in the kidney (Table 1). eNOS pro-
ein is expressed in renal vascular endothelial
ells,36 and nNOS protein has been found predom-
nantly in epithelial cells of the macula densa,36,37

rincipal cells of the collecting duct,38 and renal
elvic sensory nerves.39 iNOS protein is widely
xpressed after induction with endotoxin or proin-
ammatory stimuli in tubule epithelia, including

he proximal tubule, thick ascending limb, and
istal convoluted tubule.34 Renal proximal tubules
nd inner medullary collecting duct cells can pro-
uce NO by means of expression of iNOS, but the
rue intrarenal locale of the expressed iNOS in vivo
s unclear.32

NOS GENE PRODUCTS AND THEIR
REGULATION

NOS

tructure and Variants

The human nNOS gene (designated NOS1 by
he Human Genome Nomenclature Committee) re-
ides at chromosome 12q24.2 and spans over 240
b.40 nNOS is expressed basally in diverse cell
ypes and tissues, but predominantly neurons, skel-
tal muscle, and the macula densa segment. Ex-
ression derived from alternative promoters of the
uman nNOS gene direct tissue- and cell-specific
xpression. A transcription cluster of exon 1 vari-
nts enriched in neuronal tissues reside in one
enomic region, whereas those enriched in skeletal
uscle are grouped together in another genomic

egion 75 kb upstream.41,42 A third transcriptional
luster remote from the other 2 clusters directs
eydig cell–specific transcription.43 In addition, a
alcium-responsive exon 2 promoter recently has
een characterized in rodent nNOS.44

The major neuronal transcript comprises 29 ex-
ns and encodes a 160-kd protein. Several splice
ariants also yield functional protein. An insertion

etween exons 16 and 17 encodes 34 additional
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NO SYNTHESIS IN THE KIDNEY 303
mino acids.45-47 This variant, termed nNOS-�, is
xpressed in muscle complexed with �1-syntro-
hin and is co-expressed with nNOS in the pelvic
lexus and bladder.45,46 The testis-specific tran-
cription cluster gives rise to an mRNA transcript
omprised of 2 new 5� exons (Tex1 and Tex2)
pliced to exon 4 of the full-length nNOS, and
ncodes a 125-kd protein that lacks the protein
nhibitor of NOS binding, and the PDZ protein
nteraction domain implicated in membrane local-
zation. When stably expressed in Chinese hamster
vary–K1 cells, the 125-kd protein encoded by
estis-specific nNOS (TnNOS) possesses NOS en-
ymatic activity comparable with that of the full-
ength nNOS (160 kd).

egulation

Originally believed to be a constitutively ex-
ressed enzyme, nNOS is now known to be regu-
ated by a variety of physiologic and pathologic
timuli. The neuronal transcriptional cluster of the
uman nNOS gene contains binding sites for sev-
ral transcription factors, including activating pro-
ein 2 (AP-2), nuclear factor � B (NF-�B), cAMP
esponse element binding protein (CREB), and
ts.40 Studies of nNOS promoter activity in neu-

onal and fibroblast cell lines revealed that Oct-2
ransactivates the downstream promoter (desig-
ated 5.1),48 whereas nerve growth factor induces
ranscription through the upstream promoter (des-
gnated 5�2).49 CREB binds to 2 sites within the
xon 2 5�-untranslated region (UTR) of mouse
NOS to activate transcription in cortical neu-
ons.44 Steroidogenic factor-1 also transactivates
he nNOS gene through the exon 2 promoter.50 The
uman testis transcriptional cluster also contains
otential cis-regulatory elements,51 but no func-
ional characterization of this region has been pub-
ished yet to our knowledge. nNOS also is subject
o unique controls on translational efficiency. The
ighly structured nNOS 5�-UTRs contain cis RNA
lements that modulate translational efficiency in
itro and in vivo.52 Although nNOS expression
ppears to be regulated in the kidney during certain
hysiologic and pathophysiologic states, virtually
othing is known about the specific mechanisms
nvolved.

Phosphorylation also may regulate nNOS. Pro-
ein kinases A, G, or C, or Ca2�/calmodulin-
ependent protein kinase all have been shown to

hosphorylated purified nNOS and reduce its cat- v
lytic activity, whereas calcineurin-mediated de-
hosphorylation enhances nNOS catalytic activ-
ty.53 Adenosine monophosphate (AMP)-activated
rotein kinase increases nNOS phosphorylation in
uman skeletal muscle, but its effects on nNOS
ctivity are unknown.54 Protein phosphatase-2 has
een shown to dephosphorylate nNOS in vitro.55

urther studies are needed to clarify the role and
egulation of nNOS phosphorylation in intact renal
ells.

Higher-order interactions of protein complexes
ith nNOS regulate the spatial distribution and

ctivity of nNOS in various cell types. As for all
he NOS isoforms, calmodulin serves as an allo-
teric activator. The N-terminus of nNOS contains
PDZ domain that associates with multiple pro-

eins including �1-syntrophin,56 postsynaptic den-
ity proteins PSD-93 and PSD-95,57,58 and the
uscle isoform of phosphofructokinase, the inhib-

tor protein CAPON (for carboxy-terminal PDZ
igand of nNOS),59 carboxy-terminal-binding pro-
ein,60 islet cell autoantigen 512,61 and Ca2�-adeno-
ine triphosphatase plasma membrane Ca2� ATPases
PMCA).62 nNOS also interacts with caveolin-3 in
keletal muscle, where it appears to comprise a
omponent of the dystrophin complex.63-65 An 89
mino acid light-chain dynein protein termed PIN
for protein inhibitor of nNOS) binds to the N-
erminus of nNOS and inhibits its activity.66,67 The
olecular chaperone heat shock protein (hsp) 90

as been shown to complex with nNOS and to
ctivate NO production.68 Finally, bradykinin B2
eceptors69 and �1A-adrenergic receptors70 have
een shown to interact with nNOS in vitro, al-
hough the full physiologic relevance of these as-
ociations are unknown. Presumably these interac-
ions provide a mechanism by which the activity,
patial distribution, and proximity of nNOS to reg-
latory proteins and intended targets is governed,
hich provides specificity and controls potential

ytotoxicity.

NOS

The human iNOS gene on chromosome 17 spans
7 kb and contains 27 exons, with translation ini-
iation encoded by exon 2.71 Multiple transcription
nitiation sites and alternative splicing give rise to
everal forms of exon 1. In addition, cassette de-
etions give rise to multiple alternative splice vari-
nts of human iNOS.72 The functions of these

ariants in vivo remain to be established, but one
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BRUCE C. KONE304
f them, which lacks exons 8 and 9, exhibits a
unctional reductase domain but fails to dimerize
nd to produce NO when heterologously expressed
n cultured cells.73

egulation

Multiple layers of control govern iNOS expres-
ion and activity, including changes in iNOS gene
ranscription; mRNA stability, translation, and
egradation; substrate and cofactor binding and
vailability; and dimerization. Human iNOS is reg-
lated tightly at the level of transcription, and the
echanisms of iNOS induction are cell, species,

nd stimulus specific. Cytokine combinations lead-
ng to iNOS induction vary between species and
etween cell types in the same species,74,75 sug-
esting that tissue-specific regulation of human
NOS is important in determining its local physi-
logic and pathophysiologic roles. For example,
he JAK/STAT pathway mediates the lipopolysac-
haride plus interferon-�–induced iNOS expres-
ion in RAW 264.7 macrophage cells,74,75 yet in-
ibition of the Janus-activated kinase (JAK)/signal
ransducers and activators of transcription (STAT)
athway enhances iNOS induction by these same
timuli in rat aortic smooth muscle cells.76 More-
ver, the human iNOS promoter exhibits differen-
ial responsiveness to mixtures of the same 2 cy-
okines in different cell lines.77 In one report,
ifferent patterns of altered chromatin structure
ere identified in different nonrenal epithelial cell

ines treated with the same combination of cyto-
ines.78 Finally, depending on the cell type studied,
ifferent regions of the 5�-flanking sequence me-
iate cytokine induction of the human iNOS
ene.77-80 All of these findings suggest that cell-
nd stimulus-specific control of the human iNOS
romoter may be important in determining its
unctional roles in different tissues in humans.
ery little is known, however, about the mecha-
isms underlying this specificity.
The bulk of analysis of iNOS gene expression,

ncluding our own, has focused on the murine
ene. Structure-function studies of the murine
NOS promoter have shown that the proximal 1 kb
s sufficient to confer inducibility to lipopolysac-
haride and interferon-�̃27 In contrast, a large span
f the 5�-flanking region (from �3.8 to �16 kb) is
equired for cytokine-mediated iNOS induction in
umans. A limited deletion analysis of the 5�-

anking sequence of the human iNOS gene has d
een performed by transfection of promoter-re-
orter gene constructs in cell lines from liver, lung,
nd colonic epithelium, but not kidney. From these
imited data, the regulation of the human iNOS
ene regulation appears to differ markedly from its
odent counterparts and the specific enhancers ap-
ear to be cell specific. More than 3.8 kb of the
uman iNOS 5�-flanking sequence is required for
ytokine induction of reporter genes in both liver
nd colonic cell lines.75,80 In DLD-1 colonic cells,
equences between �8.7 and �10.7 kb upstream
rom the transcription initiation site were necessary
or cytokine responsiveness. In contrast, Spitsin et
l79 reported that sequences between �0.4 and
1.6 kb supported modest cytokine responsive-

ess in the A549 lung epithelial adenocarcinoma
ell line, whereas Nunokawa et al81 showed that
.2 kb of the iNOS 5�-flanking sequence supported
obust reporter gene expression in these same cells.
unctionally important NF-�B–like sequences
ave been identified in the region of �5.2 to �6.1
b82 and �8.2 kb83 in the human iNOS promoter.
n addition, inducible AP-1 binding sites have been
eported at �5.1 and �5.3 kb. Stat1, in response to
nterferon-�, binds to a cis-acting DNA element at

5.2 kb in the human iNOS promoter, and a DNA
lement at �5.8 kb serves as a bifunctional motif
hat binds either STAT1 and/or NF-�B in response
o cytokines.84 Chromatin structure analysis in
549 and AKN-1 cells showed cytokine-inducible
Nase I hypersensitive sites and in vivo footprints

n the region of �5 to �5.5 kb.78 Finally, in
ddition to coordinating interaction of transcription
actors to impact iNOS gene transcription, we re-
ently showed that hyperacetylation, governed by
imiting or facilitating interactions with histone
eacetylases, diminishes cytokine induction of mu-
ine iNOS transcriptional activity, at least in part,
y restricting the functional efficacy of NF-�B.85

Changes in mRNA stability of the iNOS gene
lso have been implicated in the control of iNOS
ene expression. The 3�-UTR of the human iNOS
RNA contains 4 AUUUA motifs and 1
UUUUA motif. The embryonic lethal abnormal
ision–like protein HuR was found to bind with
igh affinity to the AU-rich elements of the iNOS
�-UTR and to stabilize this mRNA.86 In other
xamples, interleukin-1� stabilizes iNOS mRNA
n pancreatic � cells,87 �-adrenergic stimulation
nhances interleukin-1� induction of iNOS in car-

88
iac fibroblasts by stabilizing the iNOS message,
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NO SYNTHESIS IN THE KIDNEY 305
nd BH4 stabilizes the transcript in rat vascular
mooth muscle cells.89 In contrast, increased Ca2�

oncentrations limited iNOS mRNA half-life in
uman articular chondrocytes,90 and atrial natri-
retic peptide (ANP) accelerated iNOS mRNA de-
ay in macrophages.91 In addition to these mecha-
isms, NO itself, in an autoinhibitory feedback
oop mediated by cGMP, appears to destabilize its
wn mRNA.92 Tyrosine kinases and phosphatases
ppear to be involved in posttranslational modifi-
ation of iNOS as well, and potentially may play a
ole in modulating the functional activity of the
nzyme.93 Finally, it has been established that the
roteasome is the primary degradation pathway for
NOS,94 although it also has been observed that
aveolin-1 complexes with iNOS and promotes
NOS proteolysis in human carcinoma cell lines.95

Several proteins that interact and regulate iNOS
ave been identified. Murine macrophages express
110-kd protein that interacts with the N-terminus
f iNOS, termed NOS-associated protein-110 kd,
hich inhibits iNOS catalytic activity by prevent-

ng dimerization.96 A neural-specific cytosolic pro-
ein, kalirin, interacts with the first 70 amino acids
f iNOS in yeast 2-hybrid assays and inhibits
NOS activity by preventing the formation of iNOS
omodimers.97 Our laboratory recently defined a
egulatory interaction of iNOS with the Rac family
f Rho-like guanosine triphosphatases (GTPases)
hat augments iNOS activity and controls its spatial
istribution in activated macrophages.98 Finally,
NOS, via its C-terminal final 3 amino acids, physi-
ally interacts with the apical membrane PDZ-do-
ain protein, ezrin-radixin-moesin-binding phospho-

rotein 50, in human proximal tubule epithelial
ells.99 This ezrin-radixin-moesin-binding phospho-
rotein 50–iNOS interaction apparently serves to di-
ect iNOS to the apical membrane and drive vectorial
O production at this surface, facilitating NO deliv-

ry to targets residing in this membrane microdo-
ain, such as ion transporters.99

NOS

The eNOS gene localizes to 7q35-36, spans ap-
roximately 21 kb of genomic DNA, contains 26
xons, and encodes an mRNA of 4,052 nucleo-
ides.100 No alternative splice variants for this iso-
orm have been characterized yet. The gene is
xpressed in the endothelium of a variety of tis-
ues, as well as in cardiac and myometrial myo-

ytes, platelets, and in airway epithelium. Several t
enetic polymorphisms of the eNOS gene have
een identified and their association with human
isease states as susceptibility genes, including
nd-stage kidney disease and hypertension, have
een studied. A GT substitution in exon 7 (at
osition 894) in codon 298 of the human eNOS
ene alters the amino acid at this residue from
lutamate to aspartate.101 In vitro studies have
hown that this mutation results in diminished NO
roduction compared with the wild-type gene.102

he Glu298Asp variant has been reported to cor-
elate with increased coronary spasm, myocardial
nfarction, and essential hypertension in various
opulations.103,104 Noiri et al102 reported that the
lu298Asp variant of eNOS is a predisposing fac-

or in end-stage renal disease, especially end-stage
enal disease secondary to diabetic nephropathy.
owever, the population of subjects studied was

elatively small, studies of much larger groups of
atients are needed.
At the transcriptional level, the eNOS promoter

acks a TATA sequence and contains a single ma-
or transcription initiation site. The promoter/en-
ancer region includes a CCAAT box, several half-
alindrome sequences for estrogen response
lements, a shear stress response element, and po-
ential binding sites for Sp1, AP-1, cyclic adeno-
ine monophosphate response element, GATA, nu-
lear factor 1, �-interferon response element, and
F-�B. Structure-function studies indicate that
asal promoter activity in transfected endothelial
ells requires an upstream Sp1 binding site, a
ATA site at position �230, and a PEA3 site at
26.105,106 Two tightly clustered positive regula-

ory domains at �104/�95 and �144/�115, to
hich Ets family members, Sp1, variants of Sp3,
AZ, and YY1 bind, regulate human eNOS pro-
oter activity in endothelial cells (Fig 2).107 A

hird positive regulatory domain resides 4.9 kb
pstream from the transcription start site, and binds
ZF-like, AP-2, Sp-1–related, and Ets-related fac-

ors.108 Finally, studies in mice transgenic for a
romoter-reporter construct containing 5.2 kb of
he native murine eNOS promoter showed trans-
ene expression that was restricted to large- and
edium-sized blood vessels of the heart, lung,

idney, liver, spleen, and brain. Interestingly, the
enal microvasculature, with the exception of the
asa recta of the renal medulla, showed no eNOS

109
ransgene expression.



l
p
b
l
o
I
e
c
e
t
c
f
�
i
c

c
b
3
s
a
T
b
t
t
p

a
c
c
m

a
r
s
t
U
C
l
b
p
a
A
u
a

BRUCE C. KONE306
Shear stress, hypoxia, tumor necrosis factor-�,
ysophosphatidylcholine, oxidized low-density li-
oprotein, platelet-derived growth factor, basic fi-
roblast growth factor (bFGF), vascular endothe-
ial growth factor, transforming growth factor-�1,
xidative stress, cyclosporine A, and angiotensin
I110 all have been shown to influence the level of
NOS gene expression in cultured endothelial
ells. Estradiol has been shown to activate human
NOS promoter activity, in part via activation of
he transcription factor Sp1, in cultured endothelial
ells.111,112 Similarly, a platelet-derived growth
actor response element between �744 and
1,600 of the human eNOS gene appears to be

mportant for eNOS transactivation in endothelial
113

Fig 2. Regulation of endothelial NOS synthesis and
variety of stimuli, including estrogen and glucocor

egulatory elements in the promoter/enhancer region
ized, eNOS protein undergoes myristoylation (MYR) an
o the plasma membrane caveolae. There, eNOS intera
nder basal conditions, eNOS is tethered to caveolin a
a2�, calmodulin binds eNOS and displaces caveolin

eading to activation of eNOS activity. Binding of the G
y intracellular Ca2� transients and to enhance eNOS
rotein (NOSIP) serve to promote translocation and in
ctivated through phosphorylation by the protein kina
MP-dependent protein kinase (AMPK). In addition, th
ptake and the synthesis and binding of the importan
ctivity. See text for additional details and citations.
ells. In contrast to these activating stimuli, glu- a
ocorticoids have been shown to decrease GATA
inding activity and thereby limit the activity of a
.5-kb human eNOS promoter-reporter gene con-
truct. Finally, changes in mRNA stability also
ffect eNOS mRNA expression in several settings.
umor necrosis factor � has been shown to desta-
ilize eNOS mRNA,152 whereas HMG-CoA reduc-
ase inhibitors, by blocking the geranylgeranyla-
ion of the GTPase Rho,114 and oxidant stress,115

rolong eNOS mRNA half-life.
At the posttranslational level, N-myristoylation

nd palmitoylation of eNOS are required for effi-
ient eNOS targeting to caveolae of the endothelial
ell membrane116,117 and appear to facilitate opti-
al NO release (Fig 2). Similarly complex inter-

ty. The eNOS gene is under transcriptional control by
. Binding of several transcription factors to positive
eNOS gene regulate its transcription. Once synthe-
itoylation (PALM), which efficiently targets the protein

h a variety of regulatory proteins shown in blue boxes.
ctive. With agonist-induced increases in intracellular
chanism facilitated by cooperative binding of hsp90,

dynamin-2 (DYN) to eNOS also appears to be triggered
. eNOS traffic inducer (NOSTRIN) and eNOS interacting

tion of eNOS from the caveolae. ENOS also may be
T, protein kinase A (PKA), protein kinase G (PKG), and
ery of the substrate L-arginine via CAT-1–mediated
ctor BH4 are critical and regulated events for eNOS
activi
ticoids
of the
d palm
cts wit
nd ina

in a me
TPase
activity
activa
ses AK

e deliv
t cofa
ctions with caveolins, calmodulin, and hsp90 gov-
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rn eNOS activity (Fig 2). At resting intracellular
alcium concentrations, eNOS is inhibited toni-
ally through a stable interaction with caveo-
ins.65,118-121 Agonists, such as bradykinin or fluid
hear stress, increase intracellular Ca2� concentra-
ions and cause calmodulin to bind and caveolin to
issociate from eNOS, resulting in an activated
NOS-calmodulin complex. Hsp90 appears to fa-
ilitate the calmodulin interaction with eNOS.122

nhibition of eNOS also occurs through interac-
ions with membrane-proximal regions of intracel-
ular domain 4 of several G protein–coupled re-
eptors (the bradykinin B2, the angiotensin II AT,
nd the endothelin-1 endothelin B [ETB] recep-
ors). Phosphorylation of the eNOS-interacting re-
ion of the bradykinin B2 receptor limits the bind-
ng interaction and reverses the inhibitory effect.123

ther proteins, including eNOS interacting pro-
ein, a 34-kd protein that avidly binds to the car-
oxyl-terminal region (amino acids 366-486) of
he eNOS oxygenase domain,124 eNOS traffic in-
ucer,125 and the GTPase dynamin-2126 apparently
articipate in the complex regulation of eNOS traf-
cking, targeting, and activity (Fig 2).
Phosphorylation plays an important role in

NOS activity (Fig 2). AMP-activated protein ki-
ase has been shown to phosphorylate eNOS on
er1177 in vitro and in rat heart during isch-
mia.127 The enzyme also is phosphorylated in
itro on Ser633, Ser1177, and activated by cyclic
denosine monophosphate–dependent kinase and
GMP-dependent protein kinase II.128 Bradyki-
in,129 vascular endothelial growth factor, and
hear stress trigger Akt-mediated phosphorylation
f serine 1177/1179 on eNOS, leading to eNOS
ctivation in vitro and in vivo.130-132 Estrogen,
hrough activation of phosphatidylinositol-3-OH
inase, stimulates Akt and, thereby, eNOS.133 Cer-
mide and sphingosine-1-phosphate activate eNOS
ia Ca2�-independent pathways.134,135

FUNCTIONS OF NO IN THE KIDNEY AND
VASCULATURE

ffects of NO on Cellular Energetics

Studies in isolated mitochondria and intact cells
howed that NO modulates mitochondrial QO2,
embrane potential, adenosine triphosphate pro-

uction, and free radical generation (Fig 3).136-142

O potently, rapidly, and reversibly inhibits cyto-

hrome oxidase and reduces the affinity of the w
nzyme for O2.136,143,144 In addition, full-length
NOS with unique posttranslational modifications
s expressed in mitochondria of various tissues,
ncluding kidney, and produces NO under physio-
ogic conditions.145,146 Collectively, these data sug-
est that NO might serve as a physiologic regulator
f cellular respiration. Garvin and Hong147 re-
orted that nanomolar concentrations of NO could
otently and reversibly inhibit respiration renal
ubules and isolated mitochondria. The sensitivity
o NO-mediated inhibition of respiration was com-
arable between outer medullary and cortical tu-
ules. These investigators concluded that compe-
ition between NO and O2 to control respiration in
he low PO2 environment of the renal outer medulla

ight contribute to the vulnerability of this region
o hypoxia.

NO’s ability to inhibit cytochrome oxidase also
hifts the electron transport chain to a more re-
uced state, which favors superoxide anion (O2

�)
ormation at the level of complexes I148 and III
Fig 3).149 Depending on intracellular redox con-
itions, the O2

� then can be converted by super-
xide dismutase into hydrogen peroxide or react
ith NO to form peroxynitrite (ONOO�).150 These
ighly reactive species can alter solute transport
athways,151,152 nitrate proteins, damage cell mem-
ranes, cause DNA fragmentation, and promote
poptosis (Fig 3).153

ffects of NO on Renal Solute Transport

By regulating the local renal circulation, the
enal efferent and afferent nerve activity, and by
irect tubular effects on fluid and electrolyte reab-
orption, NO plays an important role in fluid and
olute transport.154 In the proximal tubule, NO has
een reported to stimulate155 net fluid and HCO3

�

ux, whereas only inhibitory effects of NO have
een found on the Na�/H� exchanger156 and Na�,
�-adenosine triphosphatase activity157,158 in this

egment. Both nNOS and iNOS appear to partici-
ate in these responses. In nNOS knockout mice,
oth HCO3

� absorption (JHCO3
�) and fluid flux

Jv) in the proximal tubule are reduced signifi-
antly, and these animals develop metabolic aci-
osis (Table 1).155 In iNOS knockout mice,
HCO3

� and Jv were each about 35% less than
heir wild-type controls. Moreover, addition of the
NOS-selective inhibitor L-N6-(1-iminoethyl) ly-
ine, reduced both Jv and JHCO3

� significantly in
35
ild-type, but not in iNOS knockout, mice. In
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ontrast, neither JHCO3
� nor Jv was significantly

ifferent from wild type in eNOS knockout mice.35

n the aggregate, these results indicated that endog-
nous NO derived from both nNOS and iNOS
erves to enhance fluid absorption and HCO3

�

ransport, whereas eNOS does not directly modu-
ate these parameters in the proximal tubule.

In the medullary thick ascending limb of Hen-
e’s loop (MTAL), NO inhibits net Cl� and
CO3

� absorption,159-161 effects in part mediated
y a direct inhibitory action of NO on the Na�-
�-2Cl� cotransporter147 and the Na�/H� ex-

hanger.159 In contrast, NO stimulates the activity
f apical K� channels in this segment.162 In the
ollecting duct, NO inhibits Na� absorption163 and
asopressin-stimulated osmotic water permeabili-
y.164 In addition, Lu et al165,166 showed that NO
nhibits apical Na� channels in the cortical collect-
ng duct (CCD), and linked this mechanism to the
nhibition of the basolateral small-conductance K�

hannel. Moreover, NO also has been reported to
nhibit the H�-adenosine triphosphatase of inter-

167

Fig 3. Effects of NO and peroxynitrite (ONOO�) on c
ts actions on guanylate cyclase (GC), which produces
ation and other responses. NO also inhibits cytochrom
ransport chain (ETC) to a more reduced state, whic
ntracellular redox conditions, the O2

� can then be c
eroxide or react with NO to form peroxynitrite (ONOO

ation and apoptosis, as well as protein nitration and
alated cells of the collecting duct, and to me- fl
iate the stimulatory effect of angiotensin II on
asolateral K-channel activity in the CCD.168

ffects of NO on the Renal Microcirculation

NO is an important modulator of glomerular and
enal hemodynamics.169 Intrarenal NO is responsi-
le for up to one third of the normal renal blood
ow and helps to maintain the low renal vascular
esistance under normal conditions. Although NOS
nhibition does not interfere with the basic auto-
egulatory mechanism of the glomerulus, it does
ecrease the absolute renal blood flow.170 Studies
f the renal microvascular responses to NOS inhi-
ition in animal models have shown that tonically
eleased NO regulates both the resistances of both
he afferent and efferent arterioles. As a regulator
f tubular reabsorptive function, NO also serves as
major mediator of arterial pressure–induced na-

riuretic responses in the kidney (see later).171

NO plays a key role in regulating perfusion of
he renal medulla.172-175 Local infusion of NOS
nhibitors into animals reduces medullary blood

function. Many of NO’s effects are mediated through
cond messenger molecule cGMP that elicits vasodi-
dase (CYT C) in the mitochondria, shifting the electron
rs superoxide anion (O2

�) formation. Depending on
ted by superoxide dismutase (MNSOD) into hydrogen
se highly reactive species can cause DNA fragmen-
eroxidation, which damage cells.
ellular
the se
e oxi

h favo
onver

�) The
lipid p
ow, promotes salt retention, and leads to hyper-
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ension. Conversely, L-arginine infusion increases
O, enhances medullary blood flow, and abrogates
ypertension in these models. High salt intake has
een shown to result in increased NO concentra-
ions and NOS expression and activity selectively
n the renal medulla.172-175 Conversely, Dahl salt-
ensitive rats exhibit a deficiency of NOS activity
hat is confined to the renal medulla.176 Thus, NO
cts in the renal medulla to control sodium excre-
ion during variations in salt intake and therefore
elps to modulate arterial blood pressure.

ressure-Natriuresis and Tubuloglomerular
eedback

Long-term control of arterial pressure is in part
overned by the pressure-natriuresis mechanism,
hich couples increases in renal perfusion pressure

o increases in renal sodium excretion. Experi-
ents in dogs confirmed that intrarenal NO activ-

ty directly correlates with changes in arterial pres-
ure and changes in urinary excretion rates of
odium, suggesting that acute changes in arterial
ressure alter intrarenal NO production, which in-
ibits tubular sodium reabsorption and effects
ressure natriuresis.168,171,177

NOS activity contributes to the activity of tubu-
oglomerular feedback (TGF), which couples tubu-
ar reabsorption to the regulation of glomerular
ltrafiltration. A growing body of evidence sug-
ests that NO produced by nNOS in the macula
ensa stimulates soluble guanylate cyclase, gener-
ting cGMP and activating cGMP-dependent pro-
ein kinase within the macula densa cells, which
hen modulate TGF responsiveness. Micropunc-
ure studies in vivo have shown that NO blunts the
GF response that causes vasoconstriction of the

enal afferent arteriole in response to sodium chlo-
ide reabsorption at this site, and possibly regulates
enin release from the juxtaglomerular appara-
us.178-181 Oxidative stress produced in hyperten-
ive rat models greatly limits NO bioactivity in the
uxtaglomerular apparatus182,183 (see article by

odlinger et al, in this issue). Recent studies in-
icate that NO produced by either eNOS or iNOS
n the medullary thick ascending limb of Henle
lso may inhibit TGF. In the presence of the
NOS-selective inhibitor 7-nitroindazole, a nonse-
ective NOS inhibitor significantly enhanced TGF
hen the macula densa was perfused orthograde
ia the medullary thick ascending limb of Henle,

hereas the blocker had no effect on TGF when t
he macula densa was perfused retrograde via the
istal tubule.184

CONCLUSIONS AND PERSPECTIVES

The field of NO biology has advanced at a
ramatic pace and has offered new tools and mech-
nistic insights into the regulation of NO biosyn-
hesis, NO targets, pharmacologic and endogenous
nhibitors, and biological functions mediated.

ethods for detecting NO and reactive nitrogen
pecies in biological systems are being refined,
ene expression profiling is identifying target
enes susceptible to regulation by NO in various
ells, proteomic methods are being exploited to
dentify protein targets of nitration and S-nitrosy-
ation, the phenotypes of NOS isoform knockout
nd compound knockout mice are being dissected
n greater detail, and more pharmacologic inhibi-
ors with greater isoform selectivity are being gen-
rated. The challenge for renal investigators is to
xploit these data, reagents, methods, and animal
odels to address with a high degree of sophisti-

ation the impact of NO on renal health and dis-
ase, and to generate new information in renal cells
hat may be more broadly applicable to other cell
ypes and tissues.
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