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Diabetic Nephropathy and Transforming Growth Factor-�:
Transforming Our View of Glomerulosclerosis and Fibrosis Build-Up

By Sheldon Chen, Belinda Jim, and Fuad N. Ziyadeh

he manifestations of diabetic nephropathy may be a consequence of the actions of certain cytokines and growth
actors. Prominent among these is transforming growth factor � (TGF-�) because it promotes renal cell hypertro-
hy and stimulates extracellular matrix accumulation, the 2 hallmarks of diabetic renal disease. In tissue culture
tudies, cellular hypertrophy and matrix production are stimulated by high glucose concentrations in the culture
edia. High glucose, in turn, appears to act through the TGF-� system because high glucose increases TGF-�

xpression, and the hypertrophic and matrix-stimulatory effects of high glucose are prevented by anti–TGF-�
herapy. In experimental diabetes mellitus, several reports describe overexpression of TGF-� or TGF-� type II
eceptor in the glomerular and tubulointerstitial compartments. As might be expected, the intrarenal TGF-� system
s triggered, evidenced by activity of the downstream Smad signaling pathway. Treatment of diabetic animals with

neutralizing anti–TGF-� antibody prevents the development of mesangial matrix expansion and the progressive
ecline in renal function. This antibody therapy also reverses the established lesions of diabetic glomerulopathy.
inally, the renal TGF-� system is significantly up-regulated in human diabetic nephropathy. Although the kidney
f a nondiabetic subject extracts TGF-�1 from the blood, the kidney of a diabetic patient actually elaborates
GF-�1 protein into the circulation. Along the same line, an increased level of TGF-� in the urine is associated with
orse clinical outcomes. In concert with TGF-�, other metabolic mediators such as connective tissue growth

actor and reactive oxygen species promote the accumulation of excess matrix. This fibrotic build-up also occurs
n the tubulointerstitium, probably as the result of heightened TGF-� activity that stimulates tubular epithelial and
nterstitial fibroblast cells to overproduce matrix. The data presented here strongly support the consensus that the
GF-� system mediates the renal hypertrophy, glomerulosclerosis, and tubulointerstitial fibrosis of diabetic kidney
isease.
2003 Elsevier Inc. All rights reserved.
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HE HISTOLOGY OF THE kidney is altered
dramatically in virtually all affected diabetic

atients. The early structural changes consist of
lomerular and tubuloepithelial hypertrophy.
hen, progressive thickening of the glomerular and

ubular basement membranes becomes evident
ver a period of years.1,2 In those patients destined
o develop renal insufficiency, extracellular matrix
roteins accumulate in the mesangium, obliterating
he surrounding glomerular capillaries and reduc-
ng the glomerular filtration rate.3 In a similar

anner, extracellular matrix accumulates in the
ubulointerstitium and around the arterioles, con-
ributing to the destruction of individual nephrons.4

iven the importance of glomerulosclerosis and
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32 Seminars in N
ubulointerstitial fibrosis in the development and
rogression of diabetic nephropathy, basic research
ctivity has focused largely on the mechanisms
hat lead to increased synthesis or decreased deg-
adation of extracellular matrix.

In the past decade, we have learned that one
ffector molecule primarily is responsible for stim-
lating renal cells to undergo hypertrophy and to
verproduce matrix proteins. These biologic
hanges are provoked by transforming growth fac-
or � (TGF-�), a hypertrophic and prosclerotic
ytokine that affects glomerular cells, tubular cells,
nd interstitial fibroblasts. TGF-� has been shown
o mediate virtually all of the pathologic changes
f diabetic kidney disease.5

STIMULANTS OF TGF-� IN THE DIABETIC
KIDNEY

Many features of the diabetic state stimulate
enal TGF-� activity. Hyperglycemia,6-8 increased
onenzymatic glycation of proteins,9-11 de novo
ynthesis of diacylglycerol and subsequent activa-
ion of protein kinase C,12 increased intracellular
lucosamine production,13,14 and enhanced renal
roduction of vasoactive agents such as angioten-
in II,15 endothelins,16 and thromboxane17 all have
een shown to increase the expression of TGF-� in

oth cell culture and in vivo systems. Intraglo-
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merular hypertension, modeled in cell culture by
the cyclic stretch and relaxation of mesangial cells
and increased fluid shear stress on endothelial cells
also increase TGF-� production and bioactiv-
ity.18,19

EFFECTS OF TGF-� ON KIDNEY
HYPERTROPHY AND MATRIX EXPRESSION

Once activated, the TGF-� system induces the
accumulation of matrix in multiple and cooperative
ways. It stimulates the messenger RNA (mRNA)
expression and protein production of key extracel-
lular matrix molecules including type I collagen,
type IV collagen, fibronectin, and laminin.20 At the
same time, it impedes the degradation of extracel-
lular matrix by inhibiting the production of pro-
teases that digest matrix (eg, plasminogen activa-
tor, collagenase, elastase, and stromelysin) and
activating the inhibitors of those proteases (eg,
tissue inhibitors of metalloproteinases and plas-
minogen activator inhibitor 1).21 TGF-� also up-
regulates integrins, the cell surface receptors for
extracellular matrix, thereby enhancing the ability
of cells to interact with specific matrix proteins.22

Additionally, TGF-� has a potent chemotactic
property that can attract fibroblasts and other
phagocytic cells,23 and it has a peculiar ability to
induce its own expression,24 potentially amplifying
the fibrotic response.

TGF-� also mediates renal cellular hypertrophy,
another characteristic of diabetic nephropathy. It
interferes with normal regulation of the cell cycle
by inducing cyclin-dependent kinase inhibitors
such as p27Kip1 and p21Cip1.25 These inhibitors also
are increased by high glucose and the diabetic
state.26-28 They suppress the activity of cyclin-
dependent kinases, predominantly cyclin-depen-
dent kinase 2/cyclin E kinase,29 thus inhibiting the
phosphorylation of retinoblastoma protein and ar-
resting a cell in the late G1 phase. The cell enters
a period of protein synthesis without DNA repli-
cation and undergoes hypertrophy. Thus, TGF-�
causes changes at the cellular level that translate
into the pathophysiologic features of diabetic ne-
phropathy.

EVIDENCE FROM CELL CULTURE

High Glucose Effects Predominantly Are
Mediated by the TGF-� System

To mimic the effects of diabetes on the kidney,
researchers have grown different renal cell types in

tissue culture under high ambient glucose condi-
tions. High glucose stimulates proximal tubu-
lar30,31 and mesangial cell hypertrophy,7,28,32 and it
stimulates the production of matrix molecules such
as fibronectin and collagens in proximal tubule
cells and glomerular mesangial, epithelial, and en-
dothelial cells.8,30,33-40 Cell culture studies also
have shown that renal cortical fibroblasts produce
excess type I collagen under high glucose condi-
tions.41 In rat mesangial cell and human tubuloin-
terstitial cell culture, periodically increased glu-
cose levels increase collagen production to a
greater extent than persistently increased glucose
concentrations.42,43 This more closely mimics the
fluctuation of blood glucose levels in vivo and may
highlight the detrimental effects of labile hypergly-
cemia on the pathogenesis of diabetic glomerulo-
sclerosis.

In most kidney cell types, high ambient glucose
up-regulates the expression and bioactivity of
TGF-�, which itself has been shown to mediate the
hypertrophic and profibrotic effects of high glu-
cose. Mesangial cells,8,44 glomerular endothelial
cells,45 proximal tubular cells,6 and interstitial fi-
broblasts41 incubated in high glucose have in-
creased expression of TGF-�1 and in some cases
TGF-� type II receptor,40,46 which directly binds to
the TGF-� ligand. This enables TGF-�1 to act in
an autocrine or paracrine fashion to effect signifi-
cant changes in cellular behavior. For example,
murine mesangial cells initially show increased
proliferation in high glucose, but after 72 hours the
cells show decreased proliferation owing to high
glucose–induced TGF-�, which has hypertrophic/
growth inhibitory effects7 that may be mediated
partially by p27Kip1.28 Even in the absence of high
glucose, addition of exogenous TGF-�1 causes the
mesangial cells and the interstitial fibroblasts to
increase their expression and production of colla-
gen matrix proteins, showing that TGF-� can re-
produce the effects of high glucose.8,41,46 Finally,
antagonism of TGF-� by specific neutralizing
monoclonal antibodies47 or by antisense oligo-
nucleotides48 significantly decreases and even
completely abolishes the high glucose–induced
increase in extracellular matrix expression, indicat-
ing that TGF-� predominantly mediates the profi-
brotic effect of high glucose on kidney cells.

Certainly, not all of the high glucose effects are
mediated by the TGF-� system. High glucose stim-
ulates the expression and production of type IV
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collagen by the cultured, differentiated podocyte,
but rather than increasing all the � chains of col-
lagen IV, exogenous TGF-�1 actually decreases
certain � chains.40 Specifically, high glucose in-
creases the �1, �3, and �5 chains of collagen IV.40

On the other hand, exogenous TGF-�1 stimulates
�3 but inhibits the expression of �1 and �5(IV)
collagen. Although it is unlikely that the high glu-
cose effects on �1 and �5(IV) collagen would be
mediated by TGF-� in the podocyte, the high glu-
cose–induced production of �3(IV) collagen is
prevented completely by an inhibitor of TGF-�
signaling (SB-431542).40,49 To ascertain the mech-
anism of this TGF-�–mediated effect on �3(IV)
collagen, the effects of high glucose were studied
on components of the TGF-� system. Contrary to
other renal cell types, the podocyte did not respond
to high glucose with a significant increase in
TGF-�1 ligand.40 Rather, it increased its cell sur-
face expression of the TGF-� type II receptor. In
this way, high glucose activates the TGF-� system
in podocytes, adding a variation to the theme that
high glucose stimulates TGF-� activity in renal
cells.

Role of Smads in TGF-� Signaling

Moving beyond high glucose to probing the
mechanisms of TGF-� signaling, we investigated
the role of the Smad pathway, which transduces the
TGF-� signal from the receptor complex to the
nucleus. Our data suggest that high glucose may
exert some of its effects on extracellular matrix
expression through the system of intracellular
Smad proteins. In mouse mesangial cells, high
glucose stimulates the transcription of fibronectin
and, furthermore, potentiates the transcriptional ac-
tivation of fibronectin by TGF-�1.50 This particu-
lar effect of TGF-�1 appears to be mediated by the
receptor-activated Smads, which include Smad2
and Smad3. Smad2 was not investigated, but over-
expression of Smad3 alone was able to induce
fibronectin promoter activity. In conjunction with
exogenous TGF-�1, Smad3 overexpression syner-
gistically increased fibronectin expression, as if the
extra Smad3 had increased the efficiency of TGF-�
signaling. Finally, transfection of a Smad3-domi-
nant-negative construct was able to inhibit TGF-�1
from stimulating the promoter activity of fibronec-
tin.50 However, part of the TGF-�1–induced fi-
bronectin expression also may be mediated in par-
allel by the p38 mitogen-activated protein kinase

pathway.49 Finally, there is evidence to suggest
that Smad3 predominantly mediates the effect of
TGF-�1 to increase the mRNA expression of �1(I)
collagen.49

TGF-� Cooperates With Hyperglycemia

TGF-� and high glucose also can interact by an
insidious mechanism. High glucose increases the
activity of TGF-�, but TGF-� in turn can augment
the effect of high glucose. In both human and rat
mesangial cells, TGF-� has been shown to up-
regulate the mRNA expression and protein produc-
tion of the insulin-independent, transmembrane
glucose transporter, GLUT1,51,52 thus facilitating
glucose uptake and increasing the flux of glucose
through its biochemical pathways.53 Intermediates
in glucose metabolism can activate signaling path-
ways such as protein kinase C54 and the hex-
osamine pathway14 that then stimulate the TGF-�
system even further. In deciphering the mechanism
by which high glucose increases GLUT1, Inoki et
al51 found that the addition of neutralizing anti–
TGF-� antibody prevented the stimulatory effects
of high glucose on GLUT1 expression. Interest-
ingly, overexpression of GLUT1 protein in cul-
tured rat mesangial cells caused a marked increase
in glucose uptake and the synthesis of extracellular
matrix molecules, even when grown in normal
ambient glucose concentrations.55,56 Thus, TGF-�
and GLUT1 are both up-regulated by a hypergly-
cemic milieu, and each can influence the expres-
sion of the other.

EVIDENCE FROM ANIMAL MODELS

Intrarenal TGF-� Is Increased by Diabetes

In experimental animal models, TGF-� has been
shown to play an important role in the pathogene-
sis of diabetic kidney disease. Several groups of
investigators have shown that the TGF-� level is
increased in the kidneys of insulin-dependent dia-
betic animals during both early and late stages of
disease.57-65 A progressive increase in the TGF-�1
mRNA and protein levels was noted in glomeruli
isolated from the streptozotocin (STZ)-induced di-
abetic rat57,58 in association with an increased ex-
pression of extracellular matrix molecules.66 Treat-
ment of the STZ-diabetic rat with sufficient insulin
to reduce hyperglycemia ameliorated the enhanced
expression of TGF-�63 and matrix components in
the glomeruli.57,58
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Increased TGF-� expression in the kidney may
manifest very early after the onset of diabetes. In
our study on the spontaneously diabetic Biobreed-
ing rat (Bio-Breeding Labs, Ontario, Canada) and
the nonobese diabetic mouse, we found increased
TGF-�1 mRNA and protein levels in the kidney
cortex as early as a few days after the appearance
of glycosuria and coincident with the development
of renal hypertrophy.60 In the STZ-diabetic rat and
mouse, increased TGF-�1 expression in the renal
cortex and glomeruli was noted as early as 1 to 3
days after the onset of diabetes.63,67 Interestingly,
up-regulation of the TGF-� type II receptor mRNA
and protein also occurred early in the natural his-
tory of STZ-diabetic rodents.46,65,67

The intrarenal TGF-� system also is activated in
animal models of type 2 diabetes. The db/db
mouse, characterized by hyperglycemia, obesity,
and insulin resistance, develops increased amounts
of TGF-�1 that are localized to the glomerular
compartments.68 In contrast, the mRNA and pro-
tein levels of the TGF-� type II receptor are sig-
nificantly up-regulated in both the glomerular68

and the tubulointerstitial compartments.68 Overall,
the increased glomerular TGF-� and the more
widespread increases in TGF-� type II receptor
result in activation of the renal TGF-� system and
stimulation of the downstream Smad signaling cas-
cade. By immunohistochemistry of the diabetic
db/db mouse (compared with the db/m mouse),
Smad3 was found to accumulate in the nuclei of
glomerular and tubular cells where Smad proteins
could influence the expression of genes that are
regulated by TGF-� signaling.68 More evidence of
Smad nuclear translocation could be seen by
Southwestern histochemistry in which labeled oli-
gonucleotides comprising the Smad binding ele-
ment increasingly were localized to the nuclei of
glomerular and tubular cells of diabetic mice,68

suggesting increased transcription of genes that are
modulated by TGF-�. Thus, the net bioactivity of
the renal TGF-� system is increased in the type 2
diabetic db/db mouse.

Intervention With Anti–TGF-� Therapies

The development of diabetic renal hypertrophy
and glomerulosclerosis likely is caused by height-
ened activity of the TGF-� system. Short-term
treatment of the STZ-diabetic mouse with a neu-
tralizing monoclonal antibody against all 3 iso-
forms of TGF-� prevented glomerular hypertro-

phy, reduced the increment in kidney weight by
50%, and significantly attenuated the increase in
TGF-�1, �1(IV) collagen, and fibronectin mRNAs
without affecting glycemic control.67 The results of
this study suggested a cause and effect relationship
between the renal TGF-� system and the develop-
ment of early structural changes in diabetic ne-
phropathy.

To expand on these findings, we conducted a
similar study, this time on the db/db mouse, to
examine whether long-term anti–TGF-� antibody
treatment would ameliorate the late structural
changes and functional consequences of diabetic
nephropathy.69 We found that systemic anti–
TGF-� therapy for 8 weeks prevented the mesan-
gial matrix expansion of diabetic glomerulosclero-
sis and, most importantly, the treatment preserved
kidney function, showing that neutralization of
TGF-� activity could prevent the progression of
renal failure in diabetes. However, the anti–TGF-�
antibody did not reduce albuminuria, which itself
may promote the progression of renal insuffi-
ciency.70 The paradox of preserved renal function
in the face of persistent albuminuria may perhaps
be explained by postulating that the deleterious
effects of proteinuria are mediated themselves by
the TGF-� system.71

However, prevention of diabetic nephropathy in
humans is not always feasible. More often than
not, the physician has to treat diabetic kidney dis-
ease that is far advanced, with pathologic lesions
that are well established. It used to be thought that
the structural damage of diabetic nephropathy was
irreversible, so treatment recommendations fo-
cused on preventing further injury and slowing the
rate of decline in renal function. More recently,
however, physicians have contemplated the reality
of curing diabetic nephropathy. If diabetes could
be treated optimally, then perhaps the kidney could
heal itself. We reasoned that if TGF-� mediates
most of the renal damage in diabetes, then neutral-
izing TGF-� overactivity might not only prevent
but also reverse the structural lesions of diabetic
nephropathy. We performed a study in db/db mice
similar to the study described earlier with anti–
TGF-� antibodies, but instead of starting treatment
with the onset of diabetes (preventive trial), we
started treatment after the establishment of diabetic
kidney disease (therapeutic trial). Compared with
the control diabetic mice, the treated db/db mice
displayed significant improvements in the glomer-
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ular basement membrane thickening and in the
index of mesangial matrix expansion.72 These
structural parameters approached the normal mea-
surements of the nondiabetic db/m mice. Even at
this late stage and even though the hyperglycemia
was left untreated, antagonizing the intrarenal
TGF-� system was able to at least partially reverse
the histologic lesions of diabetic glomerulopathy.

Additional Parts of the TGF-� System

In addition to TGF-�1, other members of the
TGF-� family deserve mention. Although it is
much less studied, TGF-�2 is believed to play a
fibrogenic role.73 Daily injections of human recom-
binant TGF-�2 to adult mice caused tissue levels
of endothelin-1 and angiotensin II to increase in
the kidney and fibrosis to develop in the cortical
tubulointerstitium and vasculature.73 TGF-�2 and
other TGF-� system components also have been
examined in the STZ-induced diabetic rat and the
genetically prone Biobreeding rat.65 Interestingly,
although renal TGF-�1 mRNA levels were in-
creased in the first 30 days after STZ induction, the
corresponding TGF-�1 protein did not increase.
TGF-�2, however, showed the opposite profile. Its
mRNA expression did not increase significantly,
but its protein content increased by 2-fold after 30
days of diabetes. Finally, TGF-� type II receptor
showed a 3-fold increase in protein by day 90 of
STZ induction, making this the most responsive of
the TGF-� receptor subtypes. Because TGF-�2
seemed to correlate better with fibrogenesis in the
diabetic kidney, the same research group used a
human monoclonal anti–TGF-�2 antibody to treat
STZ-diabetic rats.74 Compared with nondiabetic
controls, the untreated diabetic rats had increased
kidney weights, urinary albumin excretion rates,
and protein synthesis of collagen I. Therapy with
an anti–TGF-�2 antibody, however, prevented di-
abetes from increasing these measures of disease.
The investigators conclude that the anti–TGF-�2
regimen had a renoprotective effect, and they ex-
trapolate from the attenuation of collagen I that
targeting TGF-�2 would suppress kidney fibrogen-
esis in diabetes.74 Nevertheless, TGF-�1 remains
the most abundant and most studied isoform in the
kidney. The importance of TGF-�2 or TGF-�3 is
not as well established. Future studies will need to
address the specific role that each isoform plays in
diabetic nephropathy.

EVIDENCE FROM HUMAN STUDIES

Increased TGF-� in Human Diabetic Nephropathy

Studies performed in diabetic patients with var-
ious degrees of nephropathy also implicate the
renal TGF-� system in the development of human
diabetic renal disease. All 3 isoforms of TGF-�
have been discovered to be increased in both the
glomerular and the tubulointerstitial compartments of
patients with established diabetic nephropathy.58,75,76

Furthermore, glomerular TGF-�1 mRNA, mea-
sured by the reverse-transcription polymerase
chain reaction method, was increased markedly in
renal biopsy specimens from patients with proven
diabetic kidney disease.77 These investigations
support the belief that increased renal TGF-� lev-
els correlate closely with the degree of mesangial
matrix expansion, interstitial fibrosis, and renal
insufficiency.

Another study was designed to determine if di-
abetic patients have enhanced renal production of
TGF-�.78 Aortic, renal vein, and urinary levels of
TGF-� were measured in 14 type 2 diabetic and 11
nondiabetic control patients undergoing elective
coronary artery catheterization. Both groups were
matched roughly with regard to the range of renal
function and the presence of hypertension and pro-
teinuria. Renal blood flow was measured to calcu-
late the net mass balance across the kidney. The
gradient of TGF-�1 concentration across the renal
vascular bed was negative in the nondiabetic pa-
tients, indicating net renal extraction of TGF-�1,
whereas the gradient was positive in the diabetic
patients, indicating net renal production of TGF-
�1. When the renal TGF-�1 mass balance was
calculated, a similar pattern was observed, with the
nondiabetic kidney removing approximately 3,500
ng/min of TGF-�1 from the circulation, and the
diabetic kidney adding approximately 1,000 ng/
min of TGF-�1 to the circulation. In addition, the
level of bioassayable TGF-� was increased 4-fold
in the urine of diabetic versus nondiabetic patients.
The increased urinary TGF-� was not simply a
function of enhanced glomerular permeability to
protein because diabetic patients both with and
without microalbuminuria displayed similarly high
rates of urinary TGF-� excretion. These results
support the conclusion that the kidneys of diabetic
patients overproduce TGF-�1 protein. The details
of this phenomenon and the exact contribution of
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the different renal cell types to TGF-�1 production
need to be investigated.

TGF-� Levels Correlate With Outcomes

An interesting post hoc study79 assessed whether
captopril treatment would lower serum TGF-�1
levels in a small subset of patients with diabetic
nephropathy who had been enrolled in the Collab-
orative Study Group.80 After 6 months, the serum
TGF-�1 level decreased significantly by 21% in
the captopril-treated group, whereas it increased
slightly by 11% in the placebo-treated group. In-
terestingly, the captopril-treated patients who had a
decrease in the serum TGF-�1 level tended to have
better preserved renal function over the ensuing
2-year period. This association was even more
pronounced in the subset of patients with an initial
glomerular filtration rate of less than 75 mL/min.
These results suggest that TGF-�1 plays a pivotal
role in the progression of diabetic nephropathy and
that angiotensin converting enzyme inhibitor ther-
apy may protect the kidney by lowering TGF-�1
production.

More recently, the EURODIAB Prospective
Complications Study examined the correlation be-
tween levels of TGF-�1, Amadori albumin, and
the microvascular complications of type 1 diabe-
tes.81 An increased level of circulating TGF-�1
was associated with an increased prevalence of
proliferative retinopathy. On the other hand, in-
creased urinary TGF-�1 levels were correlated
highly with the severity of albuminuria. Both of
these parameters were largely accounted for in the
multivariate model by the changes in blood pres-
sure, glycemic control, and levels of Amadori al-
bumin. Perhaps these features of the diabetic state,
given their impact on urinary TGF-�1 levels,
should be aggressively controlled to reduce the risk
for progression to microalbuminuria, the incipient
stage of diabetic nephropathy.

TGF-� Regulation and Propensity for Diabetic
Nephropathy

Factors that regulate the bioavailability of
TGF-� also influence the predisposition to diabetic
kidney disease. One such factor is the family of
latent TGF-� binding proteins (LTBP). These reg-
ulatory molecules covalently bind with the small
latent forms of TGF-�, facilitating the efficient
secretion of TGF-�82 and targeting the TGF-�
complex to the extracellular matrix.83 The rele-

vance of LTBP to human diabetic nephropathy can
be seen in a study that tried to link expression
levels of TGF-� components with the likelihood of
developing diabetic nephropathy.84 Type 1 diabetic
patients were ranked according to their severity of
mesangial expansion and their duration of diabetes
and then were categorized into fast-track and slow-
track risk groups for the development of diabetic
nephropathy. From these 2 cohorts and normal
control subjects, skin fibroblasts were cultured in
high glucose and then assayed for mRNA levels
(by real-time reverse-transcription polymerase
chain reaction) of TGF-�1, type II receptor, throm-
bospondin-1, and LTBP-1. No differences were
found in the mRNA expression of TGF-�1, type II
receptor, or thrombospondin-1 between fast-track
and slow-track patients. The only significant dif-
ference between the 2 groups was found with
LTBP-1.84 Slow-track patients had lower levels
of LTBP-1 than normal or fast-track patients,
suggesting that the decreased LTBP-1 and pre-
sumably the decreased TGF-� bioavailability
may have protected the slow-track patients from
developing diabetic nephropathy as quickly.
Therefore, with regard to TGF-� regulation, ge-
netic variability of LTBP levels seems to play an
important role in the susceptibility to diabetic
renal disease.

OTHER FACTORS THAT INTERACT WITH THE
TGF-� SYSTEM

Another growth factor has been discovered to
act downstream of TGF-�. Named connective tis-
sue growth factor (CTGF), this prosclerotic cyto-
kine is one of the TGF-�–inducible immediate
early genes85 and is induced in cultured mesangial
cells by TGF-�.86 The transcriptional mechanism
by which TGF-� induces CTGF gene expression
involves the Smad binding elements and a unique
TGF-� response element in the CTGF pro-
moter.87,88 Consistent with the paradigm that
CTGF works downstream of TGF-�, in vitro stud-
ies of renal cells, including mesangial cells, indi-
cate that CTGF mediates TGF-�–stimulated ma-
trix protein expression. For example, CTGF has
been shown to mediate TGF-�–induced increases
in fibronectin89,90 and collagen type I.91 Further-
more, in mesangial cells, hyperglycemia induces
CTGF by mechanisms that depend partly on the
TGF-� system and partly on the protein kinase C
pathway.92,93 In animal studies, the expression of
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CTGF was found to be increased in experimental
diabetic glomerulosclerosis.94 Increased CTGF
levels in the glomeruli of nonobese diabetic mice
appear to correlate with the duration of diabetes.89

In the db/db mice, quantitative reverse-transcrip-
tion polymerase chain reaction showed that glo-
merular CTGF transcripts increased by an impres-
sive 27-fold after 3.5 months of diabetes. The
changes in CTGF expression occurred early in the
course of mesangial matrix expansion, interstitial
disease, and proteinuria, implicating an important
role for CTGF in the development of diabetic
glomerulosclerosis.95

The link between oxidative stress and TGF-� is
gaining increasing attention in mediating diabetic
renal injury. Oxidative stress, generated by glucose
metabolism and advanced glycation end-products,
can trigger a multitude of pathogenetic mecha-
nisms that contribute collectively to the microvas-
cular complications of diabetes.96 A major compo-
nent of oxidative stress, the reactive oxygen
species, may act through the TGF-� pathway to
exert a profibrotic effect. To generate reactive ox-
ygen species under experimental conditions, inves-
tigators have used glucose oxidase, an enzyme that
continuously catalyzes ambient glucose to hydro-
gen peroxide. The addition of glucose oxidase to
human mesangial cells in culture stimulates the
promoter activity, mRNA level, bioactivity, and
protein production of TGF-�1.97 Glucose oxidase
also increases the gene expression of several ex-
tracellular matrix proteins including collagen types
I, III, and IV, and fibronectin. However, this glu-
cose oxidase–stimulated expression of matrix was
prevented by a panselective, neutralizing, anti–
TGF-� antibody.97 Thus, the reactive oxygen spe-
cies may exert their deleterious effects on kidney
cells via the TGF-� system.

Oxidative stress also has been shown to activate
the protein kinase C pathway. Recent data have
shown that inhibition of high glucose–induced pro-
tein kinase C activation effectively abrogates reac-
tive oxygen species generation and nuclear factor �
B activity, decreasing monocyte chemoattractant
protein-1 secretion in mesangial cells.98 Transcrip-
tion factors such as nuclear factor � B enhance the
transactivation of genes encoding cytokines such
as TGF-� and CTGF that up-regulate extracel-
lular matrix expression.97,99 Taken together, ev-
idence is accumulating to suggest that the dif-
ferent biochemical abnormalities produced by

hyperglycemia can influence one another be-
cause many of the glucose metabolites serve as
important intermediates for the different meta-
bolic pathways.

TUBULOINTERSTITIUM IN DIABETIC
NEPHROPATHY

Shifting the focus away from the glomerulus, the
tubulointerstitium also plays an important role in
the progression of diabetic nephropathy.4,100 The
extent of tubulointerstitial fibrosis correlates best
with the rate of deterioration in glomerular filtra-
tion rate in all kidney diseases including diabetic
nephropathy.101,102 Recent studies have implicated
an important role for TGF-� in the development of
tubulointerstitial fibrosis. Interstitial fibroblasts
from normal mice react to high ambient glucose by
increasing the synthesis of TGF-�.41 As a result,
fibroblasts proliferate and increase their production
of type I collagen.41 Exaggerated production of
TGF-�1 also was seen with proximal tubular cells
cultured in high levels of albumin, a scenario that
corresponds with the progression to diabetic pro-
teinuria.103 This observation may help to elucidate
the pathophysiology behind the toxic effects of
excessive protein ultrafiltration in glomerular dis-
eases.104 Proximal tubular cells exposed to protein
overload acquire an inflammatory and profibrotic
phenotype105 that results in the increased genera-
tion of TGF-�1.103 Other studies have confirmed
these findings in cultured human tubulointerstitial
cells and also reported exaggerated fibrogenic re-
sponses to intermittent exposures to high glu-
cose.43 As with previously mentioned studies in
mesangial cells,42 this simulated labile hyperglyce-
mia may be more detrimental for the development
of interstitial fibrosis.43 Furthermore, it has been
hypothesized that in disease states characterized by
tubulointerstitial fibrosis, resident tubular epithe-
lial cells may give rise to interstitial fibroblasts by
epithelial-mesenchymal transformation.106-108 This
process is strongly evoked by TGF-� and other
profibrotic factors such as fibroblast growth factor-
2.109 Interestingly, TGF-� has been detected in
myofibroblasts within the interstitial space of kid-
neys affected by diabetes but not in normal kid-
neys.110 This TGF-�/myofibroblast axis is believed
to overproduce extracellular matrix, perhaps con-
tributing to tubulointerstitial fibrosis in diabetes.110
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CLOSING THOUGHTS AND FUTURE
APPLICATIONS

Any discussion on the pathophysiology of dia-
betic nephropathy must acknowledge the role of
the renin-angiotensin system (RAS). Innumerable
clinical trials have established that angiotensin-
converting enzyme (ACE) inhibitors delay the pro-
gression of diabetic kidney disease.80,111,112 More
recently, the class of angiotensin receptor blockers
(ARBs) has been shown to slow the loss of renal
function in type 2 diabetic nephropathy.113-115 The
clinical benefit of renin-angiotensin blockade clas-
sically has been attributed to the relaxation of
efferent arteriolar constriction and the release of
intraglomerular pressure, but this view has been
expanded to consider the nonhemodynamic mech-
anisms of renal injury by angiotensin acting as a
cytokine.15,116 Angiotensin II normally stimulates
the biosynthesis of matrix by cultured renal
cells,117-119 so the ACE inhibitors or ARBs might
be expected to inhibit matrix formation and
thereby ameliorate the sclerosis of diabetic ne-
phropathy. Further, the action of angiotensin II on
matrix production appears to be mediated by the
renal cellular TGF-� system because angiotensin II
stimulates TGF-�1 expression, and various anti–
TGF-� regimens successfully have abolished the
angiotensin II–induced increases in collagen I, col-
lagen IV, and fibronectin.119-122 Thus, the antifi-
brotic and renoprotective effects of angiotensin
blockade are related partly to its ability to reduce
TGF-� overexpression in the kidney. Indeed, ACE
inhibitors or ARBs decrease the intrarenal levels of
TGF-�1, both in animal models of diabetes and in
human diabetes.123-127

However, neither ACE inhibitors nor ARBs
have been able to provide complete renoprotection.
Despite optimal treatment, some diabetic patients
still progress to end-stage renal disease. To achieve
more effective blockade of the RAS, physicians
have started to combine ACE inhibitors with
ARBs, rationalizing that the combination would
protect the kidney from diabetic injury better than
either medication alone.128 Thus far, the hypothesis
has been upheld by the available clinical trials in
that the combinations lower blood pressure and
albuminuria/proteinuria to a greater degree.129-131

Addition of an ARB to maximal ACE inhibitor
therapy also was able to suppress urinary TGF-�1
levels even further than the ACE inhibitor, sug-

gesting that more comprehensive blockade of the
RAS would confer extra renoprotection.132 Never-
theless, ACE inhibitors plus ARBs do not totally
normalize the levels of TGF-� in the diabetic kid-
ney.133,134 The failure to correct TGF-� overactiv-
ity may explain why the ACE inhibitor/ARB com-
binations may not prevent or even delay end-stage
renal disease in every patient. Suggestive of this,
one trial has found that an ARB added to an ACE
inhibitor did not improve diabetic proteinuria.135

Whether the ACE inhibitors together with ARBs
can preclude diabetic kidney failure remains to be
seen, but at least in chronic nondiabetic renal dis-
ease, dual blockade with trandolapril and losartan
did not entirely prevent the need for renal replace-
ment therapy.136

These observations reinforce the multifactorial
nature of diabetic nephropathy and suggest that in
addition to the RAS, other pathogenetic routes
must be blocked by targeted therapies in a coordi-
nated attack on diabetic kidney disease. We pro-
pose that on top of the tried-and-true treatments for
diabetic nephropathy (eg, tight glycemic control
and strict blood pressure control, preferably with
ACE inhibitors and/or ARBs), anti–TGF-� thera-
pies should be added, with the goal of suppressing
renal TGF-� activity back to normal. Given the
importance of the TGF-� system in the pathophys-
iology of diabetic renal disease and its interplay
with the RAS, future methods that intercept the
renal TGF-� axis to arrest the damaging effects of
fibrosis likely will complement the mainstays of
therapy. Clinical trials of specific anti–TGF-� reg-
imens should be feasible in humans and may one
day become an important facet of a multipronged
approach to diabetes and its complications.
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