
Cell Cycle Regulation: Repair and Regeneration in
Acute Renal Failure

By Peter M. Price, Judit Megyesi, and Robert L. Safirstein

Research into mechanisms of acute renal failure has begun to reveal molecular targets for possible therapeutic
intervention. Much useful knowledge into the causes and prevention of this syndrome has been gained by the study
of animal models. Most recently, investigation of the effects on acute renal failure of selected gene knock-outs in
mice has contributed to our recognition of many previously unappreciated molecular pathways. Particularly,
experiments have revealed the protective nature of 2 highly induced genes whose functions are to inhibit and
control the cell cycle after acute renal failure. By use of these models we have started to understand the role of
increased cell cycle activity after renal stress and the role of proteins induced by these stresses that limit this
proliferation.
© 2003 Elsevier Inc. All rights reserved.

THE CONSEQUENCES OF nephrotoxic renal
injury include segment-specific changes in

cell viability and reduced renal function. In exper-
imental models, necrosis of the S3 segment of the
proximal tubule is the predominant morphologic
injury; apoptosis occurs in a minority of cells,
especially those of the distal nephron. Function-
ally, severe vasoconstriction, principally applied to
the afferent arteriole, reduced glomerular filtration
rate, and loss of autoregulatory responses charac-
terize the renal microvascular response to injury.
The kidney is also unable to generate maximum
urinary concentration or to reclaim filtered sodium
fully. Reversal of these changes coincides with the
reestablishment of the normal renal epithelial bar-
rier with new cells that reline the denuded tubules.
We hypothesize that renal injury and recovery are
part of the same responses and that these processes
depend on proper coordination of the cell cycle
machinery. Furthermore, we show that the engage-
ment of the cell cycle not only underlies recovery
but also is an important determinant of whether
cells survive the injury itself. The process of re-
generation and recovery begins shortly after injury,
in which both necrotic cells and replicating cells
line the injured proximal tubule. The commitment
to DNA synthesis is rapid and temporally coin-
cides with the emergence of the morphologic and
functional derangements. The rapid appearance of
messenger RNA (mRNA) for immediate-early
genes (eg, c-fos, c-jun, and egr-1),1,2 whose ex-
pression frequently is associated with the entry of
cells from quiescence into the cell cycle, has been
observed in acute renal failure arising from several
causes. Similarly, proliferating cell nuclear antigen
(PCNA) expression increases after acute renal fail-
ure.3-5 PCNA is a nuclear protein that is a subunit
of the DNA polymerase responsible for DNA rep-

lication.6,7 Its expression identifies cells that have
entered the DNA synthetic phase of the cell cycle.8

From these parameters it is clear that damage of
cells that results in cell death also results in cell
replication.

CELL CYCLE PROGRESSION AND ITS
REGULATION

Studies with eukaryotic models have elucidated
that orderly progression through the cell cycle is
regulated by the sequential synthesis, activation,
compartmentalization, and degradation of proteins
controlling both entry and exit from each phase of
the cycle: G1 (gap-1), S (DNA synthesis), G2
(gap-2), and M (mitosis) (Fig 1). These regulations
ensure that mitosis cannot begin before DNA syn-
thesis has completed, that DNA synthesis is initi-
ated only after cell division, and that both mitosis
and DNA replication cannot proceed with unre-
paired DNA damage. One of the major controls on
cell cycle progression is the regulation of phos-
phorylation of different substrates by interacting
proteins consisting of a cyclin and a cyclin-depen-
dent kinase (cdk). Cyclins, the regulatory subunit
of the heterodimer, originally were found by nature
of their cyclic oscillations during the sea urchin
cell cycle.9 (The first described cyclin, now called
cyclin B, was synthesized during interphase and
degraded during mitosis.) The catalytic subunit of
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the complex is a serine/threonine protein kinase,
cdk,10 which is inactive unless associated with a
cyclin. The binding of the cyclin to its cdk induces
several conformational changes in the active site of
the cdk,11 conferring basal kinase activity,12 and
full activity is dependent on threonine phosphory-
lation of the cdk by the heterotrimeric cdk-activat-
ing kinase.13 In vertebrates, several different cyc-
lins and cdk partners are sequentially active
throughout the cell cycle. In lower eukaryotes (eg,
budding and fission yeast), different cyclins asso-
ciate with the same cdk subunit.

Because cells enter the cycle in G1, usually
requiring transmission of extracellular signals by
growth factor receptors and integrin-derived adhe-
sion signals,14 cyclin D is synthesized and activates
the kinase activity of cdk 4/6.15 These kinases
phosphorylate the carboxyl-terminal domain of the
retinoblastoma protein (Rb), a transcriptional re-
pressor, displacing the binding of histone deacety-
lase,16 and blocking active repression by Rb. The
partial inactivation of Rb is correlated with in-
creased expression of cyclin E and cyclin E–cdk2

kinase activity. This kinase causes hyperphospho-
rylation of Rb, resulting in the release of Rb-bound
E2F transcription factor, and activating a cascade
of responsive genes, primarily those involved in
DNA synthesis.17 Cyclin E–cdk2 activity peaks at
the G1/S transition, but shortly after entry into S,
cyclin E begins to degrade, cyclin A starts to be
synthesized, and cyclin A–cdk2 activity starts to
increase. Peaks of cdk2 activity occur during S
phase and just before mitosis.18 During late G2,
cyclin B accumulates in the cytoplasm. At the
beginning of mitosis, cyclin B translocates to the
nucleus, its associated kinase is activated, and cy-
clin B–cdc2 kinase now controls entry into M
phase. During anaphase and telophase of mitosis,
cyclin B is degraded by ubiquitin- and proteosome-
dependent proteolysis,19 causing cdc2 inactivation,
and the divided cells reenter G1 to begin another
cycle.

Examination of cell cycle mutants revealed that
most mutations result in arrest at specific stages of
the cycle. This led to the concept of cell cycle
surveillance mechanisms (checkpoints) that detect

Fig 1. The cell cycle and some of its controls.

PRICE, MEGYESI, AND SAFIRSTEIN450



defects in DNA synthesis and chromosome segre-
gation to block cycle progression.20 These check-
points also ensure that each phase of the cycle is
irreversible, that each phase is completed before
another is initiated, and that each phase follows the
other in a sequential fashion. One of the major
regulatory checkpoints in the cell cycle occurs at
the G1 to S transition, when the cell either commits
to genomic DNA replication or to quiescence
and/or differentiation. It is also a major regulatory
intersection for cells that have sustained genomic
damage to undergo repair before entering the DNA
synthetic phase. In early G1, the level of a 21-kd
protein (p21) usually increases naturally, which
acts to prevent further cell cycle progression be-
cause p21 is a potent inhibitor of cdk2 activity.
This increase in p21 protein can occur for other
reasons. The mRNA can be induced by the p53
transcription factor after DNA damage,21 or by
p53-independent mechanisms, as we have reported
after renal injury.22 As cyclin D–cdk4/6 increases,
it titrates the level of p21 by sequestering it as part
of a quaternary protein complex also containing
proliferating cell nuclear antigen (PCNA, the DNA
polymerase processivity factor). The titration of
excess p21 by cyclin D allows cyclin E–cdk2 to
become activated, which is necessary for cell cycle
progression through G1 and into S. During late G1,
both cyclin D and p21 are degraded. The mecha-
nism of p21 degradation has not been characterized
fully, but it can be degraded by the proteasome
independently of ubiquitination23 and also by
caspase-324,25 in cells in which an apoptotic cas-
cade has been activated.

A second major cell cycle checkpoint occurs at
the G2 to M transition when the cell commits to
beginning cell division, having completed DNA
replication. Transport of cyclin B to the nucleus is
possibly dependent on phosphorylation,26 whereas
its associated cdk (cdc2) is both activated and
repressed by phosphorylation. Phosphorylation of
cdc2 at threonine161 by cyclin H-cdk7 is essential
for activity,27 whereas phosphorylation at threo-
nine14 and tyrosine15 by the kinases Wee128 and
Myt129 causes inactivation. The phosphorylation at
these latter 2 sites is regulated by cdc25C phos-
phatase, which dephosphorylates these sites before
mitosis30 when cyclin B–cdc2 moves into the nu-
cleus. Activated cdc2 complexes phosphorylate
several substrates, including lamins, condensins,
and Golgi matrix components—events important

for centrosome separation, breakdown of the nu-
clear envelope, spindle assembly, chromosome
condensation, and Golgi fragmentation.31 DNA
damage and incomplete replication inhibit this pro-
cess by stimulating synthesis of ATM and ATR
protein kinases. These kinases in turn activate
chk-1 and -2 kinases. Together these kinases acti-
vate transcription factors such as p53 and cause
phosphorylation and subsequent cytoplasmic com-
partmentalization of both cdc25C and cdc2,28,32-34

whose nuclear localization is crucial for G2 to M
transition. The compartmentalization of phosphor-
ylated cdc25C and cdc2 is primarily through bind-
ing by 14-3-3 proteins, induced by p53-depen-
dent35 and, as we have shown,36 p53-independent
mechanisms. Similarly, both p53-dependent and
-independent mechanisms activate p21, which di-
rectly inactivates the cdc2 kinase to cause G2 ar-
rest.

CELL CYCLE REGULATION BY CYCLIN
KINASE INHIBITORS

Two families of proteins interact with and
inhibit cyclin-dependent kinases. One family
specifically inhibits cdk4/6, the Ink4 (inhibitor
of cdk4) proteins.37 These are small molecular
weight proteins, ranging from 14 to 19 kd,38-42

each containing ankyrin repeats. They bind the
kinase subunit, preventing formation of an active
cyclin-cdk complex. As inhibitors of cdk4/6 ki-
nase they prevent Rb phosphorylation, arrest the
cell cycle in G1 phase, and require a functional
Rb to arrest the cycle.40,43 Their role in normal
cell cycle progression is to act as checks on the
assembly and activity of cyclin D– cdk4/6. Mem-
bers of this family have been associated with
terminal differentiation and senescence, and
their mutations or deletions have been associated
with cancer. The second family, of which p21 is a
member, also contains p27Kip1,44 and p57Kip2,45,46 the
Kip (cdk inhibitory protein) proteins. Xiong et al47

found that p21 could inhibit the activity of each
member of the cyclin-cdk cascade and that p21
overexpression inhibited the proliferation of mam-
malian cells. Similarly, p21 also can inhibit
PCNA47-49 and interfere with its role in DNA rep-
lication. These 2 binding moieties of p21 are lo-
cated on separate domains of the protein.50,51 Al-
though p57 seems to be expressed in only a limited
number of tissues, both p21 and p27 are expressed
in most cells, and p21 mRNA is induced by stress
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in p53-dependent and p53-independent pathways.
The p27 inhibitor is highly expressed in quiescent
cells, but as cells enter G1, nuclear p27 is trans-
ported into the cytoplasm and degraded after ubiq-
uitination. The p21 protein is expressed maximally
during G1 in which it negatively regulates cdk2
activity. As cyclin D–cdk4/6 levels increase dur-
ing G1, p21 is titrated, releasing the cdk2 inhibi-
tion.

CYCLIN KINASE INHIBITOR EXPRESSION
DURING ONTOGENY

The expression of p21 has been reported in
mouse embryo,52,53 especially in differentiating
myoblasts. We have found54 that in 12-day-old
mouse embryo, p21 expression is high in the com-
ma- and S-shaped bodies throughout the kidney. In
day 18 embryos, expression is still high in the
S-shaped bodies of the outer cortex; however, there
is little if any expression in the differentiated tu-
bules and within the inner cortex and medulla.
Expression of p21 is minimal in adult kidney.
Similarly, p21 expression has been observed using
in vitro differentiation systems.55-60 The other pro-
teins of the p21 family also have been associated
with differentiation in vitro and embryonic devel-
opment in vivo.46,61-64 However, gene ablation ex-
periments have shown that both p21 and p27
knock-out mice develop somewhat normally, and
that only p57 expression is necessary for embry-
onic development.65-70

CELL CYCLE ACTIVATION AND RENAL
FAILURE

Shortly after acute renal failure, many normally
quiescent kidney cells enter the cell cycle. There
are increases in nuclear PCNA levels, as well as
3H-thymidine and bromodeoxyuridine (BrdU) in-

corporation into nuclear DNA. However, coinci-
dent with this increased activity, we have shown
that the p21WAF1/CIP1/SDI1 gene is activated in mu-
rine kidney cells.22 The Northern blot in Fig 2
shows the relative amounts of hybridization found
in RNAs isolated from rat kidney before and after
different models of acute renal failure, probed with
p21-specific radiolabeled complementary DNA.
No p21 mRNA could be detected at this exposure
time in kidney from the untreated rat, but there was
a marked induction of p21 mRNA in all experi-
mental models of acute renal failure. In the isch-
emia model, there was a slight increase of p21
mRNA even before release of the clamp (0 hours);
the major increase started 1 hour after reflow and
persisted thereafter with maximum expression at 4
hours. There was a marked induction after 24 hours
of unilateral or bilateral ureteral obstruction, and
the highest level was detected in kidney isolated
after cisplatin treatment.

The sites of p21 mRNA overexpression were
localized by in situ hybridization using an anti-
sense digoxigenin-labeled RNA probe. Highest
amounts of p21 mRNA were found in the outer
stripe of the outer medulla, in the cells of the thick
ascending limbs. The distal convoluted tubule cells
in the cortex also were stained. The localization of
p21 mRNA in all types of acute renal failure is
similar. A more sensitive localization for p21 pro-
tein using immunohistochemistry showed the pro-
tein to be present in nuclei of both distal and
proximal tubule cells.

THE INFLUENCE OF p21 ON ACUTE RENAL
FAILURE

The effect(s) of p21 induction in acute renal
failure was studied by comparing wild-type
p21(�/�) mice with mice homozygous for a p21

Fig 2. Northern blot analysis of p21 mRNA transcripts in rat kidney cells.

PRICE, MEGYESI, AND SAFIRSTEIN452



gene deletion, p21(�/�). After either cisplatin ad-
ministration or after 30 or 50 minutes of ischemia,
p21(�/�) mice displayed a more rapid onset of the
physiologic signs of acute renal failure, developed
more severe morphologic damage, and had a
higher mortality than their p21(�/�) littermates.4,5

Blood urea nitrogen values in untreated animals
were nearly identical, and 1 day after cisplatin
injection the values in the wild-type mice popula-
tion were still within the untreated range. How-
ever, at this time, the values in the p21(�/�)
population were elevated. Two and 3 days after
cisplatin injection, the blood urea nitrogen level of
the wild-type mice was increased, but never to the
extent of the p21(�/�) mice. Similar findings
were observed after ischemia. A marked difference
in mortality also was observed (Fig 3). After either
cisplatin-induced or ischemic acute renal failure,
morphologic damage in kidneys of the p21(�/�)
mice was evident throughout the cortex, whereas in
the p21(�/�) kidneys it was restricted primarily to

Fig 3. Kaplan-Meier survival curve. Comparison of
the survival of p21(�/�) and p21(�/�) mice after 30
and 50 minutes of renal ischemia.

Fig 4. Histology of kidney after cisplatin injection. Representative sections from either 1 day (left panels) or 3
days (right panels) after injection of wild-type or p21(�/�). Magnification �390.
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the S3 segment of the proximal tubules. Represen-
tative photomicrographs of kidney sections from
days 1 and 3 after cisplatin administration are
shown (Fig 4).

In addition to necrosis, apoptosis also was more
widespread in the p21(�/�) mice after cisplatin
treatment. In the wild-type mice, most of the apo-
ptotic cells were located in the distal nephron,
whereas in the p21(�/�) mice, both distal nephron
and proximal tubules contained apoptotic cells.
Apoptosis was not found to be a major reaction in
the first several days after ischemia either in
p21(�/�) or p21(�/�) mice.

As would be expected from the role of p21 as
a cell cycle inhibitory protein, parameters such
as BrdU incorporation into nuclear DNA and
increases of PCNA content were much higher
and more widespread after acute renal failure in
p21(�/�) mice, compared with p21(�/�) mice.
Representative photomicrographs of kidney sec-

tions from 1 day after cisplatin injection stained
for PCNA and from 4 days after cisplatin stained
for BrdU are shown (Fig 5). Similarly, in another
model of acute renal failure, ureteral obstruction,
Hughes et al71 found that p21 expression limited
kidney cell proliferation.

MECHANISM OF p21 PROTECTION?

After cisplatin injection or renal ischemia in
vivo, we found that in kidneys of p21(�/�) mice,
a more widespread cell death was associated with
an increased cell cycle activity and increased nu-
clear size.36 In considering possible causes for this
increased size, we investigated whether these cells
contained greater than normal amounts of nuclear
DNA. Figure 6 is an in situ hybridization for chro-
mosome 15 in nuclei isolated from mice after acute
renal failure. Characteristic of this analysis, 2 spots
of hybridization can be seen in interphase nuclei
having a normal 2N DNA content (Fig 6A). How-

Fig 5. Cell-cycle analysis in kidney after cisplatin injection. Immunodetection of nuclear BrdU incorporation 4
days and of nuclear PCNA localization 1 day after injection. Sections were from wild-type and p21(�/�) mice.
Magnification �200.
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ever, several areas of hybridization can be seen in
kidney nuclei isolated from p21�/� mice after
acute renal failure (Fig 6B), showing polyploid
DNA content, resulting from an uncoordinated cell
cycle.

We also found the induction of a protein, 14-3-
3�, a regulator of G2 to M transition, after both
cisplatin and ischemia-induced acute renal failure
in vivo.36 Recently, it was shown that this protein
may influence cell fate after injury.33,35,72 In the
absence of p21 induction, overexpression of the
14-3-3� gene in growing cells caused an uncoor-
dinated cell cycle in which cells did not divide
synchronously after G2, but rather entered another
DNA synthetic phase. This increased DNA content
in the cells, which in turn led to cell death. How-
ever, expression of both p21 and 14-3-3� led to
cell cycle inhibition rather than to cell death. To
explore the roles of p21 and 14-3-3� in relevant in
vitro models of renal cell injury, we determined the
effect of either cisplatin or hydrogen peroxide ex-
posure on cells in which one or both of these genes
were deleted.36 Our results showed that as com-
pared with wild-type cells, cells with the gene
deletions had much decreased viability, both in
dose-response experiments and in survival times
after cisplatin or hydrogen peroxide exposure.

These studies are compatible with the idea that
cell stress induces pathways that compete between
cell death and cell cycle arrest (Fig 7). In wild-type
cells, stress results in induction of cell cycle inhib-
itors that lead to arrest, whereas in p21- and/or
14-3-3�–deleted cells, similar stress causes cell
death pathways to predominate. Our results indi-
cate that coordinated cell cycle control, initially
manifested as cell cycle inhibition, is necessary for
optimum recovery from acute renal failure. Be-

Fig 6. In situ hybridization analysis of kidney nuclei
for ploidy determination. Representative nuclei iso-
lated from kidney of mice before cisplatin injection, or
from (A) wild-type mice after cisplatin injection, or
from (B) p21(�/�) mice 4 days after cisplatin.

Fig 7. Proposed mechanism for the interaction of cell cycle inhibitors with the course of acute renal failure.
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cause these proteins are highly expressed in termi-
nally differentiated cells only after injury, we pro-
pose that cell cycle coordination by induction of
these proteins could be a general model of tissue
recovery from stress and injury. Our model of cell
cycle regulation after injury is that after acute renal
failure, in which epithelial cells are damaged, nor-
mally quiescent cells enter the cell cycle. In kid-
neys of wild-type animals, cell cycle inhibitors
(p21 and 14-3-3�) also are induced, and their com-
bined activities check the cell cycle at G1 and G2.
As extrapolated from the in vitro results, the pres-
ence of both p21 and 14-3-3� is necessary to
coordinate the cell cycle, and the absence of either
of these factors will result in increased cell death
and increased mortality from acute renal failure. In
this model, cell cycle arrest is a prerequisite for
renal cell repair and/or regeneration after injury
and the inhibition of the cell cycle allows the repair
of cellular damage to occur before cell replication.

The elevation of p21 expression has been asso-
ciated with suppression of apoptosis caused by a
variety of stimuli and in a variety of cells. Human
colorectal cancer cells (HCT116 or RKO) could be
protected from either p53- or prostaglandin-in-
duced apoptosis by p21-induced growth arrest.73,74

Using RKO cells, other agents, such as serum
withdrawal and the growth factor receptor antago-
nist suramin, causing growth arrest in the absence
of p21 elevation, did not prevent prostaglandin-
induced apoptosis, whereas mimosine, which
caused growth arrest and p21 elevation, could pro-
tect against prostaglandin-induced apoptosis.74 Ap-
optosis was promoted in MCF7 breast cancer cells
after prostaglandin treatment by use of antisense
RNA to lower induced p21 mRNA.75 Other trans-
formed cells, such as carcinomas,76 melanomas,77

leukemias,24 hepatomas,18,78 myoblasts,79 and neu-
roblastomas80 have been found to be susceptible to
p21 growth arrest and protection from apoptosis.
The suppression of p21 induction by the Myc
oncogene/transcription factor was correlated with
increased p53-induced apoptosis in HCT116
cells.81 Several nontransformed cell types also
have been used to correlate p21 induction with
protection from cell death. Murine hematopoeitic
cells undergo apoptosis after interleukin 3 with-
drawal and exposure to ionizing radiation, which is
correlated with decreased p21 expression.82 Apo-
ptosis in umbilical vein endothelial cells caused by
growth factor deprivation is correlated with p21

cleavage and its exit from the nucleus.83 Preven-
tion of p21 cleavage by appropriate caspase-resis-
tant p21 mutants suppressed apoptosis in the en-
dothelial cells.

Inguaggiato et al84 have proposed that resistance
to cell death in kidney by heme oxygenase-1 over-
expression is by p21 up-regulation, and Miyaji et
al85 have speculated that p21 induction contributes
to acquired resistance to cisplatin-induced acute
renal failure. We have shown that p21(�/�) mice
are more sensitive to renal ischemia and cisplatin
administration than p21(�/�) mice,3,4 that
p21(�/�) cultured cells have more cell death than
p21(�/�) cells when exposed to hydrogen perox-
ide and cisplatin,36 and that primary cultures of
proximal tubule cells isolated from p21(�/�) mice
are more sensitive to cisplatin than those from
p21(�/�) mice.86

FUTURE STUDIES

Confronted with a hostile environment, the kid-
ney mounts a response that is initiated by signaling
molecules that engage multiple pathways including
those that regulate the cell cycle. The cell under-
going these changes may decide to check the pro-
gression of the cycle and repair damage before
proceeding or entering a pathway destined to cell
death. This decision point is regulated carefully
and cyclin-dependent kinase inhibitors, especially
p21, are important in this decision. The interface
between these pathways and the cell death path-
ways are first emerging but phosphorylation events
critical to cell function reside in the cyclin-depen-
dent kinases and the kinases, phosphatases, inhib-
itors, and activators that regulate their activities.
The identification of the precise pathways engaged
in this process is an area of active research not only
in acute renal failure but also in the field of cell
biology in general.

Manipulation of cell cycle inhibitors, either by
up-regulation of these genes or by the use of cdk
inhibitory drugs, could ameliorate the effect of
renal stresses such as cisplatin administration or
ischemia reperfusion. Similarly, timely down-reg-
ulation of cyclin kinase inhibition could be a strat-
egy for accelerating cellular regeneration after in-
jury.
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