Targeted radionuclide therapy holds promise as a new treatment for cancer. Advances in imaging are making it possible for researchers to evaluate the spatial distribution of radioactivity in tumors and normal organs over time. Matched anatomical imaging, such as combined single-photon emission computed tomography/computed tomography and positron emission tomography/computed tomography, has also made it possible to obtain tissue density information in conjunction with the radioactivity distribution. Coupled with sophisticated iterative reconstruction algorithms, these advances have made it possible to perform highly patient-specific dosimetry that also incorporates radiobiological modeling. Such sophisticated dosimetry techniques are still in the research investigation phase. Given the attendant logistical and financial costs, a demonstrated improvement in patient care will be a prerequisite for the adoption of such highly-patient specific internal dosimetry methods.

Semin Nucl Med 38:321-334 © 2008 Elsevier Inc. All rights reserved.

Systemically delivered radionuclide therapy of cancer may be accomplished by targeting the tumor itself, the tumor-associated vasculature, or the tumor-associated stroma. In each case, either because of the spatial distribution of the targets or the anatomic and physiological transport and penetration characteristics of the carrier, the spatial distribution of radionuclide within the tumor or normal organs is rarely uniform. Advances in imaging technology, accompanied by advances in image reconstruction and processing methodologies, as well as the availability of positron-emitting analogs of therapeutic radionuclides that allow PET imaging for therapy treatment planning, have made it possible to measure the nonuniformity in radionuclide distribution in patients. Currently, the resolution for nuclear medicine imaging is in the millimeter to centimeter range, which makes it possible to detect macroscopic nonuniformities in the activity distribution.

Such information, combined with information regarding tissue properties that may be obtained from anatomical imaging, makes it possible to perform dosimetry calculations that account for the nonuniformity in activity distribution over time and space. In turn, this makes it possible to take a first tentative step toward providing a radiobiological interpretation of absorbed dose (and dose-rate) distributions. The objective of such an approach is to translate absorbed dose to tumor control or normal organ toxicity probability. In this work, we review recent advances in imaging-based 3-dimensional (3D) dosimetry that incorporate radiobiological modeling.

Overview of Imaging-Based Dosimetry Methods

Patient-specific, 3D image-based internal dosimetry involves using the patient’s own anatomy and spatial distribution of radioactivity over time to obtain an absorbed dose calculation that provides as output the spatial distribution of absorbed dose. The results of such a patient-specific 3D imaging-based calculation can be represented as a 3D parametric image of absorbed dose, as dose-volume histograms over user-defined regions of interest or as the mean, and range of absorbed doses over such regions.

A number of groups have pursued and contributed to 3D imaging-based patient-specific dosimetry. Several efforts used the basic MIRD formalism as applied to a standard phantom geometry. The standard phantom geometry was modified to include on-line Monte Carlo calculation and
therefore the ability to introduce tumors and adjust organ masses and shapes.

The software package, MABDOSE12,13 uses a 3D lattice in which to conduct radiation transport, scoring energy deposition in discrete voxels. The dosimetry system uses the same algorithm used by the MIRD committee for photon transport, simulating interactions in a hexagonal-hole collimator and the gamma camera crystal, has been included in the dosimetry package. The earliest 3D imaging-based targeted radionuclide dosimetry package described in the literature35 was heavily influenced by treatment planning techniques developed for external radiotherapy treatment planning. The 3D-ID (3D internal dosimetry) software package takes the distribution of radionuclide for a given patient (eg, from SPECT or positron emission tomography [PET]) and combines it with anatomical information (eg, CT or MRI) to yield absorbed dose estimates that are specific to a particular patient’s biodistribution and anatomy.7,10,34,36-38 This work introduced the concept of dose-volume histograms for internally administered radionuclides.39 The software package, 3D-ID, may be used to conduct both Monte Carlo and point-kernel-based calculations. It has been used to examine the impact of different radionuclides on the dose distribution, given a fixed cumulated activity distribution.6 3D-ID has been used to perform a
detailed analysis of tumor dose versus response in the treatment of patients with non-Hodgkin’s lymphoma by using 131I-anti-B1 antibody.38 The point-kernel module in 3D-ID, and data from a clinical trial of 131I-labeled anti-B1 antibody were used. More recently, 3D-ID has been used in thyroid cancer patients using 124I PET imaging data with CT for tumor dosimetry.40 This study demonstrated use of multiple PET image studies which were registered across time and integrated, voxel-by-voxel, to provide a 3-D cumulated activity image used in the dosimetry calculation. The same data set and general approach was also used to perform normal organ dosimetry.41 A next-generation version of 3D-ID, named 3D-RD for 3D radiobiological dosimetry,42 has been developed that incorporates radiobiological modeling. 3D-RD is described in detail in the section “Imaging-based 3D Radiobiological Modeling.”

Quantitative Imaging Input

Accurate imaging-based dosimetry requires accurate quantitative imaging information. In PET, the imaging data are typically corrected for scatter and attenuation by the use of camera vendor software. Depending on the characteristics of the positron-emitting radionuclide, additional corrections may be required.43 In SPECT, a number of corrections are needed. A tremendous amount of work has been performed in this area, and readers are referred to recent books in this area44,45 as well as to a number of key individual contributions.46-57 The work of Frey and coworkers in this area is described in this article.58-64

Physical phantom experiments using 111In in the RSD torso phantom and Monte Carlo simulation experiments simulating 111In in the NonUniform Rational B-Spline (NURBS)-based cardiac torso (NCAT) phantom65,66 have been used to evaluate quantitative imaging. In the physical phantom experiment, activities were placed in the heart, lungs, liver, and background with activity concentration ratios of 19:5:20:1. Two spherical lesions with diameters 25 mm and 35 mm were placed in the phantom. The spheres had activity concentrations relative to the background of 20:1 for the larger sphere and 110:1 for the smaller. The total activity used was 5 mCi. A GE Millenium VH SPECT system with Hawkeye x-ray CT, a 1”-thick crystal and a MEGP collimator were used for data acquisition. Planar whole-body anterior and posterior images were obtained with a pixel size of 2.2 mm. SPECT projections were acquired into 128 × 128 matrices with a 4.4-mm pixel size at 180 views over 360° with the use of 2 × 14% wide energy windows centered at 171 and 245 keV. The SPECT acquisitions were followed by a radiograph CT scan. Two SPECT studies were performed, one covering the upper part of the phantom and one the lower part. Long acquisitions were used to obtain low noise data. A calibration image using a syringe containing 18.5 MBq (500 μCi) of 111In was also obtained.

The projections were reconstructed with OSEM reconstructions with compensation for various combinations of attenuation (A), scatter (S), Geometric Response Function (G), and Collimator-Detector Response Function (D).62 Regions of interest (ROIs) around the various organs were manually defined with the SPECT and CT slices. For the spheres, the axial resolution was insufficient to draw accurate ROIs; therefore, spherical ROIs were created with the correct size and aligned with the centers of the lesions. For the planar studies, ROIs were drawn manually and made smaller than the actual organs to avoid overlap. For the SPECT, the reconstructed pixel values were converted to activity concentration using the calibration factor. For the planar studies, TEW scatter compensation was performed before computing the geometric mean. The geometric mean values were converted to activity using a scale factor based on the whole body geometric mean counts and the known activity in the phantom. Relative error in the total activity in each ROI was determined and the results are shown in Table 1 (negative signs indicate underestimation compared with the true activity).

Note that, with full compensation, the quantitative accuracy for SPECT was relatively good. Accuracy was greatly improved by the addition of attenuation and scatter compensation and, for the case of the spheres, geometric response function compensation. For 111In and this particular collimator, collimator-detector response function (CDRF) compensation provided only modest improvements. This likely is a result of the fact that the collimator penetration and scatter fraction is only about 11% and is relatively independent of distance. Thus, the calibration procedure effectively accounted for collimator effects. Also note that planar imaging is generally worse than the SPECT methods, especially for the spheres and the lung region.

A simulation experiment for a single phantom anatomy and biodistribution was performed to further demonstrate the efficacy of the corrections outlined already. In this study, the NURBS-based cardiac torso (NCAT) phantom (Fig. 1) was used as a model of human anatomy. The SimSET Monte Carlo (MC) simulation code (University of

<table>
<thead>
<tr>
<th>Method</th>
<th>Heart</th>
<th>Lung</th>
<th>Liver</th>
<th>Large Sphere</th>
<th>Small Sphere</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSEM-NC</td>
<td>−75.56%</td>
<td>−62.06%</td>
<td>−70.78%</td>
<td>−76.76%</td>
<td>−78.22%</td>
</tr>
<tr>
<td>OSEM-A</td>
<td>31.73%</td>
<td>38.49%</td>
<td>42.79%</td>
<td>−1.11%</td>
<td>−11.75%</td>
</tr>
<tr>
<td>OSEM-AS</td>
<td>−8.36%</td>
<td>−1.60%</td>
<td>0.04%</td>
<td>−20.30%</td>
<td>−22.42%</td>
</tr>
<tr>
<td>OSEM-AGS</td>
<td>−4.58%</td>
<td>3.34%</td>
<td>4.65%</td>
<td>−2.38%</td>
<td>3.85%</td>
</tr>
<tr>
<td>OSEM-ADS</td>
<td>−5.22%</td>
<td>2.48%</td>
<td>4.11%</td>
<td>0.74%</td>
<td>9.06%</td>
</tr>
<tr>
<td>Planar</td>
<td>−5.16%</td>
<td>18.9%</td>
<td>−2.51%</td>
<td>14.5%</td>
<td>−21.3%</td>
</tr>
</tbody>
</table>
Washington67) combined with a method for modeling the CDRF was used for imaging simulation.68 Noise modeling was neither clinically realistic nor Poisson distributed. Projection data of the kidneys, liver, and the remainder of the body (including lungs, heart, pelvic marrow, large blood vessels in the chest and abdomen, and spleen) were separately generated. A GE VG camera with 1” crystal and a medium-energy general-purpose (MEGP) collimator was simulated. Both 111In photopeaks were simulated. The uptake in the liver, lungs, blood, bone marrow, kidneys, spleen, and body at 0 hours was based on the values determined from a patient study using Zevalin.69 Each organ, and the body individually, were then scaled to model the observed kinetics for that organ.

With the use of this procedure, both simulated SPECT and anterior and posterior planar datasets at 0, 5, 24, 72, and 144 hours after injection were generated. The SPECT images were reconstructed with ordered-subsets expectation maximization (OSEM) with no compensation (NC) and with (Attenuation, Collimator-Detector Response Function and Scatter) ADS compensation. The images (see Fig. 2) were also reconstructed with an ordered subsets MAP (OSMAP) algorithm with ADS compensation with a prior that penalizes deviations from the region mean in the major blood vessels, marrow, heart, lungs, liver, kidneys, and spleen. For the OSMAP reconstructions, the true regions were used as the regions in which to enforce the prior (the region means were estimated during the reconstruction).

Note the good resolution in the OSEM-ADS images compared with OSEM-NC, which is attributable to the CDRF compensation. The last 3 images in Fig. 2 are from the OSMAP-ADS reconstruction. Note that the intensity inside the organs is very uniform and that the degree of uniformity is controlled by the prior. Also note that the edges are very sharp. Furthermore, the background region is not smooth, because the prior was not applied in this region.

By using these simulated images, we integrated the exponential clearance curve in each organ. This was done both for conjugate-view planar (C-Planar) and Q-Planar, a planar quantitation method wherein scatter and attenuation are corrected by Monte Carlo modeling using CT images to define organ anatomy and composition.70,71 OSMAP-ADS (with $\beta = 0.1$) reconstruction was used to obtain Q-SPECT. Also, planar/SPECT methods where the half-life was determined from the planar images and the fraction of injected activity at time zero was determined by extrapolating the fraction of injected activity for the 24-hour SPECT image back to time zero were used. The resulting residence times were compared with the true values and the results are shown in Table 2. Note that, once again, negative values represent underestimates. The SPECT residence times for the planar/SPECT method were generally good compared with those from the purely planar method, but there were still significant discrepancies.
The results of this simulation study indicate improved accuracy of quantitative SPECT methods as compared with planar and even planar/SPECT methods in estimating the residence times. Because the residence times are directly related to organ dose estimates, the organ dose estimates will be similarly better. These data also point out that the accuracy of planar imaging-based methods commonly used depends strongly on patient-specific factors. Improved planar methods or the use of quantitative SPECT are required to obtain more accurate organ dose estimates.

The efficacy of SPECT with compensation for physical image degrading factors in obtaining quantitative activity estimates for 131I imaging has also been investigated. The same phantom (including the same relative organ activities) as in the 111In analysis, above, was used. To highlight the power of iterative reconstruction approaches that simulate the collimator and detector response physics, collimators having thinner septa than traditionally used for 131I imaging were also included in the study. The simulations were performed using low-energy, high-resolution (LEHR), MEGP, and high-energy general-purpose (HEGP) collimators. To reduce simulation time, only the 364 keV photon (and not higher energy photons) was modeled; noise was not included.

The noise characteristics of CDRF compensation were also investigated. To do this, the counts in the HEGP image were scaled so that the number of geometrically collimated photons was at the same count level as for clinical 111In Zevalin images and simulated Poisson noise. For the other collimators, the projection data were scaled by the same factor as for the HEGP images times the relative sensitivity of the collimator with respect to the HEGP collimator. Thus, the total number of counts in the LEHR projection data was greater by a factor of more than 70. However, CDRF compensation was shown to require more iterations and the CDRF deconvolution resulted in noise amplification. This result is illustrated in the last row of images in Fig. 3. Note that the noise is clearly greater in the LEHR image, resulting from noise amplification during CDRF and the need to use 100 iterations.

From Fig. 3, we see that, despite the very poor quality of the LEHR projections, the reconstructed image with ADS is quite good. The image quality for both the MEGP and HEGP images was also significantly improved by ADS compared with AGS. Also, note that the use of OSMAP results in images with very good resolution and very sharp edges. Table 3 shows the relative errors in the organ activity estimates using the images obtained with these different collimators and compensation methods. The perturbation-based geometric transfer matrix-based partial volume compensation (PVC) was also applied and the results are shown. For the LEHR collimator, 100 iterations were used while 20 were used for the MEGP and HEGP collimators. Note that, despite the very poor projection image, the ADS reconstruction for the LEHR collimator has relatively good quantitative accuracy, especially compared with the abysmal accuracy with AGS, indicating the potential efficacy of CDRF compensation. Also note that, despite significantly greater levels of penetration and scatter, the MEGP collimator provides, in general, more accurate quantification.

These data also demonstrate the importance of PVC: the use of either the perturbation-based geometric transfer matrix method or OSMAP resulted in significantly improved quantitative accuracy, especially for small structures like the blood and bone marrow, but also for organs like the spleen that are near organs with high uptake (such as the blood or heart). In the columns that include a “±,” the values are the mean and standard deviation over 50 realizations of noisy projections. As indicated by the noise in the image, the activity estimates from the LEHR collimator are less precise than those for the MEGP or HEGP collimators despite having ~70 times more counts. For the MEGP and HEGP collimators, the precisions are similar. Though these results are not for an optimal number of iterations they are suggestive that the choice of collimators with thick septa for 131I imaging is not as obvious when the goal is accurate quantification and when CDRF compensation is used.

The question of quantification of structures of different sizes was examined by introducing spheres of different diameters in the femoral and inguinal regions of the phantom (Fig. 4). The results were generated with OSEM-ADS, with and without PVC; 20 iterations with 8 subsets per iteration were used. The pixel and bin size were 0.442 cm. HEGP collimation was simulated; the phantom was 128 × 128 × 200. One-hundred twenty 128° projections spanning 360° were collected. The phantom organ activity concentration was chosen to match that of a recent NHL imaging simulation study: background = 4; blood = 48; bone marrow = 4; heart = 48; kidneys = 80; liver = 28; lung = 28; spleen = 52; tumor = 100. The results show 20% to 30% quantitative accuracy when the lesion size is >2.5 cm and results are obtained without PVC. Partial volume correction leads to a 5 to 10% overestimate of the activity. Because of the lower photon energy and reduced scatter, 111In images are expected to yield better results for small lesions.

Table 3

Relative Error in Estimated Residence Time for Planar and SPECT

<table>
<thead>
<tr>
<th>Residence Time (h)</th>
<th>Heart</th>
<th>Lung</th>
<th>Liver</th>
<th>Kidney</th>
<th>Spleen</th>
<th>Marrow</th>
<th>Vessels</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-planar</td>
<td>20 ± 2%</td>
<td>−2 ± 0.8%</td>
<td>29 ± 1%</td>
<td>−21 ± 3%</td>
<td>−12 ± 1%</td>
<td>−24 ± 1%</td>
<td>−36 ± 1%</td>
</tr>
<tr>
<td>Q-planar</td>
<td>−6.5 ± 1%</td>
<td>10 ± 1%</td>
<td>−4 ± 1%</td>
<td>−7 ± 3%</td>
<td>−5 ± 3%</td>
<td>−1 ± 2%</td>
<td>−3.5 ± 3%</td>
</tr>
<tr>
<td>Q-SPECT</td>
<td>−3.6 ± 0.5%</td>
<td>2 ± 0.8%</td>
<td>−4.6 ± 0.4%</td>
<td>−5 ± 1%</td>
<td>−3 ± 1%</td>
<td>−0.5 ± 0.8%</td>
<td>6.4 ± 0.8%</td>
</tr>
<tr>
<td>C-planar/Q-SPECT</td>
<td>−9 ± 1%</td>
<td>−10 ± 0.8%</td>
<td>−8 ± 0.7%</td>
<td>−21.5 ± 3%</td>
<td>−17 ± 3%</td>
<td>−18 ± 1.3%</td>
<td>−9 ± 2%</td>
</tr>
<tr>
<td>Q-planar/Q-SPECT</td>
<td>−5 ± 1%</td>
<td>−0.6 ± 1%</td>
<td>−5 ± 1%</td>
<td>−3 ± 0.5%</td>
<td>−2.5 ± 3%</td>
<td>−0.5 ± 2%</td>
<td>5 ± 3%</td>
</tr>
</tbody>
</table>
Radiobiological Modeling

Accurate, detailed absorbed dose calculations are useful only to the extent that they are biologically relevant and easily interpretable. The uniformity (or lack thereof) of absorbed dose distributions and their biological implications has been examined intensively, primarily in animal studies, however. To address the question of how to best represent the large amount of data in 3D distributions of absorbed dose, one may look to the radiotherapy field and use dose-volume histograms to represent dose distributions in targeted radionuclide therapy.

Equivalent Uniform Dose (EUD)

The EUD model takes this one step farther by introducing the radiobiological parameters, α and β, the sensitivity per unit dose, and per unit dose squared in the linear-quadratic dose-response model to convert the spatially varying absorbed dose distribution into an equivalent uniform absorbed dose value that would yield a biological response similar to the one expected from the original dose distribution. This provides a single value that may be used to compare different dose distributions; the value also reflects the likelihood that the magnitude and spatial distribution of the absorbed dose is sufficient for tumor kill. The concept (and value) of EUD is illustrated by considering a tumor in which one-half of the volume receives a dose of 100 Gy and the other half receives 0 Gy. Such an absorbed dose distribution would lead to treatment failure since the tumor half not exposed to radiation would re-grow. In this case the absorbed dose delivered uniformly throughout the tumor volume (ie, the EUD) would be close to zero to be consistent with the expected biological effect of the dose distribution described above. The illustration should also make it clear that EUD is not valid for normal organs since normal organs have a structural organization (ie, 100 Gy to even a small portion of the spine can lead to paralysis; in contrast, 100 Gy to a large portion of the liver may be inconsequential since the liver can regenerate). Calculation of EUD requires knowledge of the radiosensitivity of normal tissues.

Figure 3

Top row, left to right: coronal slice through phantom; left lateral projection with LEHR collimator; left lateral projection with MEGP collimator; left lateral projection with HEGP collimator; coronal SPECT reconstruction with LEHR collimator and ADS compensation (100 iterations of OSEM with 8 subsets). Middle row, left to right, SPECT reconstructions from 20 iterations of: MEGP and OSEM-AGS; MEGP and OSEM-ADS; MEGP and OSMAP-ADS; HEGP and OSEM-AGS; HEGP and OSEM-ADS; HEGP and OSMAP-ADS. Bottom row, left to right, reconstructions from noisy projections using same number of iterations as for noise-free images: LEHR and OSEM-ADS; MEGP and OSEM-ADS; HEGP and OSEM-ADS.
the tumor and the assumption that all elements of the tumor are clonogenic. As is well-recognized, the radiosensitivity is likely to vary in different tumor regions (e.g., hypoxic versus normoxic). Clonogenicity, likewise, will be variable throughout the tumor (i.e., dormant versus rapidly proliferating regions). Nevertheless, EUD is still potentially useful in comparing different tumor absorbed dose distributions in a patient trial population.

Biologically Effective Dose (BED)

That dose rate influences response has been known for several decades. The BED formalism, initially termed extrapolated response dose (ERD), was developed to compare different fractionation protocols for external radiotherapy. BED may be thought of as the actual physical dose adjusted to reflect the expected biological effect if it were delivered at a reference dose rate. As in the case of EUD, by relating effects to a reference value, this makes it possible to compare doses delivered under different conditions. In the case of EUD, the reference value relates to spatial distribution and is chosen to be a uniform distribution. In the case of BED, the reference value relates to dose rate and is chosen to approach zero (total dose delivered in an infinite number of infinitesimally small fractions). In radionuclide therapy, the dose rate varies temporally, and a number of investigators have examined the implications of this on tumor control and normal tissue toxicity. Motivated by the desire to incorporate internal emitter dosimetry in conjunction with external beam radiotherapy, the group at the Royal Marsden first implemented voxel-based BED calculations to account for the difference in dose-rate between radionuclide therapy and external beam radiotherapy and to present BED maps.

The rationale for incorporating BED into imaging-based dosimetry software such as 3D-RD is also driven, in part, by the use of engineered, lower molecular weight targeting agents (peptides and single-chain constructs), by multistep targeting approaches, and by bone-seeking agents. The targeting and excretion kinetics of these agents differ

<table>
<thead>
<tr>
<th>Table 3</th>
<th>Relative Error (in %) in Organ Activity Estimates for the 3 Collimators and Various Reconstruction Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organ/ROI</td>
<td>LEHR Collimator</td>
</tr>
<tr>
<td>Blood</td>
<td>60.2 ± 1.1</td>
</tr>
<tr>
<td>Marrow</td>
<td>18.1 ± 0.4</td>
</tr>
<tr>
<td>Kidney</td>
<td>10.0 ± 0.5</td>
</tr>
<tr>
<td>Liver</td>
<td>6.6 ± 0.4</td>
</tr>
<tr>
<td>Spleen</td>
<td>25.6 ± 2.4</td>
</tr>
</tbody>
</table>

Figure 4: Recovery coefficient as a function of lesion size for 2 lesions placed at the inguinal and femoral vessels. The effect of PVC is illustrated. (Color version of figure is available online.)
substantially and, as suggested by preclinical and clinical evidence, the dose rate at which a total dose is delivered may become an important parameter in understanding normal organ toxicity and tumor response. To date, almost all clinical studies have considered only total absorbed dose, the majority of which is delivered at an exponentially decreasing dose rate. In contrast, the benchmark for projecting potential toxicity and justifying initial phase I activity and absorbed dose levels has been the experience with normal organ tolerance in external beam radiotherapy. However, in external beam therapy, the absorbed dose is typically delivered at high dose-rate in daily 2-Gy fractions over a period of 30 to 40 days. In the simplest and more generally applied BED model knowledge of three tissue-specific parameters: \(\alpha \), \(\beta \), and \(\mu \), an estimate of the repair rate (assuming exponential repair) following tissue damage is required.

Imaging-Based 3D Dosimetry

3D imaging-based dosimetry entails the following steps: (1) Input a series of longitudinal 3-D SPECT/CT or PET/CT images. (2) Filter the images across time by using both the SPECT or PET data set and the corresponding CT set. (3) Obtain the cumulative activity for each voxel either by fitting an exponential function to each voxel and integrating analytically over time or by performing a numerical integration over time for each voxel. (4) Use the CT image voxel values to assign density and composition (ie, water, air and bone). (5) Use the 3-D cumulated activity image and the matched density and composition image to perform a Monte Carlo calculation to estimate the absorbed dose by tallying energy deposition in each voxel. (6) Present the absorbed dose distribution as a set of images, isodose contour plots, or as dose volume histograms for user-identified tumor or normal organ volumes.

Imaging-based 3D Radiobiological Modeling

To introduce radiobiological modeling, the steps described in the previous section are modified so that absorbed dose rate images are calculated for each time-point rather than for a cumulated activity map. To obtain the total absorbed dose the individual dose-rate images are integrated over time to yield images of absorbed dose. The individual absorbed dose rate images may also be interpreted as absorbed dose images reflecting the absorbed dose delivered over the imaging time-period. By fitting these images voxel by voxel to an exponential function, an image of absorbed dose rate may be obtained. This information, coupled with assignment of the radiobiological parameters, \(\alpha \), \(\beta \), \(\mu \), the radiosensitivity per unit dose, radiosensitivity per unit dose squared and the repair rate assuming an exponential repair process, respectively, can be used to generate a BED value for each voxel, and subsequently an EUD value for a particular user-defined volume.

In external radiotherapy, the expression for BED is as shown:

\[
BED = N\alpha \left(1 + \frac{d}{\alpha / \beta} \right) \tag{1}
\]

In this equation, \(N \) is the number of fractions given of absorbed dose, \(d \), delivered over a time interval that is negligible relative to the repair time for radiation damage (ie, at high dose rate) where the interval between fractions is long enough to allow for complete repair of repairable damage induced by the dose \(d \); repopulation of cells is not considered in this formulation. The parameters, \(\alpha \) and \(\beta \) are the coefficients for radiation damage proportional to dose (single event lethality) and dose squared (two events required for lethal damage), respectively. A more general formulation of eq 1 is shown in eq 2:

\[
BED(T) = D_f(T) \cdot RE(T), \tag{2}
\]

where \(BED(T) \) is the biologically effective dose delivered over a time \(T \), \(D_f(T) \) is the total dose delivered over this time, and \(RE(T) \) is the relative effectiveness per unit dose at time \(T \). The general expression for \(RE(T) \) assuming a time-dependent dose rate described by \(D(t) \) is given by eq 3:

\[
RE(T) = 1 + \frac{2}{D_f(T)} \int_0^T dt \cdot D(t) \int_0^t dw \cdot D(w) e^{-\mu(1-w)} . \tag{3}
\]

The second integration over the time-parameter, \(w \), represents the repair of potentially lethal damage occurring while the dose is delivered, ie, assuming an incomplete repair model. If we assume that the dose rate for radionuclide therapy, \(D(t) \) at a given time, \(t \), can be expressed as an exponential expression:

\[
D(t) = D_\text{iso}e^{-\lambda t}, \tag{4}
\]

where \(D_\text{iso} \) is the isocentric dose rate and \(\lambda \) is the rate at which the absorbed dose decreases (= ln(2)/\(t_\text{half} \); \(t_\text{half} \) = the half-life associated with the absorbed dose decrease), then, in the limit, as \(T \) approaches infinity, the integral in eq 3 reduces to:

\[
\frac{D_\text{iso}^2}{2\lambda (\mu - \lambda)}. \tag{5}
\]

Substituting this expression and replacing \(D_f(T) \) with \(D \), the total dose delivered, and using \(D_\text{iso} = \lambda D \), which may be derived from eq 4, we get:

\[
BED = D + \frac{\beta D^2}{\alpha} \left(\frac{\ln(2)}{\mu \cdot t_\text{iso} + \ln(2)} \right). \tag{6}
\]

In this expression, the dose rate parameter, \(\lambda \), is represented by \(\ln(2)/t_\text{iso} \). The derivation follows closely that described by Dale and coworkers. In cases in which the absorbed dose rate in a particular voxel is not well fitted by a single decreasing exponential, alternative formalisms have been developed that account for
Figure 5 (A) Clinical CT of patient showing nonuniform density distribution in lungs. (B) Clinical SPECT of patient showing nonuniform activity distribution. (C) Rate map generated from 3 longitudinally aligned SPECT images; regions with effective half-life greater than the physical half-life of 131I reflect tumor uptake. (D) Cumulative activity image generated from rate map and SPECT.
an increase in the dose rate followed by exponential reduction. Since the number of imaging time-points typically collected in dosimetry studies would not resolve a dual parameter model (i.e., uptake and clearance related dose-rate changes) the current methodology assumes that the total dose contributed by the rising portion of a tissue or tumor time-activity curve is a small fraction of the total absorbed dose delivered.

Eq 6 depends on the tissue-specific intrinsic parameters α, β, and μ. These 3 parameters are set constant throughout a user-defined organ or tumor volume. The voxel specific parameters are the total dose in a given voxel and the dose-rate assigned to the voxel (represented by the corresponding half-time). Given a voxel at coordinates (i,j,k), D^{ijk} and t^{ijk} are the dose and half-time associated with the reduction in absorbed dose over time for the voxel. The imaging-based formulation of expression 6 that is incorporated into a 3D radiobiological dosimetry is then:

$$BED^{ijk} = D^{ijk} + \frac{\beta D^{ijk}}{\alpha} \left(\ln(2) \right) \left(\frac{1}{\mu^* + t^{ijk} \ln(2)} \right).$$

(7)

The user inputs values of α, β, and μ for a particular volume and D^{ijk} and t^{ijk} are obtained directly from the 3D dose calculation and dose rate image, respectively. This approach requires organ or tumor segmentation that corresponds to the different α, β, and μ values. The dose values are obtained by Monte Carlo calculation as described previously, and the effective clearance half-lives are obtained by fitting the data to a single exponential function, as has been previously described. Once a spatial distribution of BED values has been obtained a dose-volume histogram of these values can be generated. Normalizing so that the total area under the BED (differential) DVH curve is one, one converts the BED DVH to a probability distribution of BED values denoted, $P(\psi)$, where ψ takes on all possible values of BED. Then, following the derivation for EUD from reference, the EUD is obtained as:

$$EUD = -\frac{1}{\alpha} \ln \left(\int_0^\infty P(\psi) e^{-\alpha \psi} d\psi \right).$$

(8)

The EUD of the absorbed dose distribution, as opposed to the BED distribution, can also be obtained using eq 8, but using a normalized DVH of absorbed dose values rather than BED values. Eq 8 may be derived by determining the mean absorbed dose required to yield a surviving fraction equal to that arising from the probability distribution of dose values (absorbed dose or BED) given by the normalized DVH.

The voxel-based methodology outlined above has also been applied at the organ level and formulated to be consistent with the MIRD organ-level S-value dosimetry schema.

Implementation of 3D Imaging-Based Radiobiological Modeling

Results from a 3D imaging-based radiobiological modeling analysis obtained using an early version of the software package, 3D-RD, in which activity kinetics were used in place of absorbed dose kinetics for the radiobiological modeling are illustrated below. The 3D-RD dosimetry methodology was applied to the case of an 11-year-old female thyroid cancer patient who has been previously described in a publication on MCNP-based 3D-ID dosimetry.

SPECT/CT images were obtained at 27, 74, and 147 hours after injection of a 37-MBq (1.0 mCi) tracer 131I dose. All 3 SPECT/CT images focused on the chest of the patient, and close attention was directed at aligning the patient identically for each image. The images were acquired with a GE Millennium VG Hawkeye system (Milwaukee, WI) with a 1.59-cm thick crystal.

An OSEM-based reconstruction scheme was used to improve quantization of the activity map. A total of 10 iterations with 24 subsets per iteration was used. This reconstruction accounts for effects, including attenuation, patient
scatter, and collimator response. Collimator response includes septal penetration and scatter. The SPECT image counts were converted to units of activity by accounting for the detector efficiency and acquisition time. This quantification procedure, combined with image alignment, made it possible to follow the kinetics of each voxel. Using the CTs, which were acquired with each SPECT, each subsequent SPECT and CT image was aligned to the 27 hour 3-D image set. A voxel by voxel fit to an exponential expression was then applied to the aligned data set to obtain the clearance half-time for each voxel.

To obtain mean absorbed dose, mean BED and EUD, as well as absorbed dose and BED-volume-histograms, voxels were assigned to either tumor or normal lung parenchyma using an activity threshold of 21% of highest activity value; this approach is the same as that used in reference. The clinical example illustrates all of the elements that have an influence on absorbed dose at the voxel level. As shown on the CT scan (Fig. 5A), there is a highly variable density distribution in the lungs caused by the tumor infiltration of normal lung parenchyma. Coupled with the low lung density, this gives a density and tissue composition that includes air, lung parenchyma and tumor (which was modeled as soft tissue). As shown in Figures 5B and C, the activity and clearance kinetics of 131I are also variable over the lung volume. These 2 data sets were used to calculate the cumulated activity images shown in Figure 5D.

Figures 6 and 7 depict the results obtained with the radiobiological modeling capabilities of 3D-RD. Figure 6 depicts a parametric image of BED values. Within this image the spotty areas of highest dose are areas where high activity and low density overlap. In Fig. 7a, normalized (so that the area under the curve is equal to 1) DVH and BED DVH (BVH) are shown for tumor voxels. The near superimposition of DVH and BVH suggests that dose rate will have a minimal impact on tumor response in this case. Figure 7b depicts the normalized BVH for normal lung parenchyma. The DVH and BVH are given in Gy and reflect the predicted doses resulting from the administered therapeutic activity of 1.32 GBq (35.6 mCi) of 131I. These plots may be used to derive EUD values. Mean absorbed dose, mean BED, and EUD are summarized in Table 4. The EUD value for tumor, which accounts for the effect of a nonuniform dose distribution, was approximately 43% of the mean absorbed dose. This reduction brings the absorbed dose to a range that is not likely to lead to a complete response using a single administration of activity. The analysis demonstrates the impact of dose nonuniformity on the potential efficacy of a treatment.

Future Implementations

The ability to translate parametric absorbed dose images from radionuclide therapy into BED images that can be compared with or added to BED images from external radiotherapy will make it possible to combine these two treatment modalities so that external radiotherapy planning can account for the dose-distribution arising from targeted radionuclide therapy.

Advances in biological imaging may be expected to provide information regarding the spatial variability of radiosensitivity within a tumor and such information could then be incorporated into the radiobiological modeling scheme described above by replacing the assumption of single-valued α, β, and μ parameters with voxel specific or subregion-specific values.

Routine implementation of the internal dosimetry methodology outlined in this work will require additional imaging and patient time. Given the attendant logistical and financial costs, a demonstrated improvement in patient care should be
a prerequisite for the adoption of such highly patient-specific internal dosimetry.

References

42. Prideaux AR, Song H, Hobbs RF, et al: Three-dimensional radiobiology dosimetry: Application of radiobiologic modeling to patient-

86. Howell RW, Goddu SM, Rao DV: Application of the linear-quadratic

