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Applying Neuroimaging Ligands
to Study Major Depressive Disorder

Jeffrey H. Meyer, MD, PhD, FRCP(C)

The recent increase in radioligands available for neuroimaging major depressive disorder
has led to advancements in our understanding of the pathophysiology of this illness and
improved antidepressant development. Major depressive disorder can be defined as an
illness of recurrent major depressive episodes of persistently low mood, dysregulated
sleep, appetite and weight, anhedonia, cognitive impairment, and suicidality. The main
target sites investigated with radioligand neuroimaging include receptor sites that regulate
in response to lowered monoamine levels, targets related to removal of monoamines,
uptake of ligands related to regional brain function, and target sites of antidepressants.
Semin Nucl Med 38:287-304 © 2008 Elsevier Inc. All rights reserved.

Arecent set of neuroimaging studies has built on the orig-
inal monoamine hypothesis of major depression by add-
ing several concepts: heterogeneity of monoamine loss for
multiple monoamines,'-? excessive clearance of monoamines
through greater monoamine transporter binding,*¢ and ex-
cessive metabolism of monoamines.” This information may
be translated into treatment development because it predicts
that targeting multiple monoamines will, on average, be more
therapeutic; that particular symptoms will associate with re-
sponsiveness for raising specific monoamines; and that inter-
fering with specific mechanisms of monoamine loss will be
helpful in reversing symptoms of major depressive episodes
(MDEs). Another line of investigation into major depressive
disorder (MDD) and anxiety disorders suggests that 5-HT
receptor binding is low in this spectrum, which may have
implications for the treatment refractoriness of MDD with
comorbid anxiety disorders.®1*

Abnormal patterns of '8F-fluorodeoxyglucose (FDG) uptake
and °O-H,0 can identify changes in function in several sets of
processes during MDE, including the generation of sad affect,
cognitive changes, and greater functioning of compensatory
mechanisms and circuits (the latter of which can differentiate
between treatment responders and nonresponders'>!6). These
studies have practical application in guiding the location choice

Neurochemical Imaging Program in Mood Disorders, PET Centre, Depart-
ment of Psychiatry and Centre for Addiction and Mental Health, Univer-
sity of Toronto, Toronto, Canada.

Address reprint requests to Jeffrey H. Meyer, MD, PhD, FRCP(C), Neuro-
chemical Imaging Program in Mood Disorders, PET Centre, Department
of Psychiatry and Centre for Addiction and Mental Health, University of
Toronto, 250 College St, Toronto, ON M5T 1R8, Canada. E-mail:
jeff. meyer@camphet.ca

0001-2998/08/$-see front matter © 2008 Elsevier Inc. All rights reserved.
doi:10.1053/j.semnuclmed.2008.02.007

(such as selection of subgenual cingulate) for deep brain stimu-
lation for treatment-resistant MDD.!6

In the field of MDD research, neuroimaging of antide-
pressant occupancy is advanced because the occupancy
for most commonly prescribed antidepressants has been es-
tablished.!28 Most investigations have centered on the se-
rotonin transporter (5-HTT) site, and most of the remaining
investigations focus on DAT and 5-HT,, occupancy.'”-26 Se-
lective serotonin reuptake inhibitor doses associated with a
differential response from placebo typically achieve 80%
occupancy.!'”18 The discovery of this threshold heavily impacts
development of new serotonin transporter binding antidepres-
sants, which aim for an 80% occupancy. Low occupancy of
dopamine reuptake inhibitors!-2!?* and 5-HT, autoreceptor
inhibitor medications?>2® at the higher end of the tolerated
dosing range suggest an opportunity to develop higher occu-
pancy treatments for these targets. Future ligand develop-
ment will likely target other nonmonoaminergic pathologies
associated with MDD with great potential to understand how
these pathologies relate to clinical symptoms, course of ill-
ness and effect of novel treatments.

Neuroimaging Contributions to
Monoamine Regulation in MDD

Before the contributions of neuroimaging, the monoamine
hypothesis of MDD was that some monoamines, likely sero-
tonin and norepinephrine, were low in MDD.?” There were
several lines of evidence to suggest that major monoamines
(serotonin, norepinephrine, dopamine) may be dysregulated
in MDD: depletion of monoamines is associated with a low-
ering of mood, particularly in people who are vulnerable to
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Tahle 1 Comparison of Radioligands for Imaging of 5-HT,5 Receptors in Humans

18F.Setoperone PET*

11"C-MDL 100907 PETt

18F.Altanserin PET#

Selectivity: based upon
displaceability

Selectivity: based upon
in vitro affinity and
relative density of
receptors

Selective in cortex.
Specific binding in
cortex completely
displaced by 5-HT,,
antagonist in humans.*
Cortex-specific binding
displaced completely by
5-HT, antagonists across
species?548

Selective in cortex: high in
vitro affinity for 5-HT,,
receptor; and low affinity
for other receptors
except D,—modest D,
affinity rules out striatum

Selective in cortex, not selective
in putamen. In humans,
putamen, had 22% occupancy
when other regions had 70%
occupancy after mirtazapine.*®
Specific binding in cortex
completely displaced in
animals with 5-HT,
antagonists5%:5!

High in vitro affinity for 5-HT,a
receptor, and low affinity for
some other receptors
types®'57:5%8__undisplaceable
signal in striatum not
identified*®

Cortex displaced near 100% with
ketanserin in humans® and
highly displaceable with 5-HT,
antagonists in rodent.53
Striatum binding unaffected by
D, antagonist in rodent>3

Likely selective in all brain
regions -high affinity in vitro to
5-HT,4 receptor and low
affinity for other receptor
types®®

measure’4-56.58

Reversibility Very good with peak at
10-30 minutes in
cortex?6:60

Brain uptake High45-47

Average cortex 5-HTa
BPnp approx. 2 between

Specific binding to free
and nonspecific

Modest with peak at 50-90
minutes in cortex*9.6!

High49,61

Average cortex 5-HT,5 BPyp
approx. 2 in application study

Good with peak at approx 30
minutes in cortex52.63

High62,63

Very good: average cortex 5-HT,,
BPnp approx. 3 for sample

binding ratio ages 18 to 401+46.60 of mean age 403 between ages 33 to 676
Metabolites cross No65 Unlikely#® Yes,52:66 consider bolus and

blood-brain barrier? infusion paradigm to address
Reliability of 5-HT,5, BP  Excellent®” Unavailable Excellent in cortex, adequate in

subcortical regions®

*For '8F-setoperone, the main strengths are selectivity in cortex for 5-HT,a receptors, reversibility, and excellent reliability. lts main limitation

is that the striatum measure is not selective.

t"C-MDL 100907 is best used as a cortex radiotracer. For ''C-MDL 100907, its main limitations are moderate reversibility and a non-

displaceable signal in striatum.

tFor '8F-altanserin, the main strengths are a high specific binding to free and non-specific binding ratio. lts main limitations are that there are

metabolites that cross the blood-brain barrier.52:66

MDD.3%-32 Most antidepressants increase the level of mono-
amines; therefore, chronic raising of monoamines is associated
with reversal of major depressive episodes.** In addition, there is
a reasonably frequent rate of receptor binding abnormalities
observed in postmortem studies of suicide and MDD that is
consistent with chronically lowered monoamines.>**> These
events collectively support the concept that monoamines may
be low in most brain regions during MDEs of MDD.

A recent set of neuroimaging studies have built on the
monoamine hypothesis of MDE of MDD by adding several
concepts: heterogeneity of monoamine loss,'? excessive clear-
ance of monoamines through greater monoamine transporter
binding,*> and excessive metabolism of monoamines.”

Heterogeneity
of Monoamine Loss
In the traditional monoamine model of MDD, extracellular

serotonin loss is present in untreated individuals. Although
one cannot measure extracellular serotonin directly, one may

measure an index of regional 5-HT,, receptor density, such
as 5-HT,, binding potential (BP) or 5-HT,, BPyp (an index of
specific binding relative to free and nonspecific binding).
(See Table 1367 for a list of 5-HT,, radiotracers applied in
humans.%®) 5-HT,, density has an inverse relationship to ex-
tracellular serotonin such that binding increases when extra-
cellular serotonin is chronically lowered.®72 Therefore, if the
traditional monoamine model of MDE were valid, increased
5-HT,, BPyp would occur in regions such as the prefrontal
cortex in during MDE. Authors of a review of 5-HT,, imaging
studies of MDE before 2003 found a reduction in those with
recent antidepressant use and no change in those with no
recent antidepressant use (Table 2).368.73-80 The latter find-
ings of no change in 5-HT,, BPyp would suggest either aban-
doning the monoamine model or modifying it.

Heterogeneous
Extracellular Serotonin Loss in Cortex

One hypothesized modification of the monoamine model is
that monoamine loss during MDD is heterogenous and that
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Tahle 2 Imaging Studies of 5-HT,, Receptors in Major Depressive Disorder (updated from Meyer®®)

Medication-Free

Study Method Number of Subjects Status Result
D’Haenen et al™ 123]_ketanserin SPECT 19 depressed, 10 healthy 7 days Greater in parietal cortex
Biver et al’* 8F.altanserin PET 8 depressed, 22 healthy 10 days Lower in orbitofrontal

cortex
Attar Levy et al”>  '8F-setoperone PET 7 depressed, 7 healthy Taking Lower in prefrontal
benzodiazepines cortex

Meyer et al™® 18F.setoperone PET 14 depressed,
8F.altanserin PET
18F.setoperone PET

'8F.gsetoperone PET

Meltzer et al””
Yatham et al”®
Messa et al™®

11 depressed,
20 depressed,
19 depressed,

Meyer et al'* 18F.setoperone PET

Mintun et al®%t 8F.altanserin PET

Bhagwagar et al®*  ''C-MDL 100907

20 healthy

22 depressed, 22 healthy

46 depressed, 29 healthy

20 recovered depressed,

14 healthy 3 months plus 5 half No difference
lives
11 healthy  “untreated” No difference
20 healthy 2 weeks Decrease in cortex
19 healthy Taking Decrease in cortex
benzodiazepines
6 months Positive association with
dysfunctional attitude
severity in cortex
4 weeks Decrease in
hippocampus
6 months Positive association with

dysfunctional attitude
severity in prefrontal
cortex; elevation in
most cortex regions

*Subjects enrolled in the study by Meyer et al’® (1999) were also included in the expanded study by Meyer et al' (2003) of 5-HT,4 receptors
and dysfunctional attitudes in subjects with depression as well as subjects with borderline personality disorder.
tFindings largely appear driven by a single healthy subject with very high 5-HT,5 BP.

the loss is greatest in those with the most severe symptoms.
The first investigations of this revision of the monoamine
model began with prefrontal cortex 5-HT,, BPyp measure-
ment and its relationship to specific symptoms. It was hy-
pothesized that increases in 5-HT,4 BPyp would only occur in
MDE with greater symptom severity (when extracellular se-
rotonin would be theoretically lower?).

The symptom chosen was pessimism, as measured with
the dysfunctional attitudes scale (DAS)®! because increasing
the level of extracellular serotonin abruptly (via intravenous
d-fenfluramine administration) in healthy humans shifted
perspective toward optimism as measured by the DAS.! The
DAS®! is a sensitive measure for detecting pessimistic think-
ing in the midst of MDE®#* that has very good internal
consistency (Cronbach’s a = 0.85 to 0.87)%:86 and high test—
retest reliability 818 The interpretation of this shift toward
optimism after d-fenfluramine was that one of the cognitive
functions of extracellular serotonin in humans is to reduce
pessimism.!

In support of the hypothesis, a strong correlation was ob-
served between severity of dysfunctional attitudes (pessi-
mism) and elevation in cortex 5-HT, 4 BPyp. Moreover, cortex
5-HT,4 BPyp was significantly elevated in subjects with MDE
and severe pessimism.! For example, in the prefrontal cortex
region centered on Brodman’s area 9, 5-HT,, BPyp was in-
creased 29% in depression subjects with dysfunctional atti-
tude scores higher (more pessimistic) than the median for the
group (Fig. 1). A recent study by Bhagwagar and coworkers
replicated this relationship between dysfunctional attitudes
severity and prefrontal cortex 5-HT,, BPyp in recovered de-

pressed subjects.® These findings support a model of hetero-
geneous extracellular serotonin loss in prefrontal cortex in
MDD.

Heterogeneous
Extracellular Dopamine Loss in Striatum

Evidence for a model of heterogenous putamen dopamine
loss and motor retardation was subsequently investigated in
nonsmoking, medication-free subjects with MDE and MDD.
Motor retardation is a known symptom during MDE that is
present to a variable extent®$” and motor speed is measurable
with a neuropsychological test called the finger tapping
test.878 The disease model of reduced putamen dopamine
neurotransmission and subsequent motor retardation is well
established in a number of other illnesses (eg, Parkinson’s
disease, multisystem atrophy, progressive supranuclear pal-
sy).8992 1C-raclopride is a positron emission tomography
(PET) radiotracer that is selective for D, type receptors,”>6
and the index of D, type receptors found with this method
(D, BPyp), is inversely proportional to extracellular dopa-
mine levels in acute and chronic paradigms of dopamine
depletion.”6-%

The main findings of this study of striatal D, BPyp and
motor retardation were that the caudate and putamen D,
BPyp were increased in the depressed group as compared
with the healthy group and that greater putamen D, BPyp
was significantly correlated with more severe motor retar-
dation in the depressed group (Fig. 2).? The findings sup-
port a specific role for striatal dopamine loss during de-
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Figure 1 5-HT,, binding potential in prefrontal cortex is associated
with dysfunctional attitudes in depressed subjects. Age-corrected
5-HT,, receptor binding potential (5-HT,, BP) within bilateral pre-
frontal cortex (Brodmann’s area 9) in depressed subjects was plotted
against the DAS score. When controlling for age, the correlation
coefficient between 5-HT,, BP and DAS was 0.56, P = 0.009. The
age-corrected 5-HT,, BP was calculated by applying a linear regres-
sion with predictor variables age and DAS to the 5-HT,, BP. The
slope of the line for the age predictor was used to normalize each
subject’s 5-HT,, BP to that expected for a 30-year-old subject. (Up-
dated and reprinted with permission from Meyer et al.})

pression, especially when motor retardation is present.
They extend support for the concept of heterogeneous
monoamine loss with the greatest loss in the most symp-
tomatic individuals.

3.5
3.0 4
2.5 A
2.0 A
1.5 4
1.0 4

0.5
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Excessive
Clearance of Monoamines
Via Monoamine Transporters

If extracellular monoamines are lowered during MDEs, then
abnormal monoamine transporter function should be con-
sidered a potential contributing mechanism. There are at
least 4 plausible models to explain how indices of mono-
amine transporter binding could be altered in a disease that
lowers brain monoamines.®® These are referred to here as
models 1 through 4. Model 1 is a lesion model that reduces
monoamine releasing neurons. In a lesion model, reductions
in binding occur. Model 2 is a model of secondary change in
transporter binding consequent to monoamine lowering viaa
different process. Model 3 is increased clearance of extra-
cellular monoamine via greater monoamine transporter
density. In model 3, greater available monoamine trans-
porter binding leads to greater clearance of monoamines
from extracellular locations. Model 4 is endogenous dis-
placement and is dependent on the properties of the radioli-
gand. Endogenous displacement is the property of a few ra-
dioligands to express different binding after short term
manipulations of their endogenous neurotransmitter. Ab-
normalities in monoamine transporter binding during ma-
jor depressive episodes may be discussed in the context of
these models.

A particular issue with model 2 is that available evidence
suggests that the different monoamine transporters do not
regulate in the same fashion after chronic depletion of their
endogenous monoamine. Acute reductions in serotonin have
repeatedly shown reductions in 5-HTT mRNA.'%0-102 How-
ever, longer-term reductions or elevations in serotonin typi-

s motor retarded depressed
1 other depressed
healthy

striatum  left caudate right caudate left putamen right putamen

Region

Figure 2 Striatal D, receptor binding potential in motor retarded depressed (n = 10), other depressed (n = 11) and
healthy subjects (n = 21). Mean and standard error are shown. The motor retarded depressed group was selected based
on slower scores on the finger tapping test. The motor retarded group had significantly slower scores as compared with
healthy subjects (129 = 3.37, P = 0.002, 47.0 taps/10 seconds versus 37.34 taps/10 seconds). Subjects’ D2 BP values
were normalized to a 30-year-old subject using the slope of the age-related decline. PP = 0.05, independent sample
t-test; °P = 0.01, independent sample t-test; P < 0.005, independent sample t-test. (Reprinted with permission from

Meyer et al.?)
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Table 3 Comparison of Radioligands for Imaging of 5-HTT in Humans®®

123].8-CIT SPECT

11C-(+)McN5652 PET

11"C-DASB PET 1231.ADAM SPECT

Selectivity Nonselective—near Likely selective 10:1 to
1:1 affinity for 100:1 affinity for 5-HTT
5-HTT to over NET'25.126
DAT123,124

Displaceability  Incomplete!3!-132 In most, but not all,

of specific reports?2:23.133
binding

Reversibilityt Good'36:137
depending upon

regiont'33.138.139
Brain uptake Adequate 36137 Good'33.138

Specific binding Good'36:137

to free and regions; adequate in
nonspecific thalamus'38.144
binding ratiot

Reliability of Not measured Modest?3
5-HTT BPt

5-HTT BP Brainstem
measurable in  only'36.137 not measurable in
multiple cortex!33.139
regions?

Not adequate in some

Measurable in thalamus,'38 Yesg!40.142

Highly selective 1000:1 affinity Highly selective 1000:1
for 5-HTT over NET or affinity for 5-HTT

DAT*127.128 over NET or
DAT!29.130
Highly Highly

displaceab|e17,18,127,128,134 displaceab|e129'1go’135

Not adequate to adequate, Adequate in midbrain, good to Adequate in

very good in other midbrain35.143

regions40-142

Very good'40-142 Adequate!35143

Adequate to very good$'40142  Not adequate in most
regions; adequate in

midbrain?35143

Very good to excellent!7:145 Most regions

reasonable'43

Measurable in
midbrain; unclear for
other regions'35143

*11C-DASB is also highly selective for 5-HTT over a number of other targets tested in vitro.'28

tFor humans (radiotracer performance differs across species).
$Depending upon brain region.

cally show no effect on regional 5-HTT density.%31% In con-
trast, for dopamine transporters in striatum, the evidence to
support a relationship between long-term reductions in ex-
tracellular dopamine and a lowering of striatal dopamine
transporter density is fairly strong.!-1% Norepinephrine
density in most brain regions decreases in density after
chronic norepinephrine depletion.!1°

Serotonin Transporter Binding

During Major Depressive Episodes
Neuroimaging studies of the serotonin transporter offer the
opportunity to measure an index of 5-HTT density, the
5-HTT BPyp, in the midst of a depressive episode that was a
significant barrier for most postmortem studies of 5-HTT
density. There are only 2 postmortem investigations of
5-HTT density in subjects with recent symptoms of depres-
sive episodes.!!:112 In these investigations, no changes in
5-HTT density were found in the dorsal raphe or the locus
coeruleus. Other postmortem investigations of 5-HTT den-
sity sampled subjects with a history of a depressive episode
and these investigations usually studied the prefrontal cortex
and/or dorsal raphe nucleus. Findings ranged from decreased
5-HTT density!' 3117 o no difference in 5-HTT density.!18-122
In several of these studies, subjects were medication
free, 113118119 and for many of these investigations, average
postmortem delays were less than a day.!!1-113.115117.121 For
greater detail the reader is referred to the review of Stock-
meier.*® Other sampling issues that may influence postmor-

tem investigations are effects of additionally sampling pa-
tients with bipolar disorder and possible differences between
early- versus late-onset MDD.

Recent advances in radioligand development, particularly
with the advent of 1'C-DASB, have led to a series of investi-
gations of 5-HTT BP in MDD. (See Table 3!7:18.22,23,68,123-145
for a description of new radiotracers and Table 4%6.68.146-150
for a list of neuroimaging investigations.) The first applica-
tion of 1*C-DASB PET imaging to MDD sampled 20 subjects
with MDE and 20 healthy controls.* Subjects were medica-
tion free for at least 3 months, and they had no other comor-
bid axis I illnesses, did not smoke, and had early-onset de-
pression. There was no evidence for a difference in 5-HTT
BPyp during MDE of early-onset MDD. However, MDE sub-
jects with severely pessimistic dysfunctional attitudes had
significantly greater levels of 5-HTT BPyp, compared with
healthy subjects in brain regions sampling serotonin nerve
terminals (prefrontal cortex, anterior cingulate, thalamus, bi-
lateral caudate, bilateral putamen). On average, 5-HTT BPyp
was 21% greater in these regions in MDE subjects with se-
verely pessimistic dysfunctional attitudes. Moreover, within
the MDE group, greater 5-HTT BPyp, was strongly associated
with more negativistic dysfunctional attitudes in the same
brain regions (Fig. 3). The interpretation was that serotonin
transporters have an important role in influencing extracel-
lular serotonin during MDEs: Greater regional 5-HTT levels
can provide greater vulnerability to low extracellular 5-HT
and symptoms of extremely negativistic dysfunctional atti-
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Table 4 Imaging Investigations of the Serotonin Transporter in Untreated MDEs (Updated From Meyer68)

Main Finding

Medication Use?

llinesses

No.
15 MDE, 15 MDD and/or comorbid

Ligand
1231.8-CIT SPECT

Study
Malison et al,

Lower BP in brainstem

6 Medication naive, 9 medication free

for 3 weeks
All Medication free for >6 weeks

disorders
MDD only (pooled with BD

healthy
7 MDE,* 15

1998146
Ichimiya et al,

1 5-HTT BP in thalamus no change in

"C (+)McN5652

midbrain in pool of MDD and BD subjects
No change in 5-HTT BP in MDE; in MDE with

only)

healthy
20 MDE, 20 MDD only

PET
""C-DASB PET

2002147
Meyer et al,

All medication free for >3 months

severe pessimism, greater 5-HTT BP in all

regions except midbrain
No change in 5-HTT BP in thalamus and

and 14 also antidepressant naive

healthy

20044

All medication free for >two weeks

MDD only

7 MDE, 6

123.ADAM

Newberg et al,

striatum; lower 5-HTT BP in midbrain

No change in putamen, thalamus,

and 2 antidepressant naive

25 MDE, 43 MDD, n = 19 with comorbid All potentially exposed to

healthy

SPECT
"C (+)McN5652

2005148
Parsey et al,

hippocampus, or anterior cingulate
| 5-HTT BP in midbrain and amygdalat

benzodiazepines;
All antidepressant free for >2 weeks

anxiety disorders

healthy

PET

2006'4°

and 12 antidepressant naive
All medication free for >2 months;

Trend towards greater midbrain 5-HTT BP

21 MDE, 13 MDD only

123.ADAM

Herold et al,

healthy
18 MDE, 34 MDD; 7 with history of

SPECT
""C-DASB PET

2006150
Cannon et al,

Greater 5-HTT BP in thalamus, striatum, insula

Antidepressant free for >3 weeks (8

for fluoxetine)

panic attacks

healthy

2007%
*Ichimiya et al'4” sampled 21 mood disordered subjects, of which 14 had bipolar disorder.

tFindings were natural log transformed before analysis after a quantity was added.

tudes. This interpretation, in subjects with high levels of
pessimism during MDE, corresponds to model number 3
(see the section “Excessive Clearance of Monoamines via
Monoamine Transporters”). Because ''C-DASB is insensitive
to tryptophan depletion in humans, model number 4 is un-
likely. 68145151

In general, neuroimaging studies that (1) apply methodol-
ogies sampling of subjects who are medication free for longer
than 2 months, (2) sample subjects who do not have comor-
bid axis I disorders, or (3) apply ''C-DASB tend to find either
no change in regional 5-HTT BP or an increase in regional
5-HTT BP (Table 4).+6.147.150 Investigations that sample sub-
jects with comorbid axis I psychiatric disorders, or subjects
with recent antidepressant use, or do not apply a selective
radiotracer are more likely to report a reduction in regional
5-HTT BP. 146,148,149

Dopamine Transporter

Binding During MDD

Most dopamine transporter imaging radioligands applied in
depression, such as "C-RTI-32, '2’I-FP-CIT, and *"™Tc-
TRODAT-1, have high selectivity, high specific binding rel-
ative to free and nonspecific binding, but are modestly re-
versible. 152154 123]-8-CIT has reversible time activity curves
within the time of scanning, but its measure of specific bind-
ing in striatum has a modest contribution from serotonin
transporter binding. (This estimate is based on the similar
affinity of '23I-B-CIT for dopamine and serotonin transport-
ers'?>12% and the relative density of these sites in the stria-
tum, 135-158)

A novel radiotracer, ''C-PE2I, demonstrates reversibility,
selectivity, and high specific binding relative to free and non-
specific binding.!>*16! Metabolites that cross the blood—
brain barrier have been identified in rodents,'%? but it is pos-
sible that these metabolites will not be present in humans.

There is a postmortem study of dopamine transporter
binding during major depressive episodes that reported re-
ductions in binding in basal and lateral amygdaloid nuclei.*?
In the same study, greater D, type receptor binding were
present in the same amygdaloid nuclei, leading to the inter-
pretation that dopamine levels were depleted in these regions
within the amygdalae of depressed subjects.

Most neuroimaging investigations have focused on stria-
tum and apply gray matter of cerebellum (or prefrontal cor-
tex) as a reference tissue. Among investigations applying data
in this manner, some commonality of findings is present:
Those conducted in samples which were medication free for
longer time periods tend to find reductions in striatal DAT
binding,>163.16* whereas those in subjects who have recently
taken antidepressants tend to find elevations in striatal DAT
binding.?*1%5 In unmedicated depressed subjects, it could be
argued that model 1 (lesion) or model 2 (downregulation in
response to another monoamine lowering process) are im-
portant.

Clarification of these models was possible through addi-
tional investigations in which the relationship between finger
tapping speed and putamen DAT BP was assessed during
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Figure 3 Correlations between dysfunctional attitudes (DAS) and serotonin transporter binding potential (5-HTT BP) in
some of the larger regions in depressed subjects. Highly significant correlations were found for the prefrontal cortex
(P = 0.0004), anterior cingulate (P = 0.002), bilateral putamen (P = 0.0002), and bilateral thalamus (P = 0.001).
(Reprinted from Meyer et al,* with permission from the American Medical Association.) (Color version of figure is

available online.)

MDE. A strong, negative correlation between the 2 measures
was found (Fig. 4). Subjects’ performances on the finger tap-
ping test are impaired when dopamine concentrations are
low (as indirectly measured by D, BP>!'% or '8F-DOPA up-
take'67:168) and when depressive episodes are present.®” The
data can be interpreted to argue that patients without motor
retardation have lower DAT BP and demonstrate a compen-
satory protective mechanism® When dopamine is chroni-
cally low in striatum, downregulation of DAT occurs.!06-109
Reduced DAT levels decrease the clearance of extracellular
dopamine.'® Compared with the usual healthy state, the
compensated state has near similar (or mildly reduced) ex-
tracellular striatal dopamine concentrations with downregu-
lated DAT. This process whereby DAT BP is decreased pro-
tects some patients from showing motor slowing. These data
argue for involvement of two models: model 2 (downregula-
tion in response to another monoamine lowering process)
and model 3 (relatively greater DAT BP is associated with
greater symptom burden).

Excessive Monoamine
Metabolism During MDEs

Other major influences on extracellular monoamines besides
monoamine transporter function include monoamine syn-

thesis and metabolism processes. Decreased monoamine syn-
thesis is unlikely during untreated MDE because postmortem
investigations of monoamine synthesis enzymes in monoamine
nuclei tend to find no change or modestly increased levels in
most brain regions in subjects with MDD.!7%-172 Neuroimag-
ing investigations attempting to determine whether mono-
amine precursor uptake is reduced in untreated depression
are inconclusive as the samples collected are associated with
recent antidepressant use.!’>17%

Monoamine oxidase A regulates levels of all 3 major mono-
amines (serotonin, norepinephrine, dopamine) in the
brain.!”> Postmortem studies have not fully addressed the
question as to whether brain MAO-A is abnormal during
major depressive episodes because each investigation had at
least two limitations that may influence results,”!76-18! in-
cluding complete nonspecificity of technique for MAO-A
versus monoamine oxidase B, enrollment of subjects who
recently took medication, unclear diagnosis of suicide vic-
tims, small sample size, or lack of differentiation between
early-onset depression and late-onset depression. Differenti-
ation of the more common early-onset depression (before age
40) versus late-onset depression is important when evaluat-
ing indices of monoamine metabolism because dysregulation
of monoamines in late onset depression is suspected of being
attributable to lesions and/or degenerative disease.!82-18>



294

J.H. Meyer

5.00 -

4.75

4.50 -

4.25

4.00 -

3.75 -

3.50 -

Age Corrected DAT BP,,

3.25 1

3.00 . T . 1

35 45 55 65 75
Finger Tapping Test Performance (taps/10 secconds)

Figure 4 Correlation between age-corrected, striatal, dopamine
transporter binding potential, and performance on the finger tap-
ping test (r = —0.86, P = 0.006). (Reprinted from Meyer et al® with
permission from Lippincott Williams & Wilkins.)

Radioligands to measure an index of MAO-A levels for
neuroimaging include 'C-clorgyline, deuterium-labeled
UC-clorgyline, *C-harmine, and !!C-befloxatone.'8-1%1 The
latter 2 have a considerable advantage in terms of having
more rapid kinetics and greater reversibility. !!C-harmine has
also been modeled in humans and possesses high affinity for
the MAO-A site, selectivity, excellent specific binding relative
to free and nonspecific binding ratios, high brain uptake, and
is therefore the lead radiotracer for quantitating brain
MAO-A binding in humans.”-188.190,192,193

There is one study of MAO-A binding in MDE, and
MAO-A DVs, an index of MAO-A density, was elevated

throughout the brain on average by 34% (2 standard devia-
tions; Fig. 5).” Elevated brain MAO-A density during major
depressive episodes when combined with previous neuroim-
aging results in medication free depressed subjects!->* (ie,
no medication for 3 months or more) leads to an advanced
monoamine theory (Fig. 6) as follows”: During a major de-
pressive episode, elevated MAO-A increases the metabolism
of monoamines. Then, individual monoamine transporter
densities have a secondary influence on particular extracel-
lular monoamine levels. If the monoamine transporter den-
sity for a particular monoamine is low, the effect of greater
monoamine metabolism on extracellular monoamine levels
is somewhat attenuated resulting in a moderate monoamine
loss. Longstanding moderate loss of a particular monoamine
in specific brain regions eventually results in a moderate se-
verity of particular symptoms. If the monoamine transporter
density for a particular monoamine is not low during a MDE,
then the extracellular concentration of the monoamine is
severely reduced and symptoms associated with chronic re-
gional loss of that particular monoamine eventually become
severe. To summarize, elevated MAO-A can be considered a
general monoamine lowering process (with no relationship
to particular symptoms) and the regional density of mono-
amine transporters can be considered a selective influence on
particular monoamines (with a strong relationship with par-
ticular symptoms).1:+57

Clinical Implications
of a New Monoamine Theory

This modern model views both excessive MAO-A levels and
relatively greater monoamine transporter density as being
major contributors to regional monoamine loss.!>*>7 This
has implications for designing future treatments and
matching treatments to illness. If it is assumed that greater
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Figure 5 Comparison of MAO-A DVs between depressed and healthy subjects. On average, MAO-A DVs was increased
by 34%, or 2 standard deviations, in depressed individuals. Differences between groups were highly significant in each

region.
American Medical Association.)

*P = 0.001, ** P < 0.0001, *** P < 0.00001. (Reprinted from Meyer et al,” with permission from the
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Figure 6 Modernization of Monoamine Theory of Depression. (A) Description of monoamine release in a synapse
in a healthy person. (B) During a major depressive episode, monoamine oxidase A (MAO-A) density is elevated
resulting in greater metabolism of monoamines such as serotonin, norepinephrine, and dopamine in the brain.
Outcomes range from (C) to (D). (C) If the monoamine transporter density for a particular monoamine is low
during a major depressive episode, the effect of elevated MAO-A upon reducing that particular monoamine in
extracellular space is somewhat attenuated resulting in a moderate loss of monoamine. This eventually results in
amoderate severity of symptoms associated with chronic loss of that particular monoamine. (D) If the monoamine
transporter density for a particular monoamine is not low during a major depressive episode, then there is no
protection against the effect of elevated MAO-A. The extracellular concentration of the monoamine is severely
reduced and symptoms associated with chronic loss of that particular monoamine eventually become severe.
Some post-synaptic receptors increase in density when their endogenous monoamine is chronically low. MAO-A
is mostly found in norepinephrine releasing neurons, but is reported to be detectable in other cells such as
serotonin releasing neurons and glia. Even so, MAO-A metabolizes serotonin, norepinephrine, and dopamine in

vivo.

intervention on disease pathology leads to greater thera-
peutic effect, the model would predict that raising all three
monoamines, would on average, increase the likelihood of
response relative to a treatment that raises a single mono-
amine. It would also predict that the optimal match of sub-
jects to treatment would relate to their symptom profiles. For
example, symptoms associated with loss of particular mono-
amines would be expected to predict response to antidepres-
sants that raise these monoamines. Conversely, presence of
symptoms correlated with monoamine loss not directly tar-
geted by an antidepressant would predict nonresponse. For
example, it would be predicted that a depressed individual
with symptoms corresponding to loss of dopamine would be
less likely to respond to a serotonin reuptake inhibitor
(which was reported in one recent investigation!®*).

Serotonin;p Receptor
Imaging in MDD (With Anxiety)

There are several ''C-WAY-100635 PET studies reporting
greater 5-HT ), BP in most brain regions during major depres-
sive episodes and persistence of this reduction during remis-
sion.?10 There is one exception to this result!! and it may be
that the selection of white matter as a reference region, loga-

rithmic transformation of data and/or sampling characteris-
tics account for the outlying result.

With regards to sampling issues, comorbid anxiety and/or
anxiety disorders may be particularly important. During
MDEs, anxiety and/or anxiety disorders are often present,
and there is very good evidence to suggest that anxiety and/or
anxiety disorders have a strong link to reductions in regional
5-HT,, BP: In an '®F-trans-4-fluoro-N-2-[4-(2-methoxyphe-
nyDpiperazin-1-yl]ethyl]-N-(2-pyridyl) cyclohexanecarbox-
amide (*®F-FCWAY) study of panic disorder (with comorbid
MDD in almost half the cases), substantial reductions in
5-HT,, BP in anterior cingulate, posterior cingulate, and ra-
phe regions were reported.!? (Quantitation with this radio-
tracer is suitable for medial regions but not peripheral brain
regions because of bone uptake of radioactive signal.) In so-
cial anxiety disorder, reductions in 5-HT;, BP in most brain
regions (insula, anterior cingulate cortex, medial orbito-
frontal cortex, amygdala, midbrain) were also reported.'?
In healthy individuals, there is an inverse correlation be-
tween anxiety levels and 5-HT, BP in cortical and subcor-
tical brain regions,!* and there is an inverse correlation
between personality variables related to worry regarding
social desirability and 5-HT ;4 BP in cortical and subcorti-
cal brain regions.!?
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Investigations of Abnormally
Functioning Brain Structures
in MDD Via "8F-FDG and
150-H,0 Uptake Measurement

Most neurobiological theories of depression propose that
neurochemical and/or cognitive changes affect the function
of particular brain structures. A line of investigation consis-
tent with this perspective includes studies of FDG and >O-
H,O uptake in MDD because regional uptake of these radio-
tracers is often sensitive to changes in the function of
particular brain regions. Abnormal patterns of '*F-FDG up-
take can be conceptualized as primarily relating to processes
which reflect abnormal function during MDE. One is greater
generation of sad affect which may relate to excessive activity
of some components of the limbic system. A second is cog-
nitive changes, which may relate to reduced activity of corti-
cal structures. A third is greater functioning of compensatory
mechanisms and circuits which can differ between treatment
responders and nonresponders.!>1

Abnormalities during MDE include reductions in FDG up-
take and/or 1>O-H,0 blood flow to structures that participate
in cognition, attention and execution of decision making
tasks such as dorsolateral and dorsomedial prefrontal cor-
tex,196198 dorsal anterior cingulate cortex,'*®1%° and cau-
date.1%8-200 Changes in FDG uptake and/or >O-H,0 blood
flow uptake are commonly observed in brain structures re-
lated to generation, and processing of affect such as sub-
genual cingulate cortex, anterior cingulate cortex, ventrolat-
eral prefrontal cortex, amygdala, thalamus, and orbitofrontal
cortex.198:200-203 Variations in the direction of the abnormal
change in radiotracer uptake in MDE groups as compared
with healthy is often related to subgroupings of MDE such as
treatment resistant and treatment responsive subgroups, and
subgroups with volume loss.!>10

These investigations are often with the patient in a “resting
state” with eyes shut. With the advent of bold functional
magnetic resonance imaging, it has become clear that pat-
terns of difference between depressed and healthy subjects
are influenced by task choice and/or genotype.?°*297 How-
ever, prevailing patterns of change in FDG uptake can be
viewed as representing predominant changes in regional
function and have had practical application in guiding loca-
tion choice (such as selection of subgenual cingulate) for
techniques such as deep brain stimulation for treatment re-
sistant subjects.!®

In geriatric depression, particularly late-onset depression,
where pathology of onset is likely related to lesions and loss
of glia and neurons, 8318 FDG uptake may be used to elicit
neurochemically specific abnormalities. In such studies a
challenge is given to stimulate release of a monoamine and
changes in FDG uptake are evaluated.'®> Studies conducted
in geriatric depression with a citalopram challenge have
shown a differential lateralized pattern of acute metabolic effects
in the patients who have a s allele of the serotonin transporter in
contrast to comparison subjects.??® Further investigations with

other monoamine specific challenges may elicit abnormalities
specific to subtypes of late-onset depression.

Improving

Antidepressant Development
Through Antidepressant
Occupancy Studies

Quantitating brain penetration of antidepressants to the tar-
get sites has considerable practical application in developing
antidepressants and can inform prescribing practices. Anti-
depressant occupancy can be defined as the percent change
in specific binding index in the antidepressant treated condi-
tion relative to the untreated condition. It can be viewed as an
index of brain penetration of antidepressants. Before the de-
velopment of occupancy measurement, it was assumed that
plasma levels may predict brain occupancy, but there are
active transport mechanisms that remove medications from
the brain and lipophilicity influences brain penetration of
medications.!® In the field of MDD, occupancy application is
advanced relative to most areas of medicine since the occu-
pancy for most commonly prescribed antidepressants has
been established within the typically prescribed dosing
range.!”!8 Most investigations have centered on the 5-HTT
site, and the majority of the remaining investigations focus on
DAT and 5-HT;, occupancy.!’-26

5-HTT Occupancy Studies

In 2001, the first selective serotonin reuptake inhibitor
(SSRI) occupancy study with 1!C-DASB PET reported an 80%
occupancy in multiple regions after 4 weeks of treatment
with doses of paroxetine and citalopram that are clinically
distinguishable from placebo.'” This result has been repli-
cated in brain regions of reasonable size with other SSRIs,
such as fluvoxamine,?? fluoxetine,'® sertraline,!® and ven-
lafaxine (Figs. 7 and 8).'® Although these SSRI have a 100-
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citalopram fluoxetine sertraline paroxetine venlafaxine

Figure 7 5-HTT occupancy at minimum therapeutic dose. Mean
striatal serotonin transporter (5-HTT) occupancy for 5 selective se-
rotonin reuptake inhibitors after 4 weeks of minimum therapeutic
dosing. The vertical ranges represent SD. Subjects received citalo-
pram 20-40 mg (n = 7), fluoxetine 20 mg (n = 4), sertraline 50 mg
(n = 3), paroxetine 20 mg (n = 7), or venlafaxine XR 75 mg (n = 4).
(Reprinted with permission from Meyer et al.'®) (Color version of
figure is available online.)
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Figure 8 Relationship between striatal 5-HTT occupancy and dose or plasma concentration of citalopram. The data were
fit using an equation of form f(x) = a*x/(b+x). The relationship between dose and occupancy was highly significant
(fx) = 92*x/(b+x), Fy 16 = 127, P < 0.0001). The relationship between plasma level and occupancy was highly
significant ({(x) = 96*x/(b+x), F} 16 = 103, P < 0.0001). (Reprinted with permission from Meyer et al.'")

fold range in affinity for the serotonin transporter, an 80%
striatal 5-HTT occupancy occurs at minimum clinical dose.
Moreover, the in vitro ECsy does not correlate with affinity.”
This demonstrates that, although affinity is an essential piece
of information regarding an antidepressant, it cannot predict
occupancy, even when plasma levels are known.!® Given the
association between the clinically relevant dose and 5-HTT
occupancy for the SSRIs, it is now generally believed that an
80% 5-HTT occupancy is a therapeutic threshold for new
antidepressants. This technique can be applied in a practical
fashion during phase I trials to assess whether potential new
antidepressant drugs are adequately brain penetrant and to
guide dosing selection for subsequent phase II clinical trials.

5-HTT occupancy has been evaluated at a number of dif-
ferent doses for 5 commonly prescribed SSRIs.!":18.209 Both
dose and especially plasma level have a very strong relation-
ship to 5-HTT occupancy: There is increasing occupancy
with increasing dose (and plasma level), with plateauing at
the greater doses and greater plasma levels (see Fig. 8). This
has several important clinical implications. First, it is unlikely
that inadequate 5-HTT occupancy explains treatment resis-
tance, because one may raise the dose of the SSRI to obtain
adequate plasma levels. Second, in clinical circumstances,
5-HTT imaging may not need to be completed to estimate
5-HTT occupancy. Instead, one may use the plasma level and
the figures of plasma level versus occupancy in the main
publication!® to estimate the 5-HTT occupancy of any SSRI.
Third, given the plateauing of occupancy in the clinical dos-
ing range, none of the SSRI antidepressants demonstrate a
5-HTT occupancy exceeding 90%. This suggests that there is
an opportunity to develop SSRI antidepressants with higher
5-HTT occupancy.?®

DAT Occupancy Studies

Bupropion is an antidepressant which, based on its affinity
profile, may be considered a dopamine reuptake inhibitor
with modest affinity.21%21!1 Occupancy studies in striatum
report a reasonably consistent range of values between zero
and 25%.19-21.2% Given the low occupancy, it may be helpful

to develop higher occupancy DAT inhibiting antidepres-
sants.

5-HT;a Occupancy Studies

Autoreceptor inhibition has been described as a mechanism
of delayed response and nonresponse to SSRI.?!! Conse-
quently, 5-HT,, antagonists have been added to SSRI as a
means to hasten antidepressant actions with detectable ef-
fects, but this is not done in routine clinical practice.?!? In-
vestigations of pindolol and other 5-HT,, antagonists have
shown that the doses used in these augmenting studies cor-
respond to low levels of 5-HT 4, occupancy in superior raphe
nuclei and that occupancy at undesirable sites in cortex is
also present.?>?8 Therefore, clinical trials have not yet been
applied in a manner so as to optimize the autoreceptor inhi-
bition of 5-HT} 4 antagonists and future antidepressant devel-
opment should focus on interventions that maximize 5-HT
autoreceptor inhibition and minimize 5-HT,, antagonism in
cortex.

Replicability
Issues of Neuroimaging
Investigations in MDD

Replication of occupancy findings has been robust.!”->” How-
ever, replication of findings in disease states is best identified
when sampling methodology and radioligand characteristics
are considered.1-16.24.68.73-80,146-150.163-165 Sampling issues that
influence replicability across sites include duration of medi-
cation/antidepressant free status (with greater homogeneity
of findings when medication free status exceeds two
months), and comorbidity. It is anticipated that age of onset
will be an important issue in future studies since there are
distinct structural MRI abnormalities and patterns of cell loss
in late-onset MDD. 183185 Another important sampling issue
is based on heterogeneity of symptom expression in MDD (A
major depressive episode is defined as having the presence of
at least five of nine symptoms?!'?). Because MDD has a heter-
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ogeneous expression of symptoms, quantitation of symptom
severity related to the target of interest is necessary to further
improve replicability across studies.!” Samples with similar
severity of target related symptoms are expected to demon-
strate similar findings whereas samples with dissimilar sever-
ity of target related symptoms are unlikely to have similar
findings. Radioligand selectivity, as assessed by the relative
affinity of specific binding in vitro and the relative density of
these target sites within specific regions in vivo,% is also a key
issue for some investigations. Increasingly these sampling
issues and radioligand characteristics are being considered,
and thus it is likely that replications across settings will con-
tinue to improve.

Future
Radioligand Development
for Investigating MDD

It is likely that some of the immediate new radioligand de-
velopment will relate to monoamine targets but that more of
the future radiotracer development will be in other areas.
Some postmortem investigations in untreated depressed
subjects report a reduction in norepinephrine transporter
density,” and many antidepressants target the norepineph-
rine transporter,?!021% so there is great interest in measuring
an index of norepinephrine transporter density in vivo. De-
velopments have not yet yielded a radioligand that is highly
sensitive to changes in available norepinephrine transporter
binding. A promising radioligand in humans is 'C-(S,S)
2-[(2-methoxyphenoxy)phenylmethyl|morpholine or 1'C-(S,S)
O-methylreboxetine.?1>-21° It demonstrates selectivity in ani-
mal displacement studies, but it has a few limitations in hu-
mans such as modest specific binding relative to free and
nonspecific binding and a variable level of free and nonspe-
cific binding between individuals.?>-217

New key directions for future radioligand development are
related to other pathophysiological aspects of MDD such as
excessive secretion of glucocorticoids, aberrant signal trans-
duction and markers of cell loss.?!® Radioligands for these
targets are mostly in the development stage but some show
promise.?1%221 The most common reason why current candi-
date compounds in these areas frequently have limited suc-
cess is poor brain uptake or excessive lipophilicity.?22223
However, similar challenges were overcome in the past for
radiotracers for other target sites and it is anticipated that as
new compounds are created for medicinal purposes, some of
the more brain penetrant compounds will eventually be
modified into valid radiotracers.

Conclusions

Radioligand neuroimaging has advanced the monoamine
theory of MDD to a concept of chronic loss of particular
monoamines, such as serotonin, norepinephrine, and dopa-
mine, which occurs to a greater extent when particular symp-
toms are more severe.!> The use of neuroimaging has also
identified mechanisms of monoamine loss, including greater

monoamine metabolism’ and excessive monoamine trans-
porter density in the presence of monoamine depleting pro-
cesses.

This information may be translated into treatment devel-
opment: (1) It predicts that targeting multiple monoamines
will, on average, be more therapeutic; (2) It predicts that
particular symptoms will associate with responsiveness for
raising specific monoamines; and (3) It predicts that interfer-
ing with specific mechanisms of monoamine loss will be
helpful in reversing symptoms of major depressive episodes.

Reductions in 5-HT), binding associated with MDD are
most likely related to comorbid anxiety and/or anxiety
disorders, which may be clinically relevant because co-
morbid anxiety disorders are associated with treatment
refractoriness.8-10:12.13

Patterns of '8F-FDG and O-H,0 uptake in MDD tend to
demonstrate overactivity of regions that generate mood and
underactivity of regions related to cognition.!>1° Activations
associated with nonresponse are candidate targets for treat-
ment such as deep brain stimulation for treatment resistant
individuals.!®

Dosing of selective serotonin reuptake inhibitors associ-
ated with a differential response from placebo typically
achieve 80% occupancy.'”-!® This information now guides
development of new serotonin transporter binding antide-
pressants which aim for an 80% occupancy. The extremely
strong relationship between plasma levels and occupancy
may be applied by clinicians to estimate occupancy based on
plasma levels, in situations of nonresponse.

Low occupancy of dopamine reuptake inhibitors!®-21:24
and 5-HT,, autoreceptor inhibitor medications?>?"-?% at the
higher end of the tolerated dosing range suggest there is an
opportunity to develop higher occupancy treatments for
these targets.

Future ligand development will likely target other non-
monoaminergic pathophysiologies associated with major de-
pressive disorder such as excessive secretion of glucocorti-
coids, aberrant signal transduction and markers of cell loss,
with the potential to better understand how these pathologies
relate to clinical symptoms, course of illness and effect of
novel treatments.
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