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pplying Neuroimaging Ligands
o Study Major Depressive Disorder
effrey H. Meyer, MD, PhD, FRCP(C)

The recent increase in radioligands available for neuroimaging major depressive disorder
has led to advancements in our understanding of the pathophysiology of this illness and
improved antidepressant development. Major depressive disorder can be defined as an
illness of recurrent major depressive episodes of persistently low mood, dysregulated
sleep, appetite and weight, anhedonia, cognitive impairment, and suicidality. The main
target sites investigated with radioligand neuroimaging include receptor sites that regulate
in response to lowered monoamine levels, targets related to removal of monoamines,
uptake of ligands related to regional brain function, and target sites of antidepressants.
Semin Nucl Med 38:287-304 © 2008 Elsevier Inc. All rights reserved.
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recent set of neuroimaging studies has built on the orig-
inal monoamine hypothesis of major depression by add-

ng several concepts: heterogeneity of monoamine loss for
ultiple monoamines,1-3 excessive clearance of monoamines

hrough greater monoamine transporter binding,4-6 and ex-
essive metabolism of monoamines.7 This information may
e translated into treatment development because it predicts
hat targeting multiple monoamines will, on average, be more
herapeutic; that particular symptoms will associate with re-
ponsiveness for raising specific monoamines; and that inter-
ering with specific mechanisms of monoamine loss will be
elpful in reversing symptoms of major depressive episodes
MDEs). Another line of investigation into major depressive
isorder (MDD) and anxiety disorders suggests that 5-HT1A

eceptor binding is low in this spectrum, which may have
mplications for the treatment refractoriness of MDD with
omorbid anxiety disorders.8-14

Abnormal patterns of 18F-fluorodeoxyglucose (FDG) uptake
nd 15O-H2O can identify changes in function in several sets of
rocesses during MDE, including the generation of sad affect,
ognitive changes, and greater functioning of compensatory
echanisms and circuits (the latter of which can differentiate

etween treatment responders and nonresponders15,16). These
tudies have practical application in guiding the location choice
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such as selection of subgenual cingulate) for deep brain stimu-
ation for treatment-resistant MDD.16

In the field of MDD research, neuroimaging of antide-
ressant occupancy is advanced because the occupancy
or most commonly prescribed antidepressants has been es-
ablished.17-28 Most investigations have centered on the se-
otonin transporter (5-HTT) site, and most of the remaining
nvestigations focus on DAT and 5-HT1A occupancy.17-26 Se-
ective serotonin reuptake inhibitor doses associated with a
ifferential response from placebo typically achieve 80%
ccupancy.17,18 The discovery of this threshold heavily impacts
evelopment of new serotonin transporter binding antidepres-
ants, which aim for an 80% occupancy. Low occupancy of
opamine reuptake inhibitors19-21,24 and 5-HT1A autoreceptor
nhibitor medications25-28 at the higher end of the tolerated
osing range suggest an opportunity to develop higher occu-
ancy treatments for these targets. Future ligand develop-
ent will likely target other nonmonoaminergic pathologies

ssociated with MDD with great potential to understand how
hese pathologies relate to clinical symptoms, course of ill-
ess and effect of novel treatments.

euroimaging Contributions to
onoamine Regulation in MDD

efore the contributions of neuroimaging, the monoamine
ypothesis of MDD was that some monoamines, likely sero-
onin and norepinephrine, were low in MDD.29 There were
everal lines of evidence to suggest that major monoamines
serotonin, norepinephrine, dopamine) may be dysregulated
n MDD: depletion of monoamines is associated with a low-

ring of mood, particularly in people who are vulnerable to
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mailto:jeff.meyer@camphet.ca


M
a
w
a
o
c
e
b

m
c
a
b

H
o
I
s
o

m
a
s
(
h
t
c
t
5
c
s
r
r
i
d

H
E
O

T

S

S

R

B

S

M

R

*

†

‡

288 J.H. Meyer
DD.30-32 Most antidepressants increase the level of mono-
mines; therefore, chronic raising of monoamines is associated
ith reversal of major depressive episodes.33 In addition, there is
reasonably frequent rate of receptor binding abnormalities

bserved in postmortem studies of suicide and MDD that is
onsistent with chronically lowered monoamines.34-43 These
vents collectively support the concept that monoamines may
e low in most brain regions during MDEs of MDD.
A recent set of neuroimaging studies have built on the
onoamine hypothesis of MDE of MDD by adding several

oncepts: heterogeneity of monoamine loss,1,2 excessive clear-
nce of monoamines through greater monoamine transporter
inding,4,5 and excessive metabolism of monoamines.7

eterogeneity
f Monoamine Loss

n the traditional monoamine model of MDD, extracellular
erotonin loss is present in untreated individuals. Although

able 1 Comparison of Radioligands for Imaging of 5-HT2A Re
18F-Setoperone PET* 1

electivity: based upon
displaceability

Selective in cortex.
Specific binding in
cortex completely
displaced by 5-HT2A

antagonist in humans.44

Cortex-specific binding
displaced completely by
5-HT2 antagonists across
species45-48

Sele
in
pu
w
oc
Sp
co
an
an

electivity: based upon
in vitro affinity and
relative density of
receptors

Selective in cortex: high in
vitro affinity for 5-HT2A

receptor; and low affinity
for other receptors
except D2—modest D2

affinity rules out striatum
measure54-56,58

High
re
so
ty
si
id

eversibility Very good with peak at
10-30 minutes in
cortex46,60

Mod
m

rain uptake High45-47 High

pecific binding to free
and nonspecific
binding ratio

Average cortex 5-HT2A

BPND approx. 2 between
ages 18 to 401,46,60

Ave
ap
of

etabolites cross
blood–brain barrier?

No65 Unli

eliability of 5-HT2A BP Excellent67 Una

For 18F-setoperone, the main strengths are selectivity in cortex for
is that the striatum measure is not selective.

11C-MDL 100907 is best used as a cortex radiotracer. For 11C-M
displaceable signal in striatum.

For 18F-altanserin, the main strengths are a high specific binding to
metabolites that cross the blood–brain barrier.52,66
ne cannot measure extracellular serotonin directly, one may t
easure an index of regional 5-HT2A receptor density, such
s 5-HT2A binding potential (BP) or 5-HT2A BPND (an index of
pecific binding relative to free and nonspecific binding).
See Table 13,44-67 for a list of 5-HT2A radiotracers applied in
umans.68) 5-HT2A density has an inverse relationship to ex-
racellular serotonin such that binding increases when extra-
ellular serotonin is chronically lowered.69-72 Therefore, if the
raditional monoamine model of MDE were valid, increased
-HT2A BPND would occur in regions such as the prefrontal
ortex in during MDE. Authors of a review of 5-HT2A imaging
tudies of MDE before 2003 found a reduction in those with
ecent antidepressant use and no change in those with no
ecent antidepressant use (Table 2).3,68,73-80 The latter find-
ngs of no change in 5-HT2A BPND would suggest either aban-
oning the monoamine model or modifying it.

eterogeneous
xtracellular Serotonin Loss in Cortex
ne hypothesized modification of the monoamine model is

rs in Humans

DL 100907 PET† 18F-Altanserin PET‡

in cortex, not selective
en. In humans,
, had 22% occupancy
her regions had 70%
cy after mirtazapine.49

binding in cortex
ely displaced in
with 5-HT2

ists50,51

Cortex displaced near 100% with
ketanserin in humans52 and
highly displaceable with 5-HT2

antagonists in rodent.53

Striatum binding unaffected by
D2 antagonist in rodent53

tro affinity for 5-HT2A

r, and low affinity for
her receptors
7,58—undisplaceable
striatum not

d49

Likely selective in all brain
regions -high affinity in vitro to
5-HT2A receptor and low
affinity for other receptor
types59

ith peak at 50-90
in cortex49,61

Good with peak at approx 30
minutes in cortex62,63

High62,63

ortex 5-HT2A BPND

2 in application study
age 403

Very good: average cortex 5-HT2A

BPND approx. 3 for sample
between ages 33 to 6764

Yes,52,66 consider bolus and
infusion paradigm to address

le Excellent in cortex, adequate in
subcortical regions64

receptors, reversibility, and excellent reliability. Its main limitation

00907, its main limitations are moderate reversibility and a non-

nd non-specific binding ratio. Its main limitations are that there are
cepto
1C-M

ctive
putam
tamen

hen ot
cupan
ecific
mplet
imals
tagon

in vi
cepto
me ot
pes51,5

gnal in
entifie

est w
inutes

49,61

rage c
prox.
mean

kely49

vailab

5-HT2A

DL 1

free a
hat monoamine loss during MDD is heterogenous and that
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Applying neuroimaging ligands to study MDD 289
he loss is greatest in those with the most severe symptoms.
he first investigations of this revision of the monoamine
odel began with prefrontal cortex 5-HT2A BPND measure-
ent and its relationship to specific symptoms. It was hy-
othesized that increases in 5-HT2A BPND would only occur in
DE with greater symptom severity (when extracellular se-

otonin would be theoretically lower1).
The symptom chosen was pessimism, as measured with

he dysfunctional attitudes scale (DAS)81 because increasing
he level of extracellular serotonin abruptly (via intravenous
-fenfluramine administration) in healthy humans shifted
erspective toward optimism as measured by the DAS.1 The
AS81 is a sensitive measure for detecting pessimistic think-

ng in the midst of MDE82-84 that has very good internal
onsistency (Cronbach’s � � 0.85 to 0.87)85,86 and high test–
etest reliability.81,86 The interpretation of this shift toward
ptimism after d-fenfluramine was that one of the cognitive
unctions of extracellular serotonin in humans is to reduce
essimism.1

In support of the hypothesis, a strong correlation was ob-
erved between severity of dysfunctional attitudes (pessi-
ism) and elevation in cortex 5-HT2A BPND. Moreover, cortex

-HT2A BPND was significantly elevated in subjects with MDE
nd severe pessimism.1 For example, in the prefrontal cortex
egion centered on Brodman’s area 9, 5-HT2A BPND was in-
reased 29% in depression subjects with dysfunctional atti-
ude scores higher (more pessimistic) than the median for the
roup (Fig. 1). A recent study by Bhagwagar and coworkers
eplicated this relationship between dysfunctional attitudes

able 2 Imaging Studies of 5-HT2A Receptors in Major Depre

Study Method Number o

’Haenen et al73 123I-ketanserin SPECT 19 depresse
iver et al74 18F-altanserin PET 8 depressed

ttar Levy et al75 18F-setoperone PET 7 depressed

eyer et al76 18F-setoperone PET 14 depresse

eltzer et al77 18F-altanserin PET 11 depresse
atham et al78 18F-setoperone PET 20 depresse
essa et al79 18F-setoperone PET 19 depresse

eyer et al1* 18F-setoperone PET 22 depresse

intun et al80† 18F-altanserin PET 46 depresse

hagwagar et al3 11C-MDL 100907 20 recovered
20 healthy

Subjects enrolled in the study by Meyer et al76 (1999) were also in
and dysfunctional attitudes in subjects with depression as well

Findings largely appear driven by a single healthy subject with ver
everity and prefrontal cortex 5-HT2A BPND in recovered de- p
ressed subjects.3 These findings support a model of hetero-
eneous extracellular serotonin loss in prefrontal cortex in
DD.

eterogeneous
xtracellular Dopamine Loss in Striatum
vidence for a model of heterogenous putamen dopamine

oss and motor retardation was subsequently investigated in
onsmoking, medication-free subjects with MDE and MDD.
otor retardation is a known symptom during MDE that is

resent to a variable extent3,87 and motor speed is measurable
ith a neuropsychological test called the finger tapping

est.87,88 The disease model of reduced putamen dopamine
eurotransmission and subsequent motor retardation is well
stablished in a number of other illnesses (eg, Parkinson’s
isease, multisystem atrophy, progressive supranuclear pal-
y).89-92 11C-raclopride is a positron emission tomography
PET) radiotracer that is selective for D2 type receptors,93-96

nd the index of D2 type receptors found with this method
D2 BPND), is inversely proportional to extracellular dopa-
ine levels in acute and chronic paradigms of dopamine
epletion.96-99

The main findings of this study of striatal D2 BPND and
otor retardation were that the caudate and putamen D2

PND were increased in the depressed group as compared
ith the healthy group and that greater putamen D2 BPND

as significantly correlated with more severe motor retar-
ation in the depressed group (Fig. 2).2 The findings sup-

Disorder (updated from Meyer68)

jects
Medication-Free

Status Result

healthy 7 days Greater in parietal cortex
ealthy 10 days Lower in orbitofrontal

cortex
lthy Taking

benzodiazepines
Lower in prefrontal

cortex
healthy 3 months plus 5 half

lives
No difference

healthy “untreated” No difference
healthy 2 weeks Decrease in cortex
healthy Taking

benzodiazepines
Decrease in cortex

healthy 6 months Positive association with
dysfunctional attitude
severity in cortex

healthy 4 weeks Decrease in
hippocampus

essed, 6 months Positive association with
dysfunctional attitude
severity in prefrontal
cortex; elevation in
most cortex regions

in the expanded study by Meyer et al1 (2003) of 5-HT2A receptors
jects with borderline personality disorder.
5-HT2A BP.
ssive

f Sub

d, 10
, 22 h

, 7 hea

d, 14

d, 11
d, 20
d, 19

d, 22

d, 29

depr

cluded
as sub
ort a specific role for striatal dopamine loss during de-
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290 J.H. Meyer
ression, especially when motor retardation is present.
hey extend support for the concept of heterogeneous
onoamine loss with the greatest loss in the most symp-

omatic individuals.

igure 1 5-HT2A binding potential in prefrontal cortex is associated
ith dysfunctional attitudes in depressed subjects. Age-corrected
-HT2A receptor binding potential (5-HT2A BP) within bilateral pre-
rontal cortex (Brodmann’s area 9) in depressed subjects was plotted
gainst the DAS score. When controlling for age, the correlation
oefficient between 5-HT2A BP and DAS was 0.56, P � 0.009. The
ge-corrected 5-HT2A BP was calculated by applying a linear regres-
ion with predictor variables age and DAS to the 5-HT2A BP. The
lope of the line for the age predictor was used to normalize each
ubject’s 5-HT2A BP to that expected for a 30-year-old subject. (Up-
ated and reprinted with permission from Meyer et al.1)

Figure 2 Striatal D2 receptor binding potential in motor
healthy subjects (n � 21). Mean and standard error are s
on slower scores on the finger tapping test. The motor re
healthy subjects (t29 � 3.37, P � 0.002, 47.0 taps/10 s
were normalized to a 30-year-old subject using the slop
t-test; cP � 0.01, independent sample t-test; dP � 0.005

Meyer et al.2)
xcessive
learance of Monoamines
ia Monoamine Transporters

f extracellular monoamines are lowered during MDEs, then
bnormal monoamine transporter function should be con-
idered a potential contributing mechanism. There are at
east 4 plausible models to explain how indices of mono-
mine transporter binding could be altered in a disease that
owers brain monoamines.68 These are referred to here as

odels 1 through 4. Model 1 is a lesion model that reduces
onoamine releasing neurons. In a lesion model, reductions

n binding occur. Model 2 is a model of secondary change in
ransporter binding consequent to monoamine lowering via a
ifferent process. Model 3 is increased clearance of extra-
ellular monoamine via greater monoamine transporter
ensity. In model 3, greater available monoamine trans-
orter binding leads to greater clearance of monoamines
rom extracellular locations. Model 4 is endogenous dis-
lacement and is dependent on the properties of the radioli-
and. Endogenous displacement is the property of a few ra-
ioligands to express different binding after short term
anipulations of their endogenous neurotransmitter. Ab-
ormalities in monoamine transporter binding during ma-

or depressive episodes may be discussed in the context of
hese models.

A particular issue with model 2 is that available evidence
uggests that the different monoamine transporters do not
egulate in the same fashion after chronic depletion of their
ndogenous monoamine. Acute reductions in serotonin have
epeatedly shown reductions in 5-HTT mRNA.100-102 How-
ver, longer-term reductions or elevations in serotonin typi-

ed depressed (n � 10), other depressed (n � 11) and
The motor retarded depressed group was selected based
group had significantly slower scores as compared with
versus 37.34 taps/10 seconds). Subjects’ D2 BP values
e age-related decline. bP � 0.05, independent sample
endent sample t-test. (Reprinted with permission from
retard
hown.
tarded
econds
e of th

, indep
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Applying neuroimaging ligands to study MDD 291
ally show no effect on regional 5-HTT density.103-105 In con-
rast, for dopamine transporters in striatum, the evidence to
upport a relationship between long-term reductions in ex-
racellular dopamine and a lowering of striatal dopamine
ransporter density is fairly strong.106-109 Norepinephrine
ensity in most brain regions decreases in density after
hronic norepinephrine depletion.110

erotonin Transporter Binding
uring Major Depressive Episodes
euroimaging studies of the serotonin transporter offer the
pportunity to measure an index of 5-HTT density, the
-HTT BPND, in the midst of a depressive episode that was a
ignificant barrier for most postmortem studies of 5-HTT
ensity. There are only 2 postmortem investigations of
-HTT density in subjects with recent symptoms of depres-
ive episodes.111,112 In these investigations, no changes in
-HTT density were found in the dorsal raphe or the locus
oeruleus. Other postmortem investigations of 5-HTT den-
ity sampled subjects with a history of a depressive episode
nd these investigations usually studied the prefrontal cortex
nd/or dorsal raphe nucleus. Findings ranged from decreased
-HTT density113-117 to no difference in 5-HTT density.118-122

n several of these studies, subjects were medication
ree,115,118,119 and for many of these investigations, average
ostmortem delays were less than a day.111-113,115,117,121 For
reater detail the reader is referred to the review of Stock-

able 3 Comparison of Radioligands for Imaging of 5-HTT in
123I-�-CIT SPECT 11C-(�)McN5652

electivity Nonselective—near
1:1 affinity for
5-HTT to
DAT123,124

Likely selective 10:1
100:1 affinity for 5
over NET125,126

isplaceability
of specific
binding

Incomplete131,132 In most, but not all,
reports22,23,133

eversibility† Good136,137 Not adequate to ade
depending upon
region‡133,138,139

rain uptake Adequate136,137 Good133,138

pecific binding
to free and
nonspecific
binding ratio†

Good136,137 Not adequate in som
regions; adequate
thalamus138,144

eliability of
5-HTT BP†

Not measured Modest23

-HTT BP
measurable in
multiple
regions?

Brainstem
only136,137

Measurable in thalam
not measurable in
cortex133,139

11C-DASB is also highly selective for 5-HTT over a number of othe
For humans (radiotracer performance differs across species).
Depending upon brain region.
eier.40 Other sampling issues that may influence postmor- a
em investigations are effects of additionally sampling pa-
ients with bipolar disorder and possible differences between
arly- versus late-onset MDD.

Recent advances in radioligand development, particularly
ith the advent of 11C-DASB, have led to a series of investi-
ations of 5-HTT BP in MDD. (See Table 317,18,22,23,68,123-145

or a description of new radiotracers and Table 44,6,68,146-150

or a list of neuroimaging investigations.) The first applica-
ion of 11C-DASB PET imaging to MDD sampled 20 subjects
ith MDE and 20 healthy controls.4 Subjects were medica-

ion free for at least 3 months, and they had no other comor-
id axis I illnesses, did not smoke, and had early-onset de-
ression. There was no evidence for a difference in 5-HTT
PND during MDE of early-onset MDD. However, MDE sub-

ects with severely pessimistic dysfunctional attitudes had
ignificantly greater levels of 5-HTT BPND, compared with
ealthy subjects in brain regions sampling serotonin nerve
erminals (prefrontal cortex, anterior cingulate, thalamus, bi-
ateral caudate, bilateral putamen). On average, 5-HTT BPND

as 21% greater in these regions in MDE subjects with se-
erely pessimistic dysfunctional attitudes. Moreover, within
he MDE group, greater 5-HTT BPND was strongly associated
ith more negativistic dysfunctional attitudes in the same
rain regions (Fig. 3). The interpretation was that serotonin
ransporters have an important role in influencing extracel-
ular serotonin during MDEs: Greater regional 5-HTT levels
an provide greater vulnerability to low extracellular 5-HT

ns68

11C-DASB PET 123I-ADAM SPECT

Highly selective 1000:1 affinity
for 5-HTT over NET or
DAT*127,128

Highly selective 1000:1
affinity for 5-HTT
over NET or
DAT129,130

Highly
displaceable17,18,127,128,134

Highly
displaceable129,130,135

Adequate in midbrain, good to
very good in other
regions140-142

Adequate in
midbrain135,143

Very good140-142 Adequate135,143

Adequate to very good‡140,142 Not adequate in most
regions; adequate in
midbrain135,143

Very good to excellent17,145 Most regions
reasonable143

8 Yes140,142 Measurable in
midbrain; unclear for
other regions135,143

ts tested in vitro.128
Huma

PET

to
-HTT

quate,

e
in

us,13

r targe
nd symptoms of extremely negativistic dysfunctional atti-
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292 J.H. Meyer
udes. This interpretation, in subjects with high levels of
essimism during MDE, corresponds to model number 3
see the section “Excessive Clearance of Monoamines via
onoamine Transporters”). Because 11C-DASB is insensitive

o tryptophan depletion in humans, model number 4 is un-
ikely.68,145,151

In general, neuroimaging studies that (1) apply methodol-
gies sampling of subjects who are medication free for longer
han 2 months, (2) sample subjects who do not have comor-
id axis I disorders, or (3) apply 11C-DASB tend to find either
o change in regional 5-HTT BP or an increase in regional
-HTT BP (Table 4).4,6,147,150 Investigations that sample sub-

ects with comorbid axis I psychiatric disorders, or subjects
ith recent antidepressant use, or do not apply a selective

adiotracer are more likely to report a reduction in regional
-HTT BP.146,148,149

opamine Transporter
inding During MDD
ost dopamine transporter imaging radioligands applied in

epression, such as 11C-RTI-32, 123I-FP-CIT, and 99mTc-
RODAT-1, have high selectivity, high specific binding rel-
tive to free and nonspecific binding, but are modestly re-
ersible.152-154 123I-�-CIT has reversible time activity curves
ithin the time of scanning, but its measure of specific bind-

ng in striatum has a modest contribution from serotonin
ransporter binding. (This estimate is based on the similar
ffinity of 123I-�-CIT for dopamine and serotonin transport-
rs123,124 and the relative density of these sites in the stria-
um.155-158)

A novel radiotracer, 11C-PE2I, demonstrates reversibility,
electivity, and high specific binding relative to free and non-
pecific binding.159-161 Metabolites that cross the blood–
rain barrier have been identified in rodents,162 but it is pos-
ible that these metabolites will not be present in humans.

There is a postmortem study of dopamine transporter
inding during major depressive episodes that reported re-
uctions in binding in basal and lateral amygdaloid nuclei.42

n the same study, greater D2 type receptor binding were
resent in the same amygdaloid nuclei, leading to the inter-
retation that dopamine levels were depleted in these regions
ithin the amygdalae of depressed subjects.
Most neuroimaging investigations have focused on stria-

um and apply gray matter of cerebellum (or prefrontal cor-
ex) as a reference tissue. Among investigations applying data
n this manner, some commonality of findings is present:
hose conducted in samples which were medication free for

onger time periods tend to find reductions in striatal DAT
inding,5,163,164 whereas those in subjects who have recently
aken antidepressants tend to find elevations in striatal DAT
inding.24,165 In unmedicated depressed subjects, it could be
rgued that model 1 (lesion) or model 2 (downregulation in
esponse to another monoamine lowering process) are im-
ortant.
Clarification of these models was possible through addi-

ional investigations in which the relationship between finger

tapping speed and putamen DAT BP was assessed duringTa
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Applying neuroimaging ligands to study MDD 293
DE. A strong, negative correlation between the 2 measures
as found (Fig. 4). Subjects’ performances on the finger tap-
ing test are impaired when dopamine concentrations are

ow (as indirectly measured by D2 BP2,166 or 18F-DOPA up-
ake167,168) and when depressive episodes are present.87 The
ata can be interpreted to argue that patients without motor
etardation have lower DAT BP and demonstrate a compen-
atory protective mechanism5: When dopamine is chroni-
ally low in striatum, downregulation of DAT occurs.106-109

educed DAT levels decrease the clearance of extracellular
opamine.169 Compared with the usual healthy state, the
ompensated state has near similar (or mildly reduced) ex-
racellular striatal dopamine concentrations with downregu-
ated DAT. This process whereby DAT BP is decreased pro-
ects some patients from showing motor slowing. These data
rgue for involvement of two models: model 2 (downregula-
ion in response to another monoamine lowering process)
nd model 3 (relatively greater DAT BP is associated with
reater symptom burden).

xcessive Monoamine
etabolism During MDEs

ther major influences on extracellular monoamines besides

Figure 3 Correlations between dysfunctional attitudes (D
some of the larger regions in depressed subjects. Highl
(P � 0.0004), anterior cingulate (P � 0.002), bilateral
(Reprinted from Meyer et al,4 with permission from th
available online.)
onoamine transporter function include monoamine syn- a
hesis and metabolism processes. Decreased monoamine syn-
hesis is unlikely during untreated MDE because postmortem
nvestigations of monoamine synthesis enzymes in monoamine
uclei tend to find no change or modestly increased levels in
ost brain regions in subjects with MDD.170-172 Neuroimag-

ng investigations attempting to determine whether mono-
mine precursor uptake is reduced in untreated depression
re inconclusive as the samples collected are associated with
ecent antidepressant use.173,174

Monoamine oxidase A regulates levels of all 3 major mono-
mines (serotonin, norepinephrine, dopamine) in the
rain.175 Postmortem studies have not fully addressed the
uestion as to whether brain MAO-A is abnormal during
ajor depressive episodes because each investigation had at

east two limitations that may influence results,7,176-181 in-
luding complete nonspecificity of technique for MAO-A
ersus monoamine oxidase B, enrollment of subjects who
ecently took medication, unclear diagnosis of suicide vic-
ims, small sample size, or lack of differentiation between
arly-onset depression and late-onset depression. Differenti-
tion of the more common early-onset depression (before age
0) versus late-onset depression is important when evaluat-

ng indices of monoamine metabolism because dysregulation
f monoamines in late onset depression is suspected of being

d serotonin transporter binding potential (5-HTT BP) in
cant correlations were found for the prefrontal cortex
en (P � 0.0002), and bilateral thalamus (P � 0.001).
rican Medical Association.) (Color version of figure is
AS) an
y signifi
putam
e Ame
ttributable to lesions and/or degenerative disease.182-185
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294 J.H. Meyer
Radioligands to measure an index of MAO-A levels for
euroimaging include 11C-clorgyline, deuterium-labeled

1C-clorgyline, 11C-harmine, and 11C-befloxatone.186-191 The
atter 2 have a considerable advantage in terms of having

ore rapid kinetics and greater reversibility. 11C-harmine has
lso been modeled in humans and possesses high affinity for
he MAO-A site, selectivity, excellent specific binding relative
o free and nonspecific binding ratios, high brain uptake, and
s therefore the lead radiotracer for quantitating brain

AO-A binding in humans.7,188,190,192,193

There is one study of MAO-A binding in MDE, and
AO-A DVs, an index of MAO-A density, was elevated

igure 4 Correlation between age-corrected, striatal, dopamine
ransporter binding potential, and performance on the finger tap-
ing test (r � �0.86, P � 0.006). (Reprinted from Meyer et al5 with
ermission from Lippincott Williams & Wilkins.)

Figure 5 Comparison of MAO-A DVs between depressed
by 34%, or 2 standard deviations, in depressed individu
region. *P � 0.001, ** P � 0.0001, *** P � 0.0000

American Medical Association.)
hroughout the brain on average by 34% (2 standard devia-
ions; Fig. 5).7 Elevated brain MAO-A density during major
epressive episodes when combined with previous neuroim-
ging results in medication free depressed subjects1,2,4,5 (ie,
o medication for 3 months or more) leads to an advanced
onoamine theory (Fig. 6) as follows7: During a major de-

ressive episode, elevated MAO-A increases the metabolism
f monoamines. Then, individual monoamine transporter
ensities have a secondary influence on particular extracel-

ular monoamine levels. If the monoamine transporter den-
ity for a particular monoamine is low, the effect of greater
onoamine metabolism on extracellular monoamine levels

s somewhat attenuated resulting in a moderate monoamine
oss. Longstanding moderate loss of a particular monoamine
n specific brain regions eventually results in a moderate se-
erity of particular symptoms. If the monoamine transporter
ensity for a particular monoamine is not low during a MDE,
hen the extracellular concentration of the monoamine is
everely reduced and symptoms associated with chronic re-
ional loss of that particular monoamine eventually become
evere. To summarize, elevated MAO-A can be considered a
eneral monoamine lowering process (with no relationship
o particular symptoms) and the regional density of mono-
mine transporters can be considered a selective influence on
articular monoamines (with a strong relationship with par-
icular symptoms).1,2,4,5,7

linical Implications
f a New Monoamine Theory

his modern model views both excessive MAO-A levels and
elatively greater monoamine transporter density as being
ajor contributors to regional monoamine loss.1,2,4,5,7 This
as implications for designing future treatments and
atching treatments to illness. If it is assumed that greater

althy subjects. On average, MAO-A DVs was increased
ferences between groups were highly significant in each
printed from Meyer et al,7 with permission from the
and he
als. Dif
1. (Re
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Applying neuroimaging ligands to study MDD 295
ntervention on disease pathology leads to greater thera-
eutic effect, the model would predict that raising all three
onoamines, would on average, increase the likelihood of

esponse relative to a treatment that raises a single mono-
mine. It would also predict that the optimal match of sub-
ects to treatment would relate to their symptom profiles. For
xample, symptoms associated with loss of particular mono-
mines would be expected to predict response to antidepres-
ants that raise these monoamines. Conversely, presence of
ymptoms correlated with monoamine loss not directly tar-
eted by an antidepressant would predict nonresponse. For
xample, it would be predicted that a depressed individual
ith symptoms corresponding to loss of dopamine would be

ess likely to respond to a serotonin reuptake inhibitor
which was reported in one recent investigation194).

erotonin1A Receptor
maging in MDD (With Anxiety)
here are several 11C-WAY-100635 PET studies reporting
reater 5-HT1A BP in most brain regions during major depres-
ive episodes and persistence of this reduction during remis-
ion.8-10 There is one exception to this result11 and it may be

Figure 6 Modernization of Monoamine Theory of Dep
in a healthy person. (B) During a major depressive ep
resulting in greater metabolism of monoamines such
Outcomes range from (C) to (D). (C) If the monoam
during a major depressive episode, the effect of elev
extracellular space is somewhat attenuated resulting i
a moderate severity of symptoms associated with chron
transporter density for a particular monoamine is no
protection against the effect of elevated MAO-A. The
reduced and symptoms associated with chronic loss
Some post-synaptic receptors increase in density whe
is mostly found in norepinephrine releasing neuron
serotonin releasing neurons and glia. Even so, MAO-A
vivo.
hat the selection of white matter as a reference region, loga- c
ithmic transformation of data and/or sampling characteris-
ics account for the outlying result.

With regards to sampling issues, comorbid anxiety and/or
nxiety disorders may be particularly important. During
DEs, anxiety and/or anxiety disorders are often present,

nd there is very good evidence to suggest that anxiety and/or
nxiety disorders have a strong link to reductions in regional
-HT1A BP: In an 18F-trans-4-fluoro-N-2-[4-(2-methoxyphe-
yl)piperazin-1-yl]ethyl]-N-(2-pyridyl) cyclohexanecarbox-
mide (18F-FCWAY) study of panic disorder (with comorbid
DD in almost half the cases), substantial reductions in

-HT1A BP in anterior cingulate, posterior cingulate, and ra-
he regions were reported.12 (Quantitation with this radio-
racer is suitable for medial regions but not peripheral brain
egions because of bone uptake of radioactive signal.) In so-
ial anxiety disorder, reductions in 5-HT1A BP in most brain
egions (insula, anterior cingulate cortex, medial orbito-
rontal cortex, amygdala, midbrain) were also reported.13

n healthy individuals, there is an inverse correlation be-
ween anxiety levels and 5-HT1A BP in cortical and subcor-
ical brain regions,14 and there is an inverse correlation
etween personality variables related to worry regarding
ocial desirability and 5-HT1A BP in cortical and subcorti-

. (A) Description of monoamine release in a synapse
monoamine oxidase A (MAO-A) density is elevated

otonin, norepinephrine, and dopamine in the brain.
nsporter density for a particular monoamine is low
AO-A upon reducing that particular monoamine in
derate loss of monoamine. This eventually results in
of that particular monoamine. (D) If the monoamine

during a major depressive episode, then there is no
cellular concentration of the monoamine is severely
at particular monoamine eventually become severe.
endogenous monoamine is chronically low. MAO-A
is reported to be detectable in other cells such as

bolizes serotonin, norepinephrine, and dopamine in
ression
isode,
as ser
ine tra
ated M
n a mo
ic loss
t low
extra
of th

n their
s, but

meta
al brain regions.195
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296 J.H. Meyer
nvestigations of Abnormally
unctioning Brain Structures

n MDD Via 18F-FDG and
5O-H2O Uptake Measurement
ost neurobiological theories of depression propose that

eurochemical and/or cognitive changes affect the function
f particular brain structures. A line of investigation consis-
ent with this perspective includes studies of FDG and 15O-

2O uptake in MDD because regional uptake of these radio-
racers is often sensitive to changes in the function of
articular brain regions. Abnormal patterns of 18F-FDG up-
ake can be conceptualized as primarily relating to processes
hich reflect abnormal function during MDE. One is greater
eneration of sad affect which may relate to excessive activity
f some components of the limbic system. A second is cog-
itive changes, which may relate to reduced activity of corti-
al structures. A third is greater functioning of compensatory
echanisms and circuits which can differ between treatment

esponders and nonresponders.15,16

Abnormalities during MDE include reductions in FDG up-
ake and/or 15O-H2O blood flow to structures that participate
n cognition, attention and execution of decision making
asks such as dorsolateral and dorsomedial prefrontal cor-
ex,196-198 dorsal anterior cingulate cortex,198,199 and cau-
ate.198-200 Changes in FDG uptake and/or 15O-H2O blood
ow uptake are commonly observed in brain structures re-

ated to generation, and processing of affect such as sub-
enual cingulate cortex, anterior cingulate cortex, ventrolat-
ral prefrontal cortex, amygdala, thalamus, and orbitofrontal
ortex.198,200-203 Variations in the direction of the abnormal
hange in radiotracer uptake in MDE groups as compared
ith healthy is often related to subgroupings of MDE such as

reatment resistant and treatment responsive subgroups, and
ubgroups with volume loss.15,16

These investigations are often with the patient in a “resting
tate” with eyes shut. With the advent of bold functional
agnetic resonance imaging, it has become clear that pat-

erns of difference between depressed and healthy subjects
re influenced by task choice and/or genotype.204-207 How-
ver, prevailing patterns of change in FDG uptake can be
iewed as representing predominant changes in regional
unction and have had practical application in guiding loca-
ion choice (such as selection of subgenual cingulate) for
echniques such as deep brain stimulation for treatment re-
istant subjects.16

In geriatric depression, particularly late-onset depression,
here pathology of onset is likely related to lesions and loss
f glia and neurons,183,185 FDG uptake may be used to elicit
eurochemically specific abnormalities. In such studies a
hallenge is given to stimulate release of a monoamine and
hanges in FDG uptake are evaluated.185 Studies conducted
n geriatric depression with a citalopram challenge have
hown a differential lateralized pattern of acute metabolic effects
n the patients who have a s allele of the serotonin transporter in

ontrast to comparison subjects.208 Further investigations with fi
ther monoamine specific challenges may elicit abnormalities
pecific to subtypes of late-onset depression.

mproving
ntidepressant Development
hrough Antidepressant
ccupancy Studies

uantitating brain penetration of antidepressants to the tar-
et sites has considerable practical application in developing
ntidepressants and can inform prescribing practices. Anti-
epressant occupancy can be defined as the percent change

n specific binding index in the antidepressant treated condi-
ion relative to the untreated condition. It can be viewed as an
ndex of brain penetration of antidepressants. Before the de-
elopment of occupancy measurement, it was assumed that
lasma levels may predict brain occupancy, but there are
ctive transport mechanisms that remove medications from
he brain and lipophilicity influences brain penetration of
edications.18 In the field of MDD, occupancy application is

dvanced relative to most areas of medicine since the occu-
ancy for most commonly prescribed antidepressants has
een established within the typically prescribed dosing
ange.17,18 Most investigations have centered on the 5-HTT
ite, and the majority of the remaining investigations focus on
AT and 5-HT1A occupancy.17-26

-HTT Occupancy Studies
n 2001, the first selective serotonin reuptake inhibitor
SSRI) occupancy study with 11C-DASB PET reported an 80%
ccupancy in multiple regions after 4 weeks of treatment
ith doses of paroxetine and citalopram that are clinically
istinguishable from placebo.17 This result has been repli-
ated in brain regions of reasonable size with other SSRIs,
uch as fluvoxamine,22 fluoxetine,18 sertraline,18 and ven-
afaxine (Figs. 7 and 8).18 Although these SSRI have a 100-

igure 7 5-HTT occupancy at minimum therapeutic dose. Mean
triatal serotonin transporter (5-HTT) occupancy for 5 selective se-
otonin reuptake inhibitors after 4 weeks of minimum therapeutic
osing. The vertical ranges represent SD. Subjects received citalo-
ram 20-40 mg (n � 7), fluoxetine 20 mg (n � 4), sertraline 50 mg
n � 3), paroxetine 20 mg (n � 7), or venlafaxine XR 75 mg (n � 4).
Reprinted with permission from Meyer et al.18) (Color version of

gure is available online.)
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Applying neuroimaging ligands to study MDD 297
old range in affinity for the serotonin transporter, an 80%
triatal 5-HTT occupancy occurs at minimum clinical dose.
oreover, the in vitro EC50 does not correlate with affinity.9

his demonstrates that, although affinity is an essential piece
f information regarding an antidepressant, it cannot predict
ccupancy, even when plasma levels are known.18 Given the
ssociation between the clinically relevant dose and 5-HTT
ccupancy for the SSRIs, it is now generally believed that an
0% 5-HTT occupancy is a therapeutic threshold for new
ntidepressants. This technique can be applied in a practical
ashion during phase I trials to assess whether potential new
ntidepressant drugs are adequately brain penetrant and to
uide dosing selection for subsequent phase II clinical trials.

5-HTT occupancy has been evaluated at a number of dif-
erent doses for 5 commonly prescribed SSRIs.17,18,209 Both
ose and especially plasma level have a very strong relation-
hip to 5-HTT occupancy: There is increasing occupancy
ith increasing dose (and plasma level), with plateauing at

he greater doses and greater plasma levels (see Fig. 8). This
as several important clinical implications. First, it is unlikely
hat inadequate 5-HTT occupancy explains treatment resis-
ance, because one may raise the dose of the SSRI to obtain
dequate plasma levels. Second, in clinical circumstances,
-HTT imaging may not need to be completed to estimate
-HTT occupancy. Instead, one may use the plasma level and
he figures of plasma level versus occupancy in the main
ublication18 to estimate the 5-HTT occupancy of any SSRI.
hird, given the plateauing of occupancy in the clinical dos-

ng range, none of the SSRI antidepressants demonstrate a
-HTT occupancy exceeding 90%. This suggests that there is
n opportunity to develop SSRI antidepressants with higher
-HTT occupancy.209

AT Occupancy Studies
upropion is an antidepressant which, based on its affinity
rofile, may be considered a dopamine reuptake inhibitor
ith modest affinity.210,211 Occupancy studies in striatum

eport a reasonably consistent range of values between zero

Figure 8 Relationship between striatal 5-HTT occupancy
fit using an equation of form f(x) � a*x/(b�x). The rel
(f(x) � 92*x/(b�x), F1,16 � 127, P � 0.0001). The r
significant (f(x) � 96*x/(b�x), F1,16 � 103, P � 0.000
nd 25%.19-21,24 Given the low occupancy, it may be helpful a
o develop higher occupancy DAT inhibiting antidepres-
ants.

-HT1A Occupancy Studies
utoreceptor inhibition has been described as a mechanism
f delayed response and nonresponse to SSRI.211 Conse-
uently, 5-HT1A antagonists have been added to SSRI as a
eans to hasten antidepressant actions with detectable ef-

ects, but this is not done in routine clinical practice.212 In-
estigations of pindolol and other 5-HT1A antagonists have
hown that the doses used in these augmenting studies cor-
espond to low levels of 5-HT1A occupancy in superior raphe
uclei and that occupancy at undesirable sites in cortex is
lso present.25-28 Therefore, clinical trials have not yet been
pplied in a manner so as to optimize the autoreceptor inhi-
ition of 5-HT1A antagonists and future antidepressant devel-
pment should focus on interventions that maximize 5-HT1A

utoreceptor inhibition and minimize 5-HT1A antagonism in
ortex.

eplicability
ssues of Neuroimaging
nvestigations in MDD
eplication of occupancy findings has been robust.17-27 How-
ver, replication of findings in disease states is best identified
hen sampling methodology and radioligand characteristics

re considered.1-16,24,68,73-80,146-150,163-165 Sampling issues that
nfluence replicability across sites include duration of medi-
ation/antidepressant free status (with greater homogeneity
f findings when medication free status exceeds two
onths), and comorbidity. It is anticipated that age of onset
ill be an important issue in future studies since there are
istinct structural MRI abnormalities and patterns of cell loss

n late-onset MDD.183-185 Another important sampling issue
s based on heterogeneity of symptom expression in MDD (A

ajor depressive episode is defined as having the presence of

se or plasma concentration of citalopram. The data were
ip between dose and occupancy was highly significant
ship between plasma level and occupancy was highly
printed with permission from Meyer et al.17)
and do
ationsh
elation
t least five of nine symptoms213). Because MDD has a heter-
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298 J.H. Meyer
geneous expression of symptoms, quantitation of symptom
everity related to the target of interest is necessary to further
mprove replicability across studies.1-7 Samples with similar
everity of target related symptoms are expected to demon-
trate similar findings whereas samples with dissimilar sever-
ty of target related symptoms are unlikely to have similar
ndings. Radioligand selectivity, as assessed by the relative
ffinity of specific binding in vitro and the relative density of
hese target sites within specific regions in vivo,68 is also a key
ssue for some investigations. Increasingly these sampling
ssues and radioligand characteristics are being considered,
nd thus it is likely that replications across settings will con-
inue to improve.

uture
adioligand Development
or Investigating MDD
t is likely that some of the immediate new radioligand de-
elopment will relate to monoamine targets but that more of
he future radiotracer development will be in other areas.
ome postmortem investigations in untreated depressed
ubjects report a reduction in norepinephrine transporter
ensity,41 and many antidepressants target the norepineph-
ine transporter,210,214 so there is great interest in measuring
n index of norepinephrine transporter density in vivo. De-
elopments have not yet yielded a radioligand that is highly
ensitive to changes in available norepinephrine transporter
inding. A promising radioligand in humans is 11C-(S,S)
-[(2-methoxyphenoxy)phenylmethyl]morpholine or 11C-(S,S)
-methylreboxetine.215,216 It demonstrates selectivity in ani-
al displacement studies, but it has a few limitations in hu-
ans such as modest specific binding relative to free and
onspecific binding and a variable level of free and nonspe-
ific binding between individuals.215-217

New key directions for future radioligand development are
elated to other pathophysiological aspects of MDD such as
xcessive secretion of glucocorticoids, aberrant signal trans-
uction and markers of cell loss.218 Radioligands for these
argets are mostly in the development stage but some show
romise.219-221 The most common reason why current candi-
ate compounds in these areas frequently have limited suc-
ess is poor brain uptake or excessive lipophilicity.222,223

owever, similar challenges were overcome in the past for
adiotracers for other target sites and it is anticipated that as
ew compounds are created for medicinal purposes, some of
he more brain penetrant compounds will eventually be
odified into valid radiotracers.

onclusions
adioligand neuroimaging has advanced the monoamine

heory of MDD to a concept of chronic loss of particular
onoamines, such as serotonin, norepinephrine, and dopa-
ine, which occurs to a greater extent when particular symp-

oms are more severe.1,2 The use of neuroimaging has also

dentified mechanisms of monoamine loss, including greater
onoamine metabolism7 and excessive monoamine trans-
orter density in the presence of monoamine depleting pro-
esses.4,5

This information may be translated into treatment devel-
pment: (1) It predicts that targeting multiple monoamines
ill, on average, be more therapeutic; (2) It predicts that
articular symptoms will associate with responsiveness for
aising specific monoamines; and (3) It predicts that interfer-
ng with specific mechanisms of monoamine loss will be
elpful in reversing symptoms of major depressive episodes.
Reductions in 5-HT1A binding associated with MDD are
ost likely related to comorbid anxiety and/or anxiety
isorders, which may be clinically relevant because co-
orbid anxiety disorders are associated with treatment

efractoriness.8-10,12,13

Patterns of 18F-FDG and 15O-H2O uptake in MDD tend to
emonstrate overactivity of regions that generate mood and
nderactivity of regions related to cognition.15,16 Activations
ssociated with nonresponse are candidate targets for treat-
ent such as deep brain stimulation for treatment resistant

ndividuals.16

Dosing of selective serotonin reuptake inhibitors associ-
ted with a differential response from placebo typically
chieve 80% occupancy.17,18 This information now guides
evelopment of new serotonin transporter binding antide-
ressants which aim for an 80% occupancy. The extremely
trong relationship between plasma levels and occupancy
ay be applied by clinicians to estimate occupancy based on
lasma levels, in situations of nonresponse.
Low occupancy of dopamine reuptake inhibitors19-21,24

nd 5-HT1A autoreceptor inhibitor medications25,27,28 at the
igher end of the tolerated dosing range suggest there is an
pportunity to develop higher occupancy treatments for
hese targets.

Future ligand development will likely target other non-
onoaminergic pathophysiologies associated with major de-
ressive disorder such as excessive secretion of glucocorti-
oids, aberrant signal transduction and markers of cell loss,
ith the potential to better understand how these pathologies

elate to clinical symptoms, course of illness and effect of
ovel treatments.
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