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undamentals of Molecular Imaging: Rationale and
pplications With Relevance for Radiation Oncology

eiko Schöder, MD,* and Seng Chuan Ong, MD†

Molecular imaging allows for the visualization and quantification biologic processes at
cellular levels. This article focuses on positron emission tomography as one readily
available tool for clinical molecular imaging. To prove its clinical utility in oncology,
molecular imaging will ultimately have to provide valuable information in the following 4
pertinent areas: staging; assessment of extent of disease; target delineation for radiation
therapy planning; response prediction and assessment and differentiation between treat-
ment sequelae and recurrent disease. These issues are addressed in other contributions in
this issue of Seminars in Nuclear Medicine. In contrast, this article will focus on the
biochemical principles of cancer metabolism that provide the rationale for positron emis-
sion tomography imaging in radiation oncology.
Semin Nucl Med 38:119-128 © 2008 Elsevier Inc. All rights reserved.
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olecular imaging can be defined as “the visual repre-
sentation, characterization and quantification of bio-

ogical processes at the cellular and subcellular level.”1 Imag-
ng techniques available for this purpose include nuclear

edicine techniques (in particular positron emission tomog-
aphy [PET]), magnetic resonance imaging (MRI) with ded-
cated imaging sequences and molecular contrast agents, and
ptical imaging (including bioluminescence and immunoflu-
rescence imaging). The goals of molecular imaging include

● To improve our understanding of tumor biology (cancer
development, progression, and metastasis);

● To visualize and quantify noninvasively the presence
and biologic status (active/inactive) of receptors and
pathways involved in tumor development and progres-
sion;

● To study the pharmacokinetics and pharmacodynamics
of novel anticancer “targeted therapies”; and

● To measure and predict the response to such novel an-
ticancer drugs early during the therapy. (Here, one
would particularly like to know how sensitive and spe-
cific the molecular imaging information is and whether
molecular imaging as part of treatment monitoring will
ultimately improve patient outcome, for instance, by
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avoiding side effects from continued drug exposure if
that drug has no therapeutic efficacy or when secondary
resistance develops.)

olecular imaging thus differs greatly from anatomic imag-
ng, which is used to visualize structural abnormalities that
re usually already the endpoint of the underlying molecular
rocess. The need for molecular imaging has also been rec-
gnized by radiation oncologists. Traditionally, radiation
herapy design has been based on the concepts of the ana-
omically defined gross tumor volume (GTV), planning target
olume (PTV), and clinical target volume (CTV). However, it
as become obvious that target design based on structural
bnormalities alone has many limitations, leading to over-
reatment of healthy tissues or undertreatment of sites of
isease. The new concept of a biologic target volume (BTV)
herefore also considers functional parameters that may affect
he response to irradiation, such as cancer metabolism, pro-
iferation and hypoxia.2

The radiosensitivity of malignant tumors depends on
any factors, including cell cycle phase, growth fraction,
ose rate, radiation damage repair capacity, and the presence
nd severity of hypoxia. Some of these features can be studied
y molecular imaging and may be considered when design-

ng a biologic target volume, determining the radiation dose
chedule, and determining the need for adjuvant chemother-
py or treatment with specific radiation sensitizers.

A number of recent review articles have discussed molec-
lar imaging in cancer and other diseases.3-10 For the purpose
f this article, we will only address positron emission tomog-

aphy (PET), the most widely used technique of molecular
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maging. This article will focus on a few principles of biologic
maging with clear clinical applicability and expected rele-
ance for radiation oncology in the near future.

In 2000, Douglas Hanahan and Robert Weinberg, a bio-
hysicist and a biologist, published their now much-quoted
aper “The hallmarks of cancer.” These hallmarks were de-
ned as limitless replicative potential, self-sufficiency in
rowth signals, insensitivity to subgrowth signals, sustained
ngiogenesis, tissue invasion and metastasis, and evading ap-
ptosis.11 One might add that a number of metabolic abnor-
alities are also characteristic for cancer.12-14 Of those, the
pregulation of aerobic glycolysis, as first described by War-
urg and coworkers,15,16 is probably the only discovery that,
hus far, has had an obvious and long-lasting impact in the
linical arena in the form of 18F-fluorodeoxyglucose (FDG)-
ET imaging for the detection, staging and response assess-
ent in cancer.
The rational application of molecular imaging in oncology

equires a fundamental understanding of biochemistry and
olecular biology. The aim is to characterize (image) certain

eatures of the malignant phenotype (such as the presence
nd activation status of receptors, activation or inhibition of
umor pathways, response to external stress in the form of
hemo- or radiation therapy, mechanisms of cell death) that
ay have implications for cancer diagnostic, assessment of
rognosis, choice of therapy, and determining treatment re-
ponse. Ultimately, however, molecular imaging will have to
how a measurable clinical utility, for instance by providing
aluable information in the following 4 pertinent areas:

● staging; assessment of extent of disease;
● target delineation for radiation therapy planning;
● response assessment and prediction; and
● differentiation between treatment sequelae and recur-

rent disease.

hese clinical questions can likely be addressed by using
urrently already available PET tracers for imaging funda-
ental properties of cancer: glucose and fatty acid metabo-

ism, proliferation, hypoxia, angiogenesis, and apoptosis.
onceptually and for the interpretation of imaging data, it is

mportant to realize that any malignant tumor consists of
ancer cells and surrounding stroma and can thus be consid-
red a “community of cells.” One should therefore distinguish
etween tumor-specific properties (such as the expression of
ncogenes and antigens, tumor metabolism, expression and ac-
ivity of receptors and transporter molecules) and more general
eatures (such as blood flow, hypoxia, inflammation, composi-
ion of tumor matrix, and the enzymatic breakdown of tissue
arriers required for the process of metastases).

lucose Metabolism
he first steps of glucose metabolism (cellular uptake and
hosphorylation by hexokinase) can be traced using the glu-
ose analog FDG. Aerobic glycolysis and an overall increase
n glucose metabolism are characteristics of cancer cells as
ompared with normal tissue.12,15,16 The increased glucose

etabolism in cancer is mediated through increased expres- f
ion and activity of glucose transporters (GluT) in the cell
urface membrane17 and through characteristic changes in
lycolytic enzyme expression and activity.18,19 Despite the
resence of oxygen, glucose is largely metabolized to lactate
aerobic glycolysis). These alterations in glucose metabolism
re an early event in cancer development.20 One line of evi-
ence has implicated an activation and stabilization of the
ypoxia inducible factor 1 (HIF-1), either as the consequence
f intratumoral hypoxia or due to altered gene expression.21

he HIF-1� subunit of HIF acts as a critical modulator of
lucose metabolism in growth factor-dependent cancer cells:
IF-1� induces a switch from predominant aerobic glycoly-

is (favoring cell growth and proliferation) to anaerobic gly-
olysis (favoring survival in an oxygen-deprived microenvi-
onment).22

Another, more recent line of evidence suggests that an
ctivation of the oncogene Akt and its gene product, the
erine/threonine kinase Akt, may be sufficient to stimulate
he switch to aerobic glycolysis.23 Of note, aerobic glycolysis
s not just an epiphenomenon but is indeed necessary for
rowth and survival of the cancer cell. Among the postulated
easons for increased aerobic glycolysis in cancer is the fact
hat glycolysis can provide ATP faster than oxidative phos-
horylation, that the products of glycolysis are required for
atty acid synthesis and the maintenance of nonessential
mino acid pool during cell growth,24 and that glycolysis
rovides the nucleotide precursors for RNA and DNA syn-
hesis.18,19 To some degree, the increased glucose metabolism
nd FDG accumulation in cancer cells may also reflect an
daptation to intermittent hypoxia.12 However, although gly-
olysis is frequently activated in areas of hypoxia, high glu-
ose metabolism is also observed in normoxic tumor zones
nd vice versa. Therefore, a high degree of hypoxia is not
ecessarily a surrogate marker for high glucose metabolism:
umor glucose metabolism is up-regulated for many reasons
nd, vice versa, high levels of hypoxia may result from high
nterstitial pressure within the tumor, thereby restricting sub-
trate (glucose) delivery to the hypoxic cell.

FDG-PET has been applied in radiation oncology for the
xtent of disease evaluation and staging of many malignan-
ies: detection of advanced disease may preclude irradiation
ith curative intent25,26 and FDG-PET may delineate the lo-

oregional disease (size and shape of primary tumor, nodal
nvolvement) better than structural imaging in many circum-
tances,25,27-30 leading to changes in GTV and/or PTV in up to
wo-thirds of cases.26,29,31-36 Dose escalation to FDG-avid tu-
or subvolumes has been performed in pilot trials, based on

he belief that these may represent the most aggressive cell
opulations that are less likely to respond to standard doses
nd may thus give rise to clinical recurrences.37 The feasibil-
ty of this concept has been proven, but conclusive results are
ot yet available. Several studies have also shown that the

ncorporation of FDG-PET data improves the interobserver
greement among radiation oncologists for defining the GTV,
hich is generally recognized to be rather poor when using
T alone.30,38 Residual abnormal FDG uptake after the end of

adiation or concurrent chemoradiation therapy is suspicious

or residual disease and thus an indicator of poor progno-
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Fundamentals of molecular imaging 121
is.39,40 Many of these issues will be addressed in separate
ontributions in this issue of the Seminars.

atty Acid Metabolism
any malignancies (including prostate, breast, head and

eck, esophageal, gastric, hepatocellular, and colorectal can-
ers) are characterized by alterations in fatty acid metabo-
ism, which can be summarized as the “lipogenic phenotype”
f cancer.13,41,42 Although glucose and fatty acid metabolism
re interrelated, increased de novo fatty acid synthesis is also
n independent mechanism in cancer pathogenesis, in par-
icular through upregulation of the critical enzyme fatty acid
ynthase (FAS).42-45 This upregulation of FAS occurs in re-
ponse to growth factor receptor activation46 or direct (ie,
rowth-factor independent) activation of receptor tyrosine
inases, which initiate or enhance signal transduction cas-
ades, such as the Akt/PI-3-kinase pathway.47-49 The com-
on element through which these pathways induce tran-

cription (and thus increased synthesis) of FAS is the sterol
egulatory element binding protein: this protein binds to the
terol regulatory element in the promoter region of FAS on
he DNA.50 In addition to increased de novo synthesis,
reater levels of FAS in cancers cells also can be the result of
ecreased enzyme degradation due to removing ubiquitin
rom FAS, thus preventing FAS from proteasomal degrada-
ion.51

As a practical clinical consequence, the imaging of fatty
cid synthesis and, thus, indirectly the activity of the FAS
nzyme, should enable us to study cancer development, ag-
ressiveness, and its response to therapies aimed at FAS in-
ibition or degradation.52,53 On the basis of the rationale
tated previously, one can imagine that this class of drugs
hould be useful in the combination therapy of malignancies
ith documented FAS over-expression, such as prostate can-

er.
Increased fatty acid synthesis ultimately leads to increased
embrane lipid biosynthesis, for which choline kinase

ChoK) is a critical enzyme in cancer development and pro-
ression.54-56 ChoK enables the conversion of choline to
hosphatidylcholine, which is a major component of all
embranes.57 This has been exploited for cancer imaging with

ither MR spectroscopy58 or labeled choline compounds,59,60

hich revealed an elevated choline peak as well as increased
holine uptake and retention in cancer cells.

Fatty acid synthesis and membrane lipid synthesis can be
maged using radiolabeled acetate or choline.61 (An increased
holine peak in MR spectroscopy is similarly an indicator of
alignancy.62) Beyond the investigation of tumor biology,

maging with agents tracing fatty acid synthesis may be of
articular interest in malignancies that are not imaged well
eg, because of low uptake or urinary excretion) with the
tandard clinical PET tracer FDG. This malignancies might
nclude prostate and bladder cancer, for which the clinical
tility of 11C acetate and 11C or 18F choline has been demon-
trated or at least suggested. It might potentially also include
cenarios in which FDG cannot reliably distinguish between

nflammation/infection and cancer or between sequelae of t
reatment and residual malignancy (eg, radiation necrosis in
he brain). Accordingly, clinical applications for imaging with
abeled acetate or choline, of interest to radiation oncology, may
ncluded lymph node staging in primary or recurrent prostate
ancer,63,64 the localization of sites of recurrence in patients with
rostate-specific antigen relapse,65-68 the detection of bladder
ancer and its nodal metastases,69,70 the detection of hepatocel-
ular carcinoma with acetate,71 the detection characterization of

alignant brain lesions with choline,72 and the potential for
ifferentiating between radiation necrosis and tumor recurrence

n the brain.72

In contrast with FDG, for which an abundance of data are
vailable, it is currently unclear whether the degree of acetate
r choline uptake in cancer correlates indeed with the expres-
ion levels of critical enzymes and if it has any prognostic
alue. However, in one recent study, ChoK expression in
ung cancer was an independent prognostic marker for dis-
ase-specific survival.73

roliferation
umor cell proliferation can be imaged with labeled thymi-
ine or thymidine derivatives. 11C thymidine was long con-
idered the gold standard for PET imaging because this agent
s integrated into the DNA of proliferating tumor cells and
ecause the degree of uptake accurately reflects DNA synthe-
is.74 However, the use of 11C thymidine generates images of
nferior quality and requires complex modeling for image inter-
retation. 18F-fluorothymidine (FLT) has therefore emerged as
romising radiotracer for clinical use.75 In vitro, in vivo, and in
ost clinical studies, tumor cell uptake of FLT shows excel-

ent correlation with thymidine kinase-1 (TK-1) activity76-78

nd cellular or tissue markers of proliferation, such as the
roliferating cell nuclear antigen or ki-67.78-81 Phosphory-

ated FLT is trapped intracellularly but is not integrated into
he DNA. The agent has been studied in a variety of cancers,
ncluding breast, lung, gastrointestinal, and head and neck can-
ers, sarcomas, malignant brain tumors, and lymphoma.80-87

lthough FLT uptake is lower than FDG uptake in many tu-
ors, it shows better correlation with tumor cell prolifera-

ion.81,84,87-89 It is expected that FLT will be of major impact in
he response assessment of malignant tumors. To prove its clin-
cal utility, FLT would have to be superior to FDG for this pur-
ose, for instance by demonstrating treatment response
arlier,90 and/or more reliably, and by accurately distinguishing
etween treatment-induced inflammatory changes and tumor
ecurrence.84 Initial clinical studies suggest that FLT can indeed
e applied for the response assessment, for instance in breast
ancer,82 lymphoma,91 or malignant brain tumors.92

In a small number of breast cancer patients, a 20% change
n FLT standard uptake value (SUV) as compared with base-
ine was defined as significant, based on the fact that this was
utside the 95% confidence interval for repeated measure-
ents in the same patient.93 However, more data are needed

o establish the reproducibility of FLT measurements in
arger groups of patients and a variety of tumor histologies. A
otentially limiting factor may be the relatively low FLT up-

ake in many malignant tumors: A 20% change in SUV may
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122 H. Schöder and S.C. Ong
e more difficult to determine accurately in lower activity
anges, in particular when assessing the activity in a single
ixel within a given region of interest, which is prone to

mage noise (the current standard clinical approach by mea-
uring SUVmax). Two recent studies also suggest caution
gainst the premature acceptance of FLT for imaging treat-
ent response. In these studies, changes in FLT uptake in the

arly post treatment stage occurred slower than the reduction
n FDG uptake or did not correlate with clinical tumor re-
ression.94,95 One potential explanation for major discrepan-
ies between treatment-induced changes in FDG and FLT
ptake might be the activation of the salvage pathway and the
nzyme thymidylate synthase (which is not traced by FLT) in
esponse to therapy or, vice versa, preferential treatment-
nduced inhibition of the salvage pathway with consecutive
pregulation TK-1 for nucleotide synthesis or a redistribu-
ion of nucleoside transporters from the cytosol to the plasma
embrane.96

The clinical utility of FLT may be limited for assessment of
one and liver lesions because of high normal uptake in bone
arrow and glucuronidation and accumulation of radioactive
etabolites in the liver. False positive uptake can occur as well.
evertheless, FLT appears to be most promising agent for im-
ediate application in larger clinical research studies. 18F-1-(2=-
eoxy-2=-fluoro-beta-d-arabinofuranosyl)thymine (FMAU) is
nother promising agent for measuring proliferation. In contrast
o FLT, it is incorporated into the DNA and its uptake pattern
esembles that of thymidine.97,98 FMAU may find complemen-
ary use to FLT and may be particularly useful in tumors whose
roliferation is not dependent on TK-1 activity. FMAU has been
sed in patients99 but not in any clinical studies.

ypoxia and Angiogenesis
ypoxia generally refers to a deficiency in the amount of
xygen reaching body tissues. It occurs in tumors as a con-
equence of tumor cell proliferation exceeding the rate of
ngiogenesis, ie, tumor cells are growing beyond the maxi-
um range of oxygen diffusion in tissue. In malignant tu-
ors, hypoxia is an indicator of poor prognosis, regardless of

he treatment modality used.100 It is believed to be one of the
eading causes of radiation and chemotherapy treatment fail-
re.101-105 Hypoxic cells are resistant to the cytotoxic effects of

onizing radiation106-109 and require radiation doses up to 3
imes greater than for the same level of cell inactivation to the
ame cells under normoxic conditions. Hypoxia in tumor
ells leads to amplification and overexpression of various
ignaling factors, such as HIF-1� or HIF-2�, which promote
umor growth, invasion, metastasis, and resistance to apopto-
is.21 HIF-1� also activates the vascular endothelial growth
actor, which confers radiation resistance to endothelial cells
nd increases the proliferation and regrowth of tumor blood
essels.110 Experimentally, the eradication of HIF-1� positive
ypoxic cells leads to a suppression of angiogenesis and tu-
or growth.111 HIF-2� can induce overexpression of the

ndothelial growth factor receptor, which is then available
or autocrine signaling (from the cancer cell to its own cell

urface receptor; recall that cancer cells are autonomous and b
o not depend on external growth signals), thereby promot-
ng tumor growth.112

The use of selective hypoxia targeting PET tracers provides
noninvasive way of measuring regions of low partial oxygen
ressure within the tumor tissue. A number of compounds
re available for the imaging of hypoxia (reviewed in109). The
arliest hypoxia tracers used in man were 18F-FMISO for
ET,113 and 123I-IAZA for SPECT studies.114 The ideal hyp-
xia tracer should show high specific uptake and essentially
rreversible retention in hypoxic cells, low background activ-
ty in normoxic tissues, chemical stability against enzymatic
leavage in blood, rapid blood clearance enabling imaging as
arly as possible after injection, and the scan findings should
e reproducible. Quantitative (rather than just qualitative)
ssessment of the extent and severity of hypoxia is necessary
or radiotherapy applications, and several groups are engaged
n validating hypoxia tracers for application in radiobiologi-
al modeling. To assure application outside the research en-
ironment, the radiosynthesis should be reasonably simple
r automated. None of the currently available agents, which
ary in their degree of lipophilicity, plasma half life time, and
oute of excretion, meets all of these requirements. It is cur-
ently unclear whether there will ever be one optimal hypoxia
maging agent, but the suitability of various hypoxia radio-
racers is presently under investigation, including 18F EF-5,115

0Cu-ATSM,116 18F-FETNIM, and 18F-FAZA.117

In considering the advantages and disadvantages of these
gents, the location of the cancer under study may be impor-
ant: For instance, imaging at delayed time points may be
cceptable in head and neck or lung cancer as long as an
ccurate and reproducible information can be obtained but
ay not be acceptable in intestinal tumors when hepatobili-

ry clearance of the tracer or its radioactive metabolites inter-
eres with the detection of hypoxia-specific uptake. More-
ver, it is important to note that the use of hypoxia tracers to
efine tumor hypoxic fraction, ie, the ratio of the volume of
ypoxia to that of tumor, is highly contingent on the thresh-
ld selected for the radiotracer uptake relative to blood or
ackground. Rajendran and coworkers119 at the University of
ashington have selected an operational threshold to iden-

ify intratumoral hypoxia regions as those PET image voxels
or which the 18F-FMISO concentration is 1.2 times greater
han the activity concentration measured in blood at the time
f the PET scan. However, any change in this threshold value
an make a significant alteration in the measured tumor hy-
oxic fraction. This threshold sensitivity impacts on the use
f the hypoxic fraction as a prognostic variable or as a target
or dose painting. Another limitation for the imaging of hyp-
xia is the fact that hypoxia distribution is not static over
ime; whereas some tumor regions may exhibit chronic
static) hypoxia, other regions may be subject to transient,
cute (dynamic) hypoxia,120 depending on changes in tumor
essel vasomotion and red cell flux,121 changing rheologic
onditions, presence or absence of anemia, changing rates of
etabolism and proliferation122 and changes in intratumoral

nterstitial pressure.123 Chronic hypoxia is thought to result
rom limited oxygen diffusion (�150 �m distance between

lood vessel and cell), whereas acute hypoxia may result
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Fundamentals of molecular imaging 123
rom transient blood flow fluctuations in the intratumoral
ascular network that occur in cycles of minutes to
ours.121,124 This may have implications for the clinical utility
f hypoxia imaging. It has been suggested that dose escala-
ion to hypoxic tumor subvolumes may improve locoregional
ancer control rates. If “dose painting” to hypoxic tumor
ubregions were to be based on PET imaging data, the repro-
ucibility of these imaging data (both in terms of spatial
istribution and intensity of hypoxia) would have to be
roven first for a given radiotracer. Finally, recent studies
hat used immunohistochemical staining methods to detect
ypoxia in clinical tumor biopsy samples125 have shown that
ormoxic-hypoxic oxygen gradients occur in vivo over very
mall distances (150-200 �m), which are far beyond the
patial resolution of any macroscopic imaging technique (in-
luding micro-PET). Therefore, the intensity of PET hypoxia
arker uptake within any PET image voxel depends on the
umber of hypoxia cells combined with their depth of hyp-
xia.
The most commonly used agents for PET imaging of hyp-

xia are nitroimidazole derivatives. For many years, 18F flu-
romisonidazole (FMISO) has been the standard PET imag-
ng test for measuring tumor hypoxia.113,119 FMISO is
elatively hydrophilic, shows a suboptimal signal-to-back-
round ration, and may require dynamic and dual-time point
maging for meaningful conclusions.126 More recently, other
gents including 18F fluoroerythronitroimidazole and 18F flu-
roazomycin arabinoside with potentially more favorable
harmacokinetics (less background activity) have been de-
eloped.117,118 124I-IAZGP is another nitroimidazole deriva-
ive, labeled with the long lived isotope iodine-124 (half life
ime 4 days), thus permitting imaging at later time points
ith potentially superior target-to-background ratio.127

ther nitroimidazoles, which are more lipophilic than the
forementioned compounds, include 18F EF3 and 18F
F5.128,129 Few data are available on the intrapatient compar-

son in the biodistribution of these agents. All nitroimidaz-
les diffuse freely through the plasma membrane. Once in-
ide the cells, they are reduced by reductase enzymes to nitro
adical metabolites that can bind covalently to intracellular
acromolecules such as proteins, DNA or RNA, causing their

etention within the hypoxic cells. In normal, nonhypoxic
ells, this reaction is reversed by oxidation, so that the com-
ounds can not bind effectively and are not retained in the
ell.

Another novel hypoxia tracer, with entirely different
hemistry, is the metal complex 64Cu methylthiosemicarba-
one (Cu-ATSM).130,131 Again, this lipophilic ATSM complex
s reduced in hypoxic cell and remains trapped. It differs
rom the nitroimidazole compounds by its faster washout
rom normoxic cells, leading to higher contrast and poten-
ially better image quality. Although initial clinical research
tudies appeared very promising, showing prognostic value
f Cu-ATSM uptake in predicting radiotherapy treatment
esponse,116 there is now evidence that the behavior of Cu-
TSM may vary between different tumor histologies.132 Re-
earchers investigating the comparative cellular uptake of

4Cu-ATSM versus 18F-FMISO133 demonstrated considerable a
ariability in the uptake profile of the 64Cu-ATSM compound
etween different cell lines, suggesting a possible tumor de-
endence of the intensity of PET signal. If confirmed, this
ould preclude the value of Cu-ATSM as a hypoxia radio-

racer. For a detailed review of the radiosynthesis and valida-
ion of the various hypoxia tracers we refer to reference.109

Potential clinical applications for hypoxia imaging include:

● The selection of patients with poor prognosis for inclu-
sion in adjuvant protocols and/or closer surveillance af-
ter initial treatment with curative intent.

● The identification of patients with hypoxic tumors who
may benefit from a combination therapy of irradiation
with (1) radiation sensitizers134; (2) vasodilators or car-
bogen breathing as was employed in the ARCON (accel-
erated RT with carbogen and nicotinamid) trial in ad-
vanced head and neck cancer135; and (3) hypoxic cell
cytotoxins such as tirapazamine. In a randomized phase
II trial, the addition of tirapazamine to standard therapy
with cisplatin and radiation therapy provided better re-
sults than the combination of 5FU, cisplatin and RT.136

This was recently confirmed by preliminary data from
an ongoing phase III study.137 Because tirapazamine is
relatively toxic to normal tissues (in particular those with
suboptimal oxygenation), second generation agents are be-
ing developed now.

● The identification of hypoxic subvolumes in malignant
tumors or metastases that could be targeted with higher
radiation doses in an attempt to overcome radioresis-
tance in hypoxic cells.138-140

he ultimate test for hypoxia PET imaging will be whether
uch images can be employed for hypoxia-directed treatment
trategies that improve patient outcome.

Malignant tumors are characterized by the development of
haotic and leaky blood vessels, leading to a disturbed mi-
rocirculation.123 Disturbed microcirculation may give rise to
prognostically negative features: low oxygen tension and

igh interstitial pressure precluding the delivery of chemo-
herapy in sufficient concentrations. Experimentally, the lat-
er can be reversed by treatment with the vascular endothelial
rowth factor-specific antibody bevacizumab.141 Treatment
ith angiogenesis inhibitors has also shown initial promising

esults in clinical studies,142 but it is currently unclear which
ubgroup of patients may particularly benefit from this new
lass of drugs. Because the inhibition of angiogenesis per se
ay not cause cell death and tumor shrinkage (but instead

only” prevent further growth), it is also unclear how the
fficacy of angiogenesis inhibitors could best be shown and
onitored in the clinical setting (rather than inferring

fficacy indirectly from achieving stable disease). Changes
n tumor hyperemia can obviously be documented on con-
rast-enhanced CT/magnetic resonance imaging (MRI) or

RI perfusion sequences, but these studies are nonspe-
ific. In contrast, PET can specifically image the process of
ngiogenesis, for instance, by using 18F RGD peptide,143-145

hich binds specifically to ���3 integrins; these are ex-
ressed at the surface of activated endothelial cells during

ngiogenesis.146
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124 H. Schöder and S.C. Ong
Tumor hypoxia and angiogenesis are intimately related
nd HIF-1� is probably the single most important factor
romoting the expression of proangiogenic proteins.147-149

nterestingly, hypoxia seems to be an early and dynamic phe-
omenon in the development of metastases. Microscopic
lusters of metastatic cells are avascular and hypoxic. Only
he development of (hypoxia-induced) vascularity permits
urther growth, eventually again leading to macroscopic hyp-
xia once these metastases outgrow their blood supply.150

poptosis
8F annexin is one potential imaging agent to visualize apo-
totic cell death.151 Annexin-V is a 36-kDa molecular weight
rotein that binds to phosphatidylserine (PS) lipid residues;
hese residues are only present on the inner cellular mem-
rane of the healthy cell. However, during the process of cell
eath by apoptosis, parts of the cell membrane undergo an

nversion resulting in the transient exposure of PS to com-
ounds present in the interstitium (including, for example,
nnexin-V that was injected intravenously). Therefore, la-
eled annexin-V should be an ideal tracer for the imaging of
poptosis in vivo. Whereas extremely promising images of
yocardial apoptosis have been obtained in nuclear cardiol-

gy152 using 99mTc-annexin-V, similar high contrast images
ave not been observed in cancer response to either chemo-
herapy or radiation therapy. A plausible hypothesis for this
ifference is that apoptotic cell death in response to cancer
herapy probably occurs over a much longer, protracted time
nterval, rendering a smaller window of synchronous events to
uild a potent annexin-V imaging signal. This may perhaps
hange with the clinical introduction of new high radiation dose
echniques (eg, hypofractionation or single dose irradiation),
hich might result in a higher number of imageable apoptotic
odies in a shorter time frame. The potential of annexin-V im-
ging in these scenarios has yet to be investigated.

Historically, radiation oncologists and biologists have fo-
used on the detection of residual surviving tumor cells
rather than cell death), because it is still widely believed that
terilizing the last tumor cell done is necessary to cure a
atient. Whether cell death markers will find a role in cancer
herapies is therefore not known, but it is conceivable that
poptosis imaging might find a niche as part of early response
ssessment. Of note, radiochemists have provided a variety of
nnexin-V tracers in addition to the fluorinated form. For
xample, a form of 124I-labeled annexin-V is under investiga-
ion,153 as well as multistep targeting approaches of an-
exin-V imaging, for instance by using 64Cu-labeled strepta-
idin that is administered after pretargeting of apoptotic cells
ith biotinylated annexin-V.154 Overall, however, the utility
f annexin-V PET imaging in cancer has yet to be proven.

onclusion
allmarks of cancer, important for cancer development,
rogression and resistance to therapy, can be imaged with cur-
ently available PET probes. We have highlighted abnormalities

n cancer metabolism and microenvironment that provide the
ationale for the clinical application of these radiotracers. Func-
ional and metabolic imaging has certainly improved our under-
tanding of cancer biology, but it will be important to show that
his also translates into a measurable improvement in diagnosis,
herapy design and ultimately patient outcome.
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