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umor Biology-Guided Radiotherapy
reatment Planning: Gross Tumor
olume Versus Functional Tumor Volume

handan Guha, MD, PhD,* Alan Alfieri, MS,* M. Donald Blaufox, MD, PhD,† and
halom Kalnicki, MD*

This issue of Seminars in Nuclear Medicine deals with a watershed event in cancer
treatment—the combined use of functional and anatomical information to guide therapeutic
interventions. The use of positron emission tomography/computed tomography (PET/CT) in
radiation treatment planning and tumor response evaluation brings a paradigm change in
the development of image-guided therapies into routine clinical practice. The implications,
as seen in the following articles, are not only promising but also groundbreaking. And, as
in every new scientific breakthrough, each step forward generates a myriad of additional
important clinical and research questions. Functional imaging takes advantage of the subtle
differences between normal and malignant tissues at the cellular level to reveal in vivo
unique functional characteristics of neoplasms. The ultimate goal of the partnership
between nuclear medicine physicians and radiation oncologists is to use this informa-
tion with absolute clarity in target definition for radiation treatment planning and
therapy, as well as response evaluation. Functional imaging can provide metabolic
information and behavioral correlation along with the anatomical imaging for correlative
target delineation. Additionally, as a purely diagnostic instrument, PET/CT provides a
tool for oncologists to make critical decisions regarding radiation treatment planning
modifications secondary to changes in tumor staging (up or down), treatment field
modifications, localized control, sites of residual and/or metastatic disease and post
therapy response evaluation. The articles in this issue of the seminars provide insights
into the current state-of-the-art of functional imaging techniques, mostly centered on
the use of 18F-fluorodeoxyglucose PET/CT in image guided oncologic therapies. Be-
cause it is a novel science, the future of image-guided functional treatment planning is
bright with technologic and biologic innovations, translational research and new clin-
ical applications.
Semin Nucl Med 38:105-113 © 2008 Elsevier Inc. All rights reserved.
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ah and coworkers1 have shown how recent increases in
computed tomography (CT) bore size (from 70 to 85

m), the decrease in slice thickness, and scanning speed have
ignificantly improved both the spatial and contrast resolu-
ion of CT for soft-tissue targets, allowing the use of pixel-size
nformation in radiation treatment planning. It is now rou-
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ine clinical practice to obtain axial images in radiation treat-
ent positions (prone and supine). Low-contrast resolution
as improved the ability to differentiate between adjacent
issues with similar attenuation coefficients, thereby improv-
ng the definition of tumor edges, while allowing for separa-
ion, differential, and subtraction analysis as it pertains to
adiation planning registration.

The baseline image for coregistration of additional imaging
odalities such as magnetic resonance (MR), single-photon

mission computed tomography (SPECT), and angiography,
as now been clearly set as positron emission tomography
PET)/CT. Fast multislice CT scanners and 4D-CT provide
urther aid in overcoming motion issues associated with con-
entional scanners and anatomical regions, such as edge def-

nition, target deformation and correlation between time and

105

cguha@montefiore.org
cguha@montefiore.org


p
s
i
t

t
t
c
p
t
u
s
d
s
a
i

P
T
p
P
i
i
t
a
t
s
(

e
b
o
a
C
c
c
t
b
a

c
t
c
fl
c
o
g
a
p
p

T
T
M
t

F
p
v
m
m
p
E
a
c
t
t
a

t
q
s
g
m
s
f
n
i
i

f
p
r
c
t
s
p
i
t
p
c
b
m
i
w
m
w
a
s

N
O
f
O
p
n
b
m
a

106 C. Guha et al
osition for moving targets. Brunetti and coworkers2 demon-
trate the importance of adding the time dimension, explor-
ng the innovative utilization of coregistered 4D-CT/PET as a
ool to handle target motion in radiation oncology planning.

Mah and coworkers1 also describe how treatment planning
echniques and the ability to fuse image data sets has changed
he delivery of radiation treatments. The importance of precise
oregistration when radiation dose is calculated on a pixel-by-
ixel basis cannot be over emphasized; with image guided in-
ensity modulated radiation therapy, regions outside target vol-
mes will not receive therapeutic doses of radiation. The
ophistication and precision of modern radiation planning and
elivery techniques are greatly enhanced by image fused data
ets which take into account functional information. Brunetti
nd coworkers2 point how detailed technique and careful coreg-
stration are crucial for optimal results.

ET/CT for Target Validation
he hybrid or fusion-imaging of PET/CT will continue to im-
rove both the sensitivity and specificity of clinical imaging.
ET/CT presently represents the fastest growth area of medical

maging, with many applications coming from extensions of
mmunohistochemistry and SPECT, which are finding applica-
ions in differentiating malignant from benign disease, grading
nd staging of malignancy by TNM classifications, evaluating
umor response to therapies, recurrences detection, and the pos-
ibilities of discerning solid tumor with different sensitivities
based on physical status) for effective radiation treatment.3-12

Although pioneering investigators are accumulating experi-
nce and data compilation, the primary assessment to date has
een target volume and staging modifications (approximately
ne-third of all patients) and dose distribution changes (adding
nother 25-30% of patients) with the addition of PET imaging to
T. Ahn and coworkers13 demonstrated the importance of in-
orporation of nodal disease not viewed on CT in head and neck
ancer, whereas Macapinlac and coworkers14 showed the reduc-
ion in treatment volumes in nonsmall cell lung cancer caused
y nonactive actelectasis that appeared as mass volume on CT
lone.

The articles by Ahn,13 Schöder,15 and Macapinlac14 and
oworkers in this issue provide a comprehensive review of
he current status of PET/CT in treatment planning, with
linical data, which shows a very significant effect of 18F-
uorodeoxyglucose (FDG) functional imaging both in
hanging target volumes and changing doses to areas previ-
usly thought to harbor only microscopic disease. As an ag-
regate, it seems reasonable to estimate that between 55%
nd 60% of patients submitted to functional imaging have
otential changes in target volumes and/or dose distribution
arameters.3-9,11,12

umor Versus Normal
issue Expression Patterns
olecular imaging has become one of the main areas of in-
erest in drug discovery and the preclinical market place.
rom a drug-development perspective, molecular imaging
rovides information on the pharmacological effects on in
ivo biochemistry and physiology. It can also provide phar-
acokinetic information regarding absorption, distribution,
etabolism, and excretion/elimination of a labeled agent,
ointing toward tumor burden and functional activity.
qually definitive in the search for differences between tumor
nd normal tissues has been the study of patterns of DNA
hanges (genomics), which are likely to prove more useful
han looking for single DNA changes in tumor cell popula-
ions. The imaging of radiolabeled genetic markers may yield
wealth of information in the cancer genomics arena.
A significant portion of the recent explosion in potential

umor targets has been generated by automated gene se-
uencing profiles, proteonomics, and high-throughput
creening of these targets in preclinical animal (tumor xeno-
raft) modeling. Although there are a significant number of
olecular imaging agents available to investigators, a consen-

us exists that additional tracers that target more physiologic
unctions are essential to drive new molecular imaging tech-
iques into the clinic. There is also a significant need for

ncreasing specificity. Many tumor markers also are increased
n infection and inflammation.

As the Mah1 and Schöder15 articles point out, biomarkers
or tumor sensitivity and resistance will emerge to help guide
ersonalized therapies and radiation “dose-painting” because
adiation planning computer algorithms are ready for this
hallenge. Homogeneous doses of radiation covering tumor
argets of different functional and genetic parameters may
oon be an abandoned paradigm of the past. The expression
atterns that can discriminate viable tumor from normal or

nflammatory material, summarized in Table 1, will have
heir basis in the tumor microenvironment, genetic finger-
rints, tumor aggressiveness, and post-treatment response
haracteristics. As Schöder points out, FDG-PET has, as its
asis, a level of increased tumor uptake in regions of high
etabolic/glycolytic activity. As such, FDG-PET as we know

t produces maps of increased FDG glycolysis and uptake,
hich are relatively nonspecific imaging tools, and which
ay soon be replaced by more unambiguous images that deal
ith the above mentioned parameters. Table 1 describes just
few, highly studied examples. Many more are in various

tages of development.

ovel PET and
ther Radionuclides

or Dynamic Conjugations
n the basis of various criteria such as imaging photons,
article emission, dosimetry, and feasibility of production, a
umber of radioactive metals are considered suitable for la-
eling antibodies for radioimmunoimaging and/or radioim-
unotherapy. Examples of suitable radiometals for both PET

nd general nuclear medicine include:

● For imaging: 55Co,64Cu,66Ga, 68Ga, 82Ru, 99mTc,111In,

and 203Pb
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Tumor biology-guided RT treatment planning 107
● For therapy: 47Sc, 67Cu, 90Y, 105Rh, 109Pd, 153Sm, 177Lu,
186Re, 188Re, 199Au, 210At, 18F, and 212Bi

epending on the success of chelating agents and covalent
inkage patterns for certain ligands and peptides to produce

ore stable complexes with most of the radioactive markers
entioned previously, 55Co, 64Cu, 67Cu, 111In, 203Pb, 90Y, 124I,

nd 153Sm appear to be the most promising agents because
heir coordination geometries and because they are suitable
or bifunctional chelating agents, which bind radiometals
ith a higher density (number of coordination sites) and/or

ncorporate greater structural rigidity to produce immuno-
onjugates with better in vivo kinetic stability. From a prac-
ical standpoint, however, the usefulness of a radionuclide is
till based on production capabilities, convenience of deliv-
ry for imaging, and half-life parameters (Table 2).

uantitation
nd Standardization
critical feature of great quantitative value for both delinea-

ion and prediction of treatment response is whether we will
e able to standardize the uptake volume (voxel) as standard
ptake volumes (SUVs) or any other valid reproducible pa-

able 1 Tumor Expression Parameters Suitable for Imaging

Tumor Expression Parameter Marker

lucose metabolism 18F-FDG
roteins/amino acids 11C-methionin

11C-choline
18F-DOPA
18F-methyltyro

roliferation (DNA) 18F-thymidine
poptosis 18F-annexin V
ypoxia 18F-misonidaz
eceptor binding (avidity) 18F-estradiol
ngiogenesis/blood flow/perfusion 18F-galacto-RD
embrane/lipid synthesis 18F-acetate
one turnover 18F

able 2 Some Typical Pet Radionuclides and Selected Appli-
ations

Radionuclide
Half Life

(min) Application

odine-124 (124I) 6048 Apoptosis imaging,
thyroid cancer

ttrium-86 (86Y) 884 Response to targeted
agents, Antibody
labeling

opper-64 (64Cu) 768 Hypoxia marker,
blood flow

luorine-18 (18F) 110 Multiple applications
allium-68 (68Ga) 68.3 Somtostatin receptors
arbon-11 (11C) 20 Prostate, gliomas
itrogen-13 (13N) 10 Drug development
xygen-15 (15O) 2 Vascularity marker
Hubidium-82 (82Ru) 1.25 Cardiac imaging
ameter within the regions of interest in a similar fashion to
agnetic resonance spectroscopy (MRS)/magnetic resonance

maging (MRI). Different authors in this issue outline several
ethods of standardization and comparison of FDG up-

akes.11 The current reproducibility of SUVs in clinical prac-
ice is highly controversial, because interobserver and device
ariability still exists. When SUVs and other methods are
pplied for determination of target volumes rather than sim-
le staging or tumor identification, variability becomes a crit-

cal issue, well outlined in the Macapinlac,14 Schöder,15 and
runetti2 articles. In this regard, newer fusion and coregistra-
ion methods based on novel computer algorithms may re-
uce the considerable variability in visual interpretations and
ubjective inaccuracies that they now offer.

onspecific Versus
pecific Uptake for
umor Expression Parameters

hrough advanced radiochemical processes, a plethora of
adioactive ligands can be conjugated to functional binding
gents. The capability of localizing selectively to a tumor is
rucial. Metal chelating agents may be conjugated with vari-
us functional binding agents for localization and may in-
lude antibodies (polyclonal and monoclonal); antibody
ragments, eg, the F(ab=)2, Fab’, or Fc portions of an immu-
oglobulin; other proteins; and fragments or peptides. 66 A
ewer approach is the use of genetically engineered proteins,
eptides, and antibodies and a number of other functionally
ctive compounds.

Tracers that are more specific to physiologic properties
nd biochemical parameters with the greatest tumor avidity
ill play an increasing role in differentiating disease and eval-
ating therapeutic responses. A summary review of the lead
ompounds that are finding their way out of the preclinical
odeling is presented in Table 3. Many of these agents also

an be used in combinational algorithms for further delinea-
ion of tumor expression parameters beyond FDG.

In this regard, fluoro-misonidazole has demonstrated se-
ective binding to hypoxic compartments within tumor.

Clinical Application References

General tumor imaging 64,65
Brain tumors 16,17
Prostate tumors 18-24
Carcinoid 27-31
Musculoskeletal tumors 32
Radiation response 33-39
Treatment response 63
Radiation planning 40-47
Breast cancer imaging 48-56
Integrin �v�3 binding 57-59
Proliferation 24-26
Skeletal disease 60-62
e

sine

ole

G

owever, the high lipophilicity and slow clearance kinetics
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108 C. Guha et al
f this radiotracer necessitate imaging for longer durations,
ith appropriately matched radionuclides with longer half

ives. Similarly, several other analogs such as fluoroerythro-
itroimidazole, fluoroetanidazole, and 1-(5-Fluoro-5-deoxy-
-D-arabinofuranosyl)-2-nitroimidazole are under deve-

opment43,45,46 because of more favorable hydrophilicities,
harmacokinetics, and lower toxicities.

maging of Future
enetic Markers With No
ontemporary PET Correlates

olecular-genetic studies of cancer and our understanding
f the multiple and converging pathways that are involved in
umor progression have rapidly expanded. More specific
herapy requires the ability to measure the level of target
xpression in the tumor ultimately to pursue “biomarker im-
ging” that reflects the endogenous molecular-genetic pro-

able 3 Examples of Lead Novel PET Imaging Compounds
hat Are Under Development

References

lucose metabolism
2-[18F]-fluoro-2-deoxy-D-glucose 64,65

roliferation
124I iododeoxyuridine, thymidine 33-39,69,70,75,86

rotein metabolism
CEA 99,100
11C methionine,

18F-ethyltyrosine
16,17,67,68

11C-tryptophan 76-78,84
18F-DOPA 28-31,82
Intestinal peptide, MIBG,

somatostatin analogs
79-83,95-97

�-melanocyte receptors,
18F-galacto-RGD

58,59,98

embrane synthesis
11C, 18F choline 18-24
ormone receptors
Androgens, estradiol,

progesterone
74,87-91

eporter genes
18F-FEAU, FIAU, FMAU 72

poptosis
Annexin-V, phosphatidyl serine

(PS)
63,92

ypoxia
18F-misonidazole,

18F-fluorazamycin arabinoside
40-47,93

ngiogenesis
Fibronectin, vascular

endothelial growth factor
(VEGF), integrin �v�3

57-59,69,85

eceptor avidity
Herceptin-2, EGF, dopamine 66,71,73,94,96,101,102

ascularity, blood flow
VEGF 85
esses. Future biomarker imaging maybe be at the same level l
s immunohistochemistry is today in its ability to use cellular
arkers for clearer definition of disease whether for staging

r assessment of involvement and treatment response. In this
egard, biomarker imaging maybe the target expression of a
articular protein or measuring the activity of particular “up/
ownstream” pathways.
Taking advantage of the differential expression patterns

etween normal and abnormal tissues based on unique
pitopes and surface markers by labeled antibodies continues
o be a pragmatic and feasible approach. Many of the tumor
xpression parameters are Class 1 and 2, that are restricted
ntigens recognized only by lymphocytes ie, melanoma–me-
anocyte differentiating antigens. Other antigens can be ei-
her mutated or the shared antigens commonly overex-
ressed in cancers as in P53, CEA, etc. Of concern is whether
ny of these genetic markers are unique enough to be imaging
r treatment responsiveness applied or have the universality
f FDG. An overview of some of the more common tumor
xpression parameter possibilities is provided for the benefit
f understanding the potentials of imaging biologic tumor
olumes.68,103-105 While the predominate emphasis has been
laced on therapeutic agents tethered as “guided missiles” to
he specific antibodies, the improved approach has seen the
ecent developments of humanized (chimeric) antibodies
ith highly specific reporter molecules to preferential cell

urface receptors that exist in malignant tissue.

ytokeratins
he presence of cytokeratins indicates epithelial cells, so this
arker is a reasonably effective “epithelial screen” to search

or epithelial differentiation in poorly differentiated malig-
ant tumors. A negative cytokeratin AE1/AE3 could help rule
ut or rule in carcinoma. The most common carcinoma that
s negative for cytokeratin AE1/AE3 is hepatocellular carci-
oma. Cytokeratin 5/6 (CK 5/6) is a marker for squamous
ells and squamous carcinomas, as well as other variants of
quamous carcinoma, including basaloid squamous carcino-
as. This marker is important for lymphoepitheleomas-like

hymic carcinomas.

NA Methylation and Phosphorylation
uman tumor cells often demonstrate abnormal patterns of
NA methylation. DNA methylation provides an epigenetic
echanism for altering gene expression by silencing genes.
ypermethylation frequently underlies the silencing of tu-
or suppressor genes. The opposite condition, in which
NA is hypomethylated, has been observed in a spectrum of
uman tumors. DNA methylation and the rate-limiting step

n glycolysis, hexokinase, are generally increased or overex-
ressed in many human cancers.
Quiescent cells versus growth and differentiation can be

nderstood in terms of progression through the cell cycle, for
hich the retinoblastoma (Rb) gene product is critical. Rb
lays a key role in cell cycle progression and differentiation in
number of tissues. Rb hypophosphorylation forces cells to
eave active cycling and enter Go; therefore, regulation of this



p
c

O
T
a
M
b
g
m
a
a

a
g
c
t
i
c
s
p
m
n
P
c

C
a
T
c
h
m
o

b
m
T
c
a
t
m
b
i
T
w
r
e
l
A
c
m

p
m
I
b
n

b
e

s
t
m
p
a
c
w
w

f
2
t
T
a
a
i
v
a
d

b
a
H
S
p
n
E
s
h
c

t
c
M
c
e
c
v
t
a
(
o

l
t
i
c
s
l
m
t

u
s

Tumor biology-guided RT treatment planning 109
rotein has more than a casual interaction with the Rb/p53
ell cycle pathway.

ncogenes and Tumor-Associated Proteins
he most common tumor associated proteins subject to im-
ging are CA 125, CA 15-3, CA 19-9, MART-1 (Melanin-A),
DM2, NY-ESO-1, and Rb gene product. Additionally, RAR

eta2 (retinoic acid receptor beta2), a tumor suppressor
ene, is frequently hypermethylated in several malignant tu-
ors. The Ras oncogene has been identified in the tissues of
wide variety of cancers, although it has not been identified
s specific for any single cancer.

Other peptides that have been associated with disease that
re actively being pursued include cystatin C, a marker of
lomerular function in children with cancer; serum homo-
ysteine (Hcy), a potentially useful tumor marker to monitor
umor activity; and the intestinal trefoil factor, a marker of
ntestinal differentiation that also may play a role in cancer
ell biology by inhibiting cell adhesion, promoting cell inva-
ion, and blocking apoptosis. Finally, PKM2 tumor marker
lays a general role in caspase-independent cell death of tu-
or cells and thereby defines this glycolytic enzyme as a
ovel target for cancer therapeutics and diagnostics, whereas
P11 (placental protein 11) can act as a tumor marker be-
ause of its specific association with various forms of cancer.

ommon Cancers
nd Associated Tumor Markers
he CA 19-9 marker is the most useful marker for pancreatic
ancer. Approximately 85% of people with pancreatic cancer
ave increased levels of this marker in their blood. This
arker also has been used to follow the effects of treatment

n more advanced disease.
Prostate-specific membrane antigen (PSMA), a transmem-

rane protein expressed in all types of prostatic tissue, re-
ains a useful diagnostic and possibly therapeutic target.
he radioimmunoconjugate form of the anti-PSMA mono-
lonal antibody 7E11 is used in the commercially available
nd US Food and Drug Administration-approved diagnostic
ool, ProstaScint (Cytogen Corporation, Princeton, NJ) im-
unoscintography scans. PSMA is a very sensitive marker,

ut so far it has not proven to be better than serum PSA, and
ts use in detecting or monitoring cancer is still being studied.
here are expectations that the introduction of SPECT/CT
ill improve its accuracy and use. Alpha-methylacyl-CoA

acemase is potentially an important tumor marker for sev-
ral cancers and their precursor lesions, especially those
inked to high-fat diets (ie, breast, prostate and colon cancer).
dditionally, CD133, mRNA expression is increased in can-
er patients with metastatic disease, specifically with bone
etastasis.
Most colorectal cancers contain changes in genes such as

53, APC, and k-ras. New studies have found abnormal DNA
olecules in the stool of patients with early colorectal cancer.

maging stool samples for these DNA changes may prove to
e an effective way to screen for this disease. Imaging the

umber of repeated sequences in DNA (microsatellite insta- m
ility) may give physicians the ability to assess treatment
fficacy.

CA19-9, a nonspecific tumor-associated antigen, allows
upportive correlation of malignancies of the gastrointestinal
ract, breast, and lung. Carcinoembryonic antigen (CEA), a
ember of a family of cell surface glycoproteins that are
roduced in excess in essentially all human colon carcinomas
nd in a high proportion of carcinomas at many other sites,
an currently be imaged. If the CEA is not elevated in patients
ith advanced or recurrent cancer, sometimes the CA 19-9
ill be and can be used to follow the disease.
At the time of diagnosis, breast cancer tissue is often tested

or estrogen and progesterone receptors, as well as the HER-
/neu antigen. These markers provide some information on
umor aggressiveness and prediction of therapeutic response.
he markers most commonly used to follow patients with
dvanced cancer or to detect tumor recurrence are CA15-3
nd CEA and the CA 27.29. These have been the most useful
n measuring the results of treatment for patients with ad-
anced disease and can be potentially valuable as imaging
gents for recurrent disease, although early trials have been
isappointing.
There are large numbers of antibodies specifically of use in

reast cancer detection that could be targeted for imaging
nd therapy: CA15-3, estrogen/progesterone receptor,
ER2, HER4 (c-erbB-4), and Ki-67, Rb gene product,
mad3, STAT3, TAG-72, uPAR, S-phase kinase-associated
rotein 2, EGF, MAP kinase (ERK1�ERK2), metallothio-
ein, MTA1, MUC1 (Mucin 1), MUC2 (Mucin 2), NY-
SO-1, and syndecan-1 (Sdc-1), known as CD138, a cell
urface heparin sulfate proteoglycan. Additionally, MCK-2
as been proposed as a potential tumor marker in breast
ancer.

Metallopanstimulin, a 9.5-kDa subunit “zinc finger” pro-
ein, is expressed in a wide variety of actively proliferating
ells and tumor tissues, including recurrent breast cancer.
ig-7 may be a potential early marker of migrating and cir-

ulating carcinoma cells. MUC1 overexpression is consid-
red to be the most sensitive and specific marker of invasive
arcinoma. Tumor M2-PK and circulating tumor M2-pyru-
ate kinase are more commonly increased in esophageal, gas-
ric, and colorectal cancer patients. Cytokeratin 19, cytoker-
tin 8, cytokeratin 8/18, galectin-3, MUC1 (Mucin 1), MUC2
Mucin 2), MUC5AC, and Smad3 are all in the earliest phases
f development for diagnostics and therapy.
Although no tumor markers are universally elevated in

ung cancer, neuron-specific enolase could prove useful in
he imaging of small cell lung cancer for diagnosis and stag-
ng, as well as for recurrence. It may be noteworthy that small
ell carcinoma usually have a very high uptake of FDG. Tis-
ue polypeptide antigen, a protein marker present in high
evels in many rapidly dividing cells along with other tumor

arkers, has had some usefulness to evaluate patients being
reated for lung and bladder cancers.

Melanoma-associated restricted tumor antigens have been
sed to test tissue samples to help diagnose melanoma in
uspicious areas, as has the S-100 protein, which is found in

ost melanoma cells. Tissue samples of suspected melano-



m
T
c
v
b
b
w
n
t
f
c

i
m
L
a
c
a
o
t
p
s
p
c
i

M
A
c
e
o
a
g
m
r
t
r
s
t
t

o
e
t
t
p
o
p
w
p
i
a
a
a
t

C
A
A
a
w
n
i
o
t
i
T
P
o
e
p
t
b
c
f
a
i
i
o

R

110 C. Guha et al
as often are tested for this marker to help in diagnosis.
A-90, a protein found on the outer surface of melanoma
ells, can be used to look for the spread of melanoma. Its
alue in charting the progress of melanoma, however, is still
eing evaluated along with other cancers such as colon and
reast. A trial with antimelanin antibody is currently under-
ay. Histidine decarboxylase also has been suggested as a
ew marker for neuroendocrine differentiation, inflamma-
ory pathologies, and several leukemia and highly malignant
orms of cancer, such as melanoma and small cell lung car-
inoma.

Epithelial ovarian cancer, the most common form of ovar-
an cancer, is linked with elevated levels of CA 125. Other

arkers that are sometimes measured are CA 72-4 and the
ASA-P. CA 125, which is increased in 90% of women with
dvanced disease, is the standard marker used. Ovarian can-
er, even when advanced, is often confined to the abdomen
nd pelvis and hard to locate through x-ray imaging. Because
f this, the CA 125 is often the most effective way to measure
he response to treatment, or to find recurrence. There is
reliminary evidence that FDG-PET imaging of patients with
erum CA 125 elevation and normal CT scans reveals the
resence of abnormal uptake, especially in the peritoneal
avity and retroperitoneum. The potential of targeted CA 125
maging is thus ready to be explored.

RS and MRI/PET
lthough functional imaging (based on in vivo functional
haracteristics) has the capacity to take advantage of differ-
ntial tissue characteristic at the cellular level, the dynamics
f molecular and biochemical assessment may not be fully
chieved until it is integrated as MRS and PET. Although the
oal of absolute clarity in target definition for radiation treat-
ent planning is the same, the information, relative to co

egistration and slice thickness, is infinitely more detailed at
he microscopic level. Slice thicknesses at 7.4 Tesla are al-
eady approaching 50 �m for delineation of axial and coronal
lice thickness. Functional images will provide spatial regis-
ration along with the anatomical imaging for better correla-
ive target delineation.

As a purely diagnostic instrument, MR/PET will be capable
f using both protons and the phosphorous atom and their
valuation capacities. Other MR markers are on the way, but
heir practical use is unclear at this time. In a manner similar
o the voxel image registration of CT, the use of MRS will
rovide biochemical information related to energy correlates
f membrane activity. Examples are phosphomonoesters,
hosphatidyl choline and ethanolamine, the energy path-
ays of lactic acid spectrum phosphates, inorganic phos-
hates, citrate, etc, in the region of interest. Phosphatidylser-

ne, an abundant and accessible marker of tumor vasculature
nd cell membranes, has value as a potential marker of ther-
peutic response (ie, apoptosis and necrosis). Dynamic im-
ging of blood flow and proton imaging provide additional

ools to be studied.
onclusion
fter a major review of the literature, the Food and Drug
dministration has been convinced of the justification for the
pproval of radiopharmaceuticals and moving forward to-
ard the rapid incorporation of PET into both the practice of
uclear medicine and oncology. The growth of applications

n oncology has additionally been enhanced by the decision
f Medicare to support the National Oncologic PET Registry
hat will assess the utility of currently available tumor imag-
ng agents in all cancers without restriction on indication.
he potential utility of radiopharmaceuticals labeled for
ET/CT will continue to depend on both design and devel-
pment in addition to regulatory compliances with safety and
fficacy by various investigational users. The innovative ap-
roaches outlined in this seminar place us at the time when
he incorporation of functional data into cancer treatment has
ecome a reality. Radiation oncology has partnered with nu-
lear medicine, and both are engaged in the search for newer
unctional paradigms for image-guided oncologic diagnostics
nd therapies. The future depends on our ability to engage
nto quality and speedy translational research in radiochem-
stry, and mechanism(s) of tumor cell uptake and localization
f radiotracers for new markers and more precise guidance.
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