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ecision Support Systems in Diuresis Renography
ndrew Taylor, MD,* Amita Manatunga, PhD,† and Ernest V. Garcia, PhD*

The volume of diagnostic imaging studies performed in the United States is rapidly
increasing resulting from an increase in the number of patients as well as an increase in the
volume of studies per patient. Concurrently, the number and complexity of images in each
patient data set are also increasing. Nuclear medicine physicians and radiologists are
required to master an ever-expanding knowledge base whereas the hours available to
master this knowledge base and apply it to specific tasks are steadily shrinking. The
convergence of an expanding knowledge base and escalating time constraints increases
the likelihood of physician errors. The problem is particularly acute for low-volume studies
such as MAG3 diuresis renography where many imagers may have had limited training or
experience. To address this problem, renal decision support systems (DSS) are being
developed to assist physicians evaluate suspected obstruction in patients referred for
diuresis renography. Categories of DSS include neural networks, case-based reasoning,
expert systems and statistical systems; RENEX and CART are examples of renal DSS
currently in development. RENEX (renal expert) uses a set of rules obtained from human
experts to analyze a knowledge base of expanded quantitative parameters obtained from
diuresis MAG3 scintigraphy whereas CART (classification and regression tree analysis) is
a statistical method that grows and prunes a decision tree based on an analysis of these
quantitative parameters in a training data set. RENEX can be queried to provide the reasons
for its conclusions. Initial data show that the interpretations provided by RENEX and CART
are comparable to the interpretations of a panel of experts blinded to clinical information.
This project should serve as a benchmark for the scientific comparison and collaboration of
these 2 fields of medical decision-making. Moreover, we anticipate that these DSS will
better define the essential interpretative criteria, foster standardized interpretation, teach
trainees to better interpret renal scans, enhance diagnostic accuracy and provide a meth-
odology applicable to other diagnostic problems in radiology and medicine.
Semin Nucl Med 38:67-81 © 2008 Elsevier Inc. All rights reserved.
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he number of diagnostic imaging studies performed an-
nually in the United States is rapidly increasing. In part,

his increase is the result of an increase in population but an
ven more important factor is an increase in the number of
tudies performed for each patient. The volume of imaging
rocedures for each Medicare beneficiary, for example, has
een increasing about 10% per year for the past 5 years.1 At
he same time the volume of imaging studies is increasing, the
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umber and complexity of the images in each patient data set
s also increasing. Imagers are required to master an ever-
xpanding knowledge base whereas the hours available to
aster this knowledge base and apply it to specific tasks

selecting the most appropriate protocol, quality control, im-
ge interpretation, reporting) are steadily shrinking. The con-
ergence of an expanding knowledge base and escalating
ime constraints increases the likelihood of physician errors.
he problem is particularly acute for low-volume studies
uch as diuresis renography.

For many full-time nuclear medicine physicians, diuresis
enography is a low-volume study. Of the estimated 590,000
enal scans performed annually in the United States, many
re interpreted by diagnosticians in sites that perform fewer
han 3 studies per week2 and even full-time nuclear medicine
hysicians may disagree up to 20% of the time whether or not
kidney is obstructed, indeterminate, or not obstructed.3

ost nuclear medicine studies in the United States, however,

re performed by radiologists. Nuclear medicine is only a
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68 A. Taylor, A. Manatunga, and E.V. Garcia
mall component of most radiology practices, and diuresis
enography represents only a small component of nuclear
edicine procedures. The problem is compounded by the

act that radiology residents are largely trained to interpret
mages that require a detailed knowledge of anatomy whereas
nterpretation of diuresis renography studies depends more
n an understanding of the pharmacokinetics of the radio-
harmaceutical and renal physiology. Moreover, radiology
esidents typically receive only 3 months of training to cover
ll of nuclear medicine compared with 3 years of training for
uclear medicine residents. Nuclear medicine physicians or
adiologists with limited experience or insufficient training
ay try to compensate by overrelying on a single parameter

uch as the T1/2 (time to half maximum counts) after furo-
emide. If the T1/2 is longer than 20 minutes, there is a ten-
ency to interpret the kidney as obstructed. The T1/2 is pro-

onged in obstruction but, depending on how and when the
easurement is made, it can be prolonged in a normal indi-

idual. Among other factors, the T1/2 is affected by hydration,
nderlying renal function, size and compliance of the renal
elvis, bladder distension, patient position, dose of furo-
emide and by technical factors such as assignment of regions
f interest (pelvis or whole kidney), the algorithm to calculate
he T1/2 (linear, exponential) and the starting and end points
or the T1/2 calculation. Naïve and uninformed reliance on a
ingle parameter can lead to inappropriate patient manage-
ent and unnecessary surgery. In summary, physicians in a

onventional imaging practice may lack the time and experi-
nce to achieve the desired level of competence in low-
olume studies such as diuresis renography, where train-
ng may be already limited. For these reasons, it is
articularly important to develop and implement decision
upport tools to help physicians interpret low volume
tudies such as diuresis renography at a faster rate and at a
igher level of expertise.

onsensus Reports
s Decision Support Tools

o help standardize practice and guide interpretation of renal
cans, an international group of experts in renal nuclear med-
cine has recently published consensus reports on (1) angio-
ensin converting enzyme inhibition (ACEI) renography for
enovascular hypertension,4 (2) diuresis renography,5 (3)
lasma sample clearance measurements,6 (4) quality control
f quantitative measurements obtained from the renogram,7

5) technical aspects of renal transplant evaluation,8 and (6)
ediatric renography.9 The consensus recommendations for
cquisition of the renogram data, the recommended quanti-
ative parameters, and basic interpretative criteria are now
enerally accepted by experts but recent British surveys have
hown that only 49% of full time nuclear medicine practitio-
ers in Britain were even aware that a guideline on renal
learances existed.10 The situation is undoubtedly worse in
he United States, where most renal scans are interpreted by
hysicians who practice nuclear medicine part time.2 Guide-
ines and consensus reports have been designed to assist phy- s
icians perform and interpret renal studies but for the time
onstrained physician, they may have made interpretation
ore complex. To assist in scan interpretation, experts and

onsensus panels have recommended clearance measure-
ents and the measurement of specific renogram parameters

uch as time to maximum counts, 20-minute to maximum
ount ratio, postvoid to maximum count ratio and 20-minute
o 2- to 3-minute count ratios for cortical and whole kidney
egions of interest (ROIs),4-8 but for many trainees and prac-
icing physicians, these measurements simply represent a be-
ildering array of numbers; comfort with the technical re-
uirements of the study and the underlying knowledge of
hen and how to apply these parameters to assist in scan

nterpretation may be lacking and, most importantly, physi-
ians may not have time to read and assimilate the relevant
apers.

omputer-Based Decision
upport (Expert) Systems

o minimize physician errors and improve patient outcomes,
ools need to be developed and implemented that will assist
hysicians in interpreting studies at a faster rate and at a
reater level of expertise. Such tools will also minimize sub-
ectivity and intra- and interobserver variation in image in-
erpretation and help achieve a standardized high level of
erformance. Because diagnostic imaging has become largely
igital, computers are a necessary part of acquiring and pro-
essing imaging studies and it is reasonable to expect that
hese new tools should be computer based. During the past
everal years, artificial intelligence methods have been inves-
igated as a way to develop such tools. Examples include
eural networks11-18 and case-based reasoning19 techniques
o provide computer-assisted diagnosis of planar and single-
hoton emission computed tomography (SPECT) myocar-
ial perfusion studies.11-19 In the artificial neural net ap-
roach, the concept is to try to emulate how human neurons
erform pattern recognition tasks. For example, repeated
ecognition trials can be run using sample myocardial perfu-
ion data as input and corresponding coronary angiography
esults as output to modify the strength between the input
nd output nodes. In this manner, the net is trained and the
nput data eventually predicts the output. In the case-based
easoning approach the algorithm searches a library of pa-
ient cases to find the ones that best match those of the patient
tudy being analyzed. The common findings from these
ases, such as coronary angiography results, are then used to
ssist the diagnostician’s interpretation. Another artificial in-
elligence approach to assist diagnosticians in making clinical
nterpretations is the knowledge-based expert system. In ex-
ert systems, a knowledge base of heuristic rules is obtained
rom human experts capturing how they make their interpre-
ations. These rules are usually expressed in the form of “IF A
HEN B” expressions.
Expert systems have been investigated in nuclear medicine

o assist in the interpretation of perfusion-ventilation lung

tudies,20 captopril renography,21,22 hemamethylpropylene-



a
d
w
i
a
h
e
p
(

W
D
a
M
T
t
n
m
a
m
i
i
e
s
u
s
i
“
n
h
p
e

e
m
p
N
t
m
i
p
i
h
c
o

T
D
I
U
r
i
s
e

s
h
d
t
c
i
j
s
A
p
r
e
p
o
o
a
r
s

C
a
O
p
9

s
D
m
a
b
m
m
c
r
s
m
n
a
w
o
c

A
P
P
t
t
p
w
9

f
t
s
M
t

Decision support systems in diuresis renography 69
mine oxime brain SPECT studies,23 and stress/rest myocar-
ial perfusion SPECT.24-26 Using our previous expertise,25,26

e have developed a generalized methodology to aid in the
nterpretation of imaging studies using an expert system to
nalyze quantitative data extracted from imaging studies, and
ave applied this generalized methodology to develop a renal
xpert system (RENEX) for detecting renal obstruction using
re and post furosemide 99mTc mercaptoacetyltriglycine
MAG3) renal scans.

hy Have We Chosen to
evelop Both an Expert System
nd a Statistical Predictive
odel for Diuresis Renograpy?

wo primary issues of concern for any decision support sys-
em are its accuracy and its clinical acceptance. Both are
ecessary in terms of the ultimate clinical utility. Statistical
ethods for prediction incorporate scientific knowledge

bout the data and they incorporate the variability of the
easurements in the observed data. They also have the abil-

ty to make inferences from a sample to a population includ-
ng hypothesis testing and estimation of parameters of inter-
st such as misclassification rates. Direct application of
tandard statistical methods such as logistic regression etc.
se well-understood mathematical techniques; however,
tandard statistical programs have 3 failings that are imped-
ments to acceptance by physicians in that they have no real
understanding” of their problem area, they have no mecha-
ism for “discussing” their knowledge with the user, they
ave no means for “explaining” (justify their findings) to
hysicians.27 More sophisticated statistical methods, how-
ver, can overcome some of these deficiencies.

Knowledge-based systems, with their emphasis on knowl-
dge representation, offer a natural environment for imple-
enting the tools that are lacking in many statistical ap-
roaches and can provide a rationale for medical decisions.28

evertheless, knowledge-based systems may implement sta-
istical techniques that can benefit from the development of
ore formal mathematical approaches. We have chosen to

mplement predictive statistical modeling and a heuristic ex-
ert system with the expectation that each approach will

nform and strengthen the other approach. Moreover, we
ope this effort will serve as a benchmark for the scientific
omparison and collaboration of these two important fields
f medical decision-making.

he Gold Standard for
iuresis Renography: Expert

nterpretations or Outcome?
se of clinical outcome as the gold standard for a diuresis

enography decision support system is an attractive goal, but
t misses the point of an expert system, which is to interpret
tudies with the same level of expertise as experts. It is gen-

rally accepted that experts interpret studies in their imaging t
pecialty better than general radiologists; this is the basis for
aving distinct areas of expertise within academic radiology
epartments and private practice settings. Outcome is cer-
ainly an important measure but, in diuresis renography, out-
ome as a gold standard is confounded by the fact the scan
nterpretation (obstruction versus no obstruction) has a ma-
or impact on the clinical outcome (surgical intervention ver-
us observation); consequently, this gold standard is biased.
n additional problem is illustrated by a patient who had a
yeloplasty to relieve obstruction 1 year after a diuresis
enography scan was interpreted as “no obstruction.” In this
xample, did the scan miss obstruction, was the study inter-
reted incorrectly, did the patient only become obstructed
ne year following the scan or did an aggressive surgeon
perate on a nonobstructed kidney? Using patient outcome
s a gold standard has an inherent bias, interpretation of the
esults is not straightforward and it is not the goal of an expert
ystem.

hoice of Radiopharmaceutical
nd Furosemide Protocol
ur protocol is based on the 1996 international consensus
anel recommendations for diuresis renography.5 We use

9mTc mercaptoacetyltriglycine (MAG3) because the consen-
us panel considered it to be diagnostically superior to 99mTc
TPA. The consensus panel recommended a single 35-
inute continuous acquisition (single stage) with furosemide

dministered at 20 minutes; an alternative protocol was to
reak the continuous acquisition into two stages with a 20-
inute baseline acquisition followed by furosemide ad-
inistration and a second acquisition. Kuyvenhoven and

oworkers have pointed out that the inconvenience of fu-
osemide administration can be omitted if the baseline
can can exclude obstruction29; this approach can reduce
edical costs by reducing the camera, computer and tech-
ologist time required to complete the furosemide study
nd physician time required to interpret it. For this reason,
e have used the two stage acquisition since 1990 and
mitted Stage 2 when the baseline acquisition could ex-
lude obstruction.

cquisition and
rocessing Protocols

atients were hydrated with approximately 10 ounces of wa-
er on arrival in the department. Imaging was performed with
he patient supine and the scintillation camera detector
laced under the table. A three-phase dynamic acquisition
as begun at the time of injection of approximately 10 mCi of

9mTc MAG3. Phase one consisted of twenty-four 2-second
rames, phase two was sixteen 15-second frames, and phase
hree was forty 30-second frames. Our original processing
oftware, QuantEM 1.0, was developed specifically for 99mTc
AG330 and included a camera-based method to calculate

he MAG3 clearance, which was validated in a multicenter

rial.31 QuantEM 1.0 also incorporated several quality control
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70 A. Taylor, A. Manatunga, and E.V. Garcia
rocedures to improve reproducibility, generated specific
uantitative parameters recommended for scan interpreta-
ion, and was licensed by Emory University to GE Healthcare.
o support our expert systems, we have upgraded this acqui-
ition and processing software, now called QuantEM 2.0, and
ave designed it to automatically perform a more extensive
heck of quality control, acquire additional input parame-
ers, and transmit these parameters to the decision support
ystems.32,33 The acquisition protocol now consists of two
hases: Phase 1 acquires one-hundred twenty 2-second
rames followed by the Phase 2 acquisition of eighty 15-
econd frames. To have the broadest applicability, we have
ritten QuantEM 2.0 in IDL (Interactive Data Language, Re-

earch Systems, Inc, Boulder, CO) which can run on a PC or
ny commercial platform. All patient studies were processed
sing the QuantEM 2.0 renal quantification program.
To process the baseline renogram, a static image is

ummed from the 2- to 3-minute postinjection frames. Using
filtered version of this image, whole kidney and cortical
OIs as well as perirenal backgrounds that avoid the ureter
nd collecting system are automatically defined. The user can
verride any of these automatic ROIs and replace them with
anual ROIs. Background-subtracted whole kidney and cor-

ical curves are generated and 47 quantitative parameters are
enerated including patient demographics (height, weight,
ge, sex, body surface area), curve parameters (time to peak
ounts, and 20 minute to count ratio for both whole kidney
nd cortical ROIs), voiding indices (postvoid to prevoid and
ostvoid to maximum count ratios), relative uptake and the
AG3 clearance. The MAG3 clearance is calculated from the
to 2.5 minute whole kidney uptake of MAG3 corrected for

enal depth and attenuation and the preinjection and postin-
ection images of the dose syringe.30,31,34-36

The furosemide component of the study is a separate ac-
uisition consisting of forty 30-second frames. Furosemide is
dministered at the start of the furosemide acquisition; the
tandard dose of furosemide is 40 mg but the nuclear medi-
ine physician monitoring the study sometimes increases the
ose of furosemide to 60 or 80 mg if the MAG3 clearance on
he baseline study is reduced or if the patient is known to
ave an elevated creatinine.37 Technologists approve or mod-

fy automatically assigned kidney and background ROIs and
ssign pelvic ROIs and the time interval for the calculation of
he T1/2. Quantitative parameters are automatically ex-
racted from the two acquisitions, placed in an XML file and
orwarded to RENEX or the statistical decision support sys-
ems for analysis.

able 1 Post-Void/Maximum Count Ratios Using Regions of

N Mean SD M

ost-void/max ratio right kidney 106 0.08 0.04
ost-void/max ratio left kidney* 106 0.09 0.03

D, standard deviation.
eprinted with permission from Esteves et al.45

There is a minor but significant difference in the post-void to maxim

(>40 years) adults. There is no significant difference between males a
hat Are the
ormal Values for the
amera-Based MAG3
learance, Renogram,
nd Voiding Parameters?
learance measurements and other specific quantitative pa-

ameters have been recommended to assist in scan interpre-
ation and patient management.4-8,38-44 To assist in the inter-
retation of ACEI renography, for example, the Santa Fe
onsensus report and the Society of Nuclear Medicine proce-
ure guideline on renovascular hypertension recommend
easurements of time to maximum counts (Tmax) and 20-
inute/maximum count ratios for whole kidney and cortical

egions of interest.4,39 The 20-minute/2- to 3-minute count
atio has been proposed as a useful parameter to simulta-
eously evaluate clearance and excretion and may be espe-
ially useful in monitoring transplant patients to distinguish
etween acute tubular necrosis and rejection.40 A measure-
ent of urine drainage based on a quantitative comparison of
ostvoid kidney counts to the counts obtained during the
revoid period improves the sensitivity and specificity for
etecting an obstructed kidney.41-43 Finally, the postvoid
rine volume can easily be determined at the time of the scan
nd may provide important additional information regarding
xcretory function.44

To develop our decision support systems, we had to spec-
fy the normal values for all the parameters we measured. To
efine the normal ranges for the quantitative parameters and
o determine if the normal ranges varied based on age and
ender, the archived MAG3 acquisitions from 106 subjects
valuated for kidney donation were processed using
uantEM 2.0.45 To summarize the results, the percent rela-

ive uptake in the right and left kidneys was 49% and 51% �
% respectively; there was no difference between males and
emales. Cortical values for the time to maximum counts,
0-minute/max ratio and 20-minute/2- to 3-minute ratio
ere lower than the whole kidney values (P � 0.001); the
ean cortical 20-minute/max count ratio was 0.19 with a SD

f 0.07 and 0.04 for the right and left kidneys, respectively.
he mean postvoid/max whole kidney count ratio was �0.1
Table 1) and the mean postvoid residual bladder volume
as �30 mL (Table 2). These results confirm and extend
revious studies46-48 and establish normal limits adjusted for
ge and gender.45

t Over the Entire Kidney*

um 5th Percentile 95th Percentile Maximum

0.03 0.16 0.24
0.05 0.15 0.20

nt ratios for the left kidney between younger (<40 years) and older
Interes

inim

0.02
0.03

um cou

nd females.
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Decision support systems in diuresis renography 71
The mean camera-based MAG3 clearance corrected for
ody surface area was 321 � 69 mL/min/1.73 m2 (Table 3).
learance measurements can aid in the interpretation of the

enogram and facilitate appropriate patient manage-
ent.6,38,49-52 Plasma sample clearance methods are consid-

red to be superior to camera-based clearances6 and MAG3
learances can be calculated with reasonable accuracy from a
ingle plasma sample obtained 40 to 45 minutes after injec-
ion51,52; however, informal surveys indicate that nuclear ra-
iology services in the United States rarely offer plasma sam-
le clearances because of the additional technical expertise
equired to perform a plasma sample measurement and the
ecessity of complying with CLIA (Clinical Laboratory Im-
rovement Act) regulations required for in vitro plasma sam-
le clearances. Camera based clearances do not require blood
r urine collection and generally provide an acceptable esti-
ate of renal function that is equivalent to or superior to the

reatinine clearance.53-57 The mean and standard deviation
or the BSA corrected camera-based MAG3 clearance (321 �
9 mL/min/1.73 m2; Table 1) was essentially the same as the
lasma sample MAG3 clearance measured in two separate pop-
lations of potential renal donors at different institutions, 304 �
0 and 317 � 74 mL/min/1.73 m2.58,59 The camera-based
learance technique used in this study has been validated in a
ulticenter trial31 and an earlier version is commercially

vailable on General Xeleris systems; the camera-based
AG3 clearance is more reproducible than the creatinine

learance.57 Other camera-based MAG3 clearance techniques
ave been described,60,61 and some vendors provide software
o measure the MAG3 clearance using a camera-based tech-
ique similar to the one described here but data comparing
heir results to a plasma based standard have not been pub-
ished. Camera-based clearance measurements using soft-
are from other vendors should be comparable to those de-

cribed in Table 1 as long as the programs incorporate

able 2 Residual Bladder Volume*

Sex Age N Mean SD M

esidual
volume (mL)

M† <40 12 9 7
M† >40 16 30 28
F <40 18‡ 15 10
F >40 16 17 9

D, standard deviation.
eprinted with permission from Esteves et al.45

There is no significant difference in residual bladder volume betwe
There is a significant difference in residual bladder volume betwee
One female patient had a residual volume of 256 mL; this value w

able 3 Camera-Based MAG3 Clearances (mL/min/1.73 m2)

Sex N Mean SD Min

AG3 clearance* M 44 338 63
F 62 309 71

ll subjects 106 321 69

D, standard deviation.
eprinted with permission from Esteves et al.45
The difference is significant (P < 0.05) between males and females.
imilar quality processing and control features (back-
round correction, dose infiltration, avoiding potential
ead-time loses, a standardized time zero) and the vendors
an provide validation studies to ensure the software is
erforming as specified.

he Architecture of RENEX
ENEX was inspired by two previously developed expert
ystems, MYCIN (28 Shot) and PERFEX (perfusion expert;
icensed Syntermed, Inc, Atlanta, GA).25,26 MYCIN is a pio-
eering rule-based expert system developed in the 1970s to
elp physicians determine the appropriate antibiotic for pa-
ients with infections; the name “MYCIN” was chosen be-
ause many of the available antibiotics included “mycin” in
he name of the antibiotic. PERFEX is a commercially avail-
ble imaging expert system developed to assist physicians in
he interpretation of myocardial perfusion SPECT studies.26

n expert in radionuclide scintigraphy (domain expert) used
is experience and the normal limits for the kidney parame-
ers extracted from the 99mTc MAG3 scans of 106 potential
enal donors46 to estimate 5 boundary conditions for each
arameter: (1) definitely abnormal, (2) probably abnormal,
3) equivocal, (4) probably normal, and (5) definitely nor-
al. A sigmoid-like fit constrained to these 5 boundary con-
itions was then generated to create a parameter knowledge

ibrary to be used for converting the value of any individual
uantitative parameter to a certainty factor regarding normal-

ty or abnormality (Fig. 1A and B). Certainty factors provide
n alternative to conditional probability and can easily be
ombined to adjust hypotheses as additional evidence be-
omes available. For example, the certainty factor value of

1 is assigned to indicate that the parameter is “definitely
bnormal” and the certainty factor value of �1 is assigned to
ndicate a parameter is “definitely normal”; the certainty

m 5th Percentile 95th Percentile Maximum

0 23 23
8 91 91
5 36 36
5 42 42

les and females.
ger (<40 years) and older (>40 years) males.

sidered to be abnormal and deleted from the analysis.

5th Percentile 95th Percentile Maximum

238 433 454
226 439 503
226 439 503
inimu

0
8
5
5

en ma
n youn
imum

211
188
188
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72 A. Taylor, A. Manatunga, and E.V. Garcia
actor to indicate the boundary when an equivocal study
ecomes probably abnormal is assigned a value of �0.2, a
ruly equivocal study is assigned a certainty factor of 0 and a
ertainty factor value of �0.2 is assigned to indicate the
oundary when an equivocal value becomes probably nor-
al (Fig. 1A and B). Certainty factors between �0.2 and
0.2 are equivocal; unknown values are also assigned a

ertainty factor of 0.
Sixty heuristic rules (“IF A THEN B”) were extracted from

he domain expert to generate the knowledge base for detect-

Figure 1 Graphical representation of the transformation
The 3 parameters are illustrated as follows. (A) Lasix pre
during the last frame of the postfurosemide renogram t
semide baseline renogram. (B) Lasix pelvis time to half pe
a kidney’s pelvic ROI to decrease from its maximum valu
camera-based MAG3 clearance for the left kidney. Notic
a smooth, exact, Sigmoid fit. (Reprinted by permission
ng obstruction; 12 of these 60 rules are specifically applied
o the baseline study to determine the need for a furosemide
dministration. Each rule uses the certainty factors describ-
ng the degree or abnormality or normality for each parame-
er that the rule evaluates to generate a certainty factor re-
arding the need for furosemide to exclude obstruction. For
xample, one of the rules states, “If the ratio of the postvoid
idney counts of the postfurosemide renogram to the counts

n the baseline renogram during the 1 to 2 minute interval is
ormal, then there is a very strong evidence (certainty factor
f �0.8) that the kidney is obstructed.”

put quantitative parameters to certainty factor values.
baseline max: the ratio of the counts in the kidney ROI
aximum counts in the kidney ROI from the prefuro-

time that it takes for the renogram curve extracted from
lf that value. (C) The MAG3 clearance curve shows the

he curves have a general sigmoid shape but do not have
ociety of Nuclear Medicine from Garcia et al.32)
of 3 in
void to
o the m
ak: the
e to ha

e that t
These applied rules are chained together by a forward
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Decision support systems in diuresis renography 73
haining inference engine. An inference engine is software
hat selects and executes the rules; the design of the
ENEX inference engine follows the MYCIN inference en-
ine by approximating Bayes theorem to combine the cer-
ainty factors generated by the relevant rules to reach a
onclusion (combined certainty factor) regarding the need
or furosemide; the combined certainty factor can range
rom “definitely needs furosemide (�1.0)” to “definitely
oes not need furosemide (�1.0).” An example of a meta-
ule is one that states that when the combined certainty
actor regarding the need for furosemide is in the equivo-
al range (�0.2 to �0.2), the patient should also receive
urosemide. If a kidney does not need furosemide, that
idney is not obstructed.
If furosemide is needed, additional certainty factors are

enerated for parameters relating to the furosemide acqui-
ition as well as certainty factors for parameters relating
alues from the furosemide acquisition to the baseline
cquisition values such as the ratio of the pre- and
ostvoid kidney counts of the furosemide acquisition to
he maximum kidney counts of the baseline acquisition
Fig. 1). The inference engine then selects and executes the
ules to reach a conclusion (combined certainty factor)
egarding the presence or absence of obstruction from
efinitely obstructed (�1.0) to definitely not obstructed
�1.0). Kidneys with combined certainty factors in the
quivocal range (�0.2 to �0.2) are indeterminate for ob-
truction. For example, when the inference engine starts
xecution, the certainty factor that a kidney is obstructed
s 0 (unknown). As production rules are asserted (fired),
he certainty factor that the kidney is obstructed increases

Figure 2 Flow diagram for RENEX. This diagram shows
to extract parameters of renal function and how these p
input to the expert system. The expert system is com
justification engine. The inference engine applies rules f
parameters of the study and combines the certainty facto
obstruction. The justification engine keeps tract of th
trapezoidal blocks indicate domain expert; the rectangu

sion of the Society of Nuclear Medicine from Garcia et al.32)
r decreases based on whether the rule is providing posi-
ive or negative evidence that the kidney is obstructed.
fter all the pertinent rules are asserted (ie, all rules with
ntecedents �0.2 are fired), the resulting certainty factor
s the conclusion reached by the inference engine. Thus, if
he final certainty factor that the kidney is obstructed is
reater than 0.2, the conclusion is that the kidney is ob-
tructed; the larger the certainty factor (closer to the max-
mum value of 1.0), the greater the confidence that the
idney is obstructed. If the certainty factor is less than
0.2, the kidney is not obstructed, and if it lies between
0.2 and �0.2, the kidney is equivocal for obstruction.
hese initial rules were modified as the system was trained
ith patient data. Rules were grouped into knowledge

slands to perform 5 functions common for each kidney:
a) consider if furosemide needs to be administered, (b)
onsider if furosemide does not need to be administered,
c) consider if the kidney is obstructed, (d) consider if the
idney is not obstructed, (e) consider if meta-rules for the
idney applies. Meta rules are rules considered after all of
ther rules are considered.
A software component called a justification engine was

mplemented to record the sequence of each rule that was
red and the certainty factor value of all input and output
arameters at the time of instantiation to track and justify the

ogic of the conclusions.32 The justification engine allows a
ser to query RENEX to determine the rules and parameter
alues that “justify” or explain the software’s conclusion re-
arding the need for furosemide.62 The architecture of
ENEX is summarized in Figure 2.

of how a renal scan is acquired, processed, quantified
ers are converted to certainty factors (CF) that are then
of the knowledge base, the inference engine and the
e knowledge base to the certainty factors describing the
each a conclusion regarding the presence or absence of
r and sequence of the rules that were applied. The
ks indicate software algorithms. (Reprinted by permis-
the flow
aramet
prised
rom th
rs to r
e orde

lar bloc
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irst Things First: Can the
ecision Support Systems
nalyze the Baseline Acquisition

o Exclude Obstruction?
ur suspected obstruction protocol has been to first obtain a
aseline scan. If the baseline scan can exclude obstruction,
he furosemide acquisition is omitted. Of 704 renal scans
btained for suspected obstruction from Jan 1994 to July
002, the baseline examination excluded obstruction in 221
30%) patients. Consequently, as an intermediate step to de-
elop decision support systems to detect obstruction, we first
pplied our decision support systems to examine only the
aseline parameters to determine whether the baseline scan
ould exclude obstruction. This choice addressed a clinical
roblem, only required 12 rules from RENEX and provided
he data and experience to develop the more complicated
ystems needed to analyze a two stage study for the presence
f obstruction.

he Statistical Approach (CART)
ecision trees present an attractive way of summarizing ex-
ert knowledge for convenient use by nonexperts. Decision
rees provide a simple flowchart prescription of a short series
f yes/no questions which result in a decision relevant to the
cientific question of interest. The statistical use of these con-

Figure 3 A single decision tree to determine whether fu
obstruction is illustrated. The basic element of the tree
node. Internal nodes are represented by circles; termina
binary (yes/no) question is asked. As a first step, at the t
parameters and the cut-off point among all possible cu
kidneys in the data set that require and those that do no
consists of four levels with 6 terminal nodes; four kidne
for furosemide: postvoid/max ratio, relative uptake, cor
not a patient requires furosemide depends on the kidney
has a postvoid/max ratio �0.3781, relative uptake �86
to require furosemide. Each terminal node gives the

misclassified. (Adapted with permission from Binongo et al.64)
epts was developed in 1984 by Breiman and coworkers63

ho named the method “classification and regression trees,”
ore commonly known by its acronym CART. CART was

pplied to a training set of 80 randomly selected patients (79
ight kidneys and 80 left kidneys) referred for suspected ob-
truction.64 The single decision tree for the right kidney as
llustrated in Figure 3.

The basic element of the tree is a node, which can either be
n internal node or a terminal node. In Figure 3, internal
odes are represented by circles; terminal nodes are repre-
ented by rectangles. A tree is grown in a hierarchical man-
er. At each internal node, a binary (yes/no) question is
sked. As a first step, at the top node, the algorithm finds the
arameter among all kidney parameters and the cut-off point
mong all possible cut-off points that does the best job of
ifferentiating between kidneys in the data set that require
nd those that do not require furosemide to further evaluate
bstruction. This process of splitting at each node is contin-
ed until a large tree is constructed. A large tree usually
verfits the data (ie, is overly sensitive to irregularities in
ata). An overfitted tree runs the risk of correctly predicting
he outcome for all subjects in the training set, yet ending up
o specifically tailored to the training set that it performs
oorly on many other datasets. A pruning rule is thus imple-
ented to determine the proper tree size. As a final step, a
isclassification rate is calculated in each terminal node of

he tree.

ide is needed for the right kidney to further evaluate
de, which can either be an internal node or a terminal
are represented by rectangles. At each internal node, a
e, the algorithm finds the parameter among all kidney

oints that does the best job of differentiating between
re furosemide to further evaluate obstruction. This tree

eters were found to be useful in determining the need
0-minute/max ratio, and MAG3 clearance. Whether or
s for these variables. For example, a right kidney which
cortical 20-minute/max ratio �0.5084 is predicted not
r and percentage of kidneys in that node that were
rosem
is a no
l nodes
op nod
t-off p
t requi
y param
tical 2
’s value
% and
numbe
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In Figure 3, the tree for the right kidney consists of four
evels with 6 terminal nodes. In this particular tree, four
idney parameters were found to be useful: postvoid/max
atio, relative uptake, cortical 20 minute/max ratio, and
AG3 clearance. Whether or not a patient requires furo-

emide depends on the kidney’s values for these variables.
or example, a right kidney which has a postvoid/max ratio
0.3781, relative uptake �86% and cortical 20 minute/max

atio �0.5084 is predicted not to require furosemide. In the
raining set, 34 right kidneys had this set of characteristics,
nd none of them were misclassified. The number 0/34 in the
eft-most terminal node of Figure 3 indicates the misclassifi-
ation rate for this particular path. The total misclassification
ate was only 2.5% (2/79). However, when this tree was
pplied to the right kidneys (n � 64) in the validation sam-
le, the misclassification rate was 15.62% (10/64). Because
he data in the validation set were not used in building the
riginal tree, the increase in the number of misclassified kid-
eys was expected.

ART With Bagging
he CART algorithm is a commonly used method for build-

ng statistical models from simple feature data to predict
edical decisions. CART is powerful because it can deal with

ncomplete data and multiple types of features both in terms
f input features and predicted features; moreover, CART
roduces a tree containing rules that can be easily compre-
ended (Fig. 3).63 A potential problem with using a single
ree (as in standard CART) on which to build a prediction
odel is that small perturbations in the training data can

esult in drastically different trees. Errors made in an early
plit are passed down to subsequent splits, thus compound-
ng the error. To stabilize the algorithm, 1001 classification
rees were constructed by the common statistical technique
f bootstrapping the training data.65 In brief, bootstrap sam-
ling is a process that randomly selects a single kidney from
he training set, assigns that kidney to the bootstrap dataset,
andomly selects another kidney from the training set (this
idney could potentially be the same as the first kidney),
ssigns that kidney to the bootstrap dataset and continues
his process until a bootstrapped sample the same size as the
riginal training set has been constructed. This whole process
as then repeated for 1001 iterations to produce 1001 boot-

trapped datasets. A tree (algorithm) was developed for each
f the 1001 bootstrapped datasets to determine the need for
urosemide. These 1001 trees from the training set were ap-
lied to each kidney in the validation data, resulting in 1001

able 4 Most Frequent Kidney Parameters in the Training Set
n Level 1

Kidney Parameter

Frequency (%)

Right Kidney Left Kidney

ortical 20-min/max ratio 32.1 3.6
ostvoid/max ratio 29.1 83.0
ostvoid/1- to 2-min ratio 13.3 6.3
9- to 20-min/max ratio 10.8 1.0
ieprinted with permission from Binongo et al.64
redictions for each kidney regarding the need for furo-
emide to exclude obstruction. The final prediction regarding
urosemide was determined by simple majority vote of the
001 outcomes. This methodology, called bootstrap aggre-
ation or bagging,66 reduces dependence on the training set
nd stabilizes the prediction algorithm by averaging the re-
ults. An odd number of bootstrap samples is chosen to avoid
ny ties in voting.

The modified CART algorithm with bagging reduced the
isclassification rate for the right kidney from 15.62% with-

ut bagging to 10.94% (P � 0.03). The misclassification rates
or these 1001 single trees ranged from 4.69% to 35.94%,
ndicating large variability for single trees but the bagging

isclassification rate for the right kidney was smaller than
he mean (and median) misclassification rate of the 1001
ootstrapped samples and bagging had the effect of stabiliz-

ng the standard CART analysis. In the prospective data set,
ART with bagging accurately predicted the need for furo-

emide about 90% of the time. A significant disadvantage in
he bagging technique is the lack of a simple tree at the end of
he procedure on which to base future predictions; the final
rediction based on 1001 trees is too complicated to be pre-
ented visually. Moreover, CART with bagging cannot pro-
ide the interpreting physician with a rationale for reaching a
pecific conclusion.

An important advantage of the CART algorithm is that it
dentified and specified the parameters used at the various
evels of the bootstrapped sampled trees to determine when
bstruction could be excluded without the furosemide acqui-
ition; this analysis provided an important insight into the
arameters that are most important in discriminating be-
ween obstruction and nonobstruction. The time to half peak
T1/2) is frequently cited as an important measurement in
valuating possible obstruction,67 but this was not an impor-
ant variable in the CART analysis for determining the need
or furosemide (distinguishing between nonobstruction and
ossible obstruction). In fact, 2 of the 3 most frequently
elected parameters at the first level employed a comparison
f the counts in the kidney after voiding to an earlier time
eriod (maximum counts or counts at 1-2 minutes; Table 4),
nd support an earlier study suggesting that voiding indices
ill provide simple and more robust parameters for evaluat-

able 5 Comparison of RENEX and Expert Interpretations

Expert

RENEX

Obstructed Equivocal
Non-

obstructed

bstructed 14 3 0
quivocal 5 8 2
on-obstructed 3* 9 73

RENEX did not exclude obstruction based on the baseline acquisi-
tion. No furosemide was given; consequently, these kidneys
were assigned a RENEX interpretation of obstruction.
ng obstruction than the T1/2.41,68
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ART Versus RENEX
s an intermediate step in the development of our decision
upport systems to detect obstruction, we conducted a pro-
pective study to compare the decisions regarding the need
or furosemide made by a heuristic approach (RENEX) and
n analytic approach (CART) with the need for furosemide
etermined in clinical practice and by expert readers.69 Both
ENEX and CART used the same pilot group of 31 patients
61 kidneys) as a training set. CART with bagging was ap-
lied to construct 1001 classification tree to determine the
est separation between kidneys that required furosemide to
valuate obstruction and kidneys that were not obstructed
nd did not require furosemide. Subsequently, both systems
ere prospectively applied to 102 patients (200 kidneys) of
hom 70 received furosemide; decisions regarding the need

or furosemide were compared with the clinical decisions and
he decisions of three experts who independently scored each
idney on the need for furosemide and resolved differences
y majority vote. RENEX performed better than CART when
urosemide was required to further evaluate possible obstruc-
ion. RENEX agreed with the experts’ decisions to give furo-
emide in 98% (65/66) of patients whereas CART agreed in
9% (59/66), respectively, P � 0.03. In contrast, CART per-
ormed better than RENEX when furosemide was not re-
uired; CART agreed with the experts’ decision to withhold
urosemide in 78% of kidneys (87/111) whereas RENEX
greed in only 69% of kidneys (77/111), P � 0.008. Both
ystems can be improved and this study is not sufficient to
etermine if one approach is inherently superior to the
ther.69,70

This study was limited by the fact that the training set was
elatively small; this limitation was probably more of a dis-
dvantage for a statistical system such as CART than for a
euristic system like RENEX. Knowledge-based expert sys-
ems have an advantage over neural nets, case based reason-
ng, or predictive statistical approaches because development
f knowledge-based systems do not require the same large
umbers of studies as the other approaches. A second advan-
age of a knowledge-based system, especially from a learning
erspective, is that it is possible to query the system to learn
he rules that led to a specific conclusion. For example,
ENEX disagreed with the experts in one kidney in regard to

he need for furosemide because RENEX gave greater weight
o the abnormal T1/2 than to the postvoid to maximum count
atio. The experts were not queried but appeared to give
reater weight to the images and the low postvoid to maxi-
um count ratio. This interpretation is supported by data

rom CART, indicating that voiding indices will provide a
ore robust method for determining the presence or absence

f obstruction than the T1/2 (Tables 2 and 4).64 RENEX can be
mproved by comparing results and its “reasoning” with ex-
ert decisions and adding new rules and/or adjusting the
eighting factors. In this case, RENEX should be tested giv-

ng greater weight to the postvoid to maximum count ratio
han the T1/2. Use of RENEX or CART as decision support
ools in institutions that employ the baseline plus furosemide

rotocol has the potential to offer a “second opinion” and e
elp avoid unnecessary imaging and reduce the technologist,
omputer, camera, and physician time required to perform
he procedure.69 Importantly, the results obtained from this
tudy helped in the more complex task of developing deci-
ion support systems to actually diagnose or exclude obstruc-
ion.

dditional Quality Control Is Needed
review of the discrepancies between the experts and the

ecision support systems indicated that additional quality
ontrol was needed. Experienced nuclear medicine physi-
ians can sometimes read around errors that affect the quan-
itative parameters but discrepant results occurred because
he decision support systems assumed the quantitative values
ere correct. One error occurred when a patient got off the

able before the study was complete; the 20 minute/maxi-
um count ratio was zero indicating to RENEX complete

mptying of the kidney and, therefore, no obstruction but it
as obvious to the clinicians that the patient got off the table

nd that the study was incomplete and nondiagnostic. A
eduction in renal function can lead to a delay in drainage of
AG3 from the kidney and RENEX incorporates rules relat-

ng the individual MAG3 clearance to the rate of washout.
he camera-based MAG3 clearance requires a correction for
ttenuation based on a regression equation derived from the
atient’s height and weight.34,35 The software can accept data
ntry in pounds or kilograms but if pounds are entered for
ilograms or kilograms entered when the software is expect-

ng pounds, the camera-based MAG3 clearance will be erro-
eous, the resulting certainty factor describing the MAG3
learance will be erroneous and a rule may be incorrectly
pplied.

We have developed software to check the entire technol-
gist input data used by the decision support systems.71

hecks are made for logical inconsistency (negative and non-
umeric values, impossible clock times, final void time ear-

ier than initial void time, dose counted larger than dose
njected) and demographic values outside the expected
ange. Additional checks flag potentially unreliable results
height and weight outside an expected range, very low time-
o-peak kidney counts, infiltrated dose and starting the cam-
ra after radiopharmaceutical injection) as well as factors that
ay lead to unreliable quantitative data such as relative up-

ake less than 5%; in this setting, the cortical parameters for
he poorly functioning kidney may have too much noise to be
eliable parameters. To validate the QC software, two tech-
ologists not involved in software development processed 83
onsecutive clinical studies. QC events were defined as tech-
ical (study descriptors that were out of range or were en-
ered and then changed, unusually sized or positioned ROIs,
issing frames in the dynamic image set) or clinical (calcu-

ated functional values judged likely to be unreliable). Poten-
ially serious QC events were defined as the following: cam-
ra started late, significant dose infiltration, left/right side
OIs swapped, background oversubtraction giving a nega-

ive renogram curve and missing frames. Technical QC

vents were identified in 30/83 (36%) studies, clinical QC
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Decision support systems in diuresis renography 77
vents were identified in 28/83 (34%) of studies and poten-
ially serious QC events were identified in 5/83 (6%) of stud-
es.71 This evaluation demonstrates that there are QC issues
re not uncommon; they can be identified, flagged, and cor-
ected. If QC issues are recognized but cannot be corrected,
he certainty factor associated with the suspect parameter can
e modified to have less effect on the final decision.

ow Well Does RENEX
ork in Detecting Obstruction?

he entire system was fine tuned and tested using a pilot
roup of 32 patients (63 kidneys) deemed by a panel of 3
xperts to have 41 unobstructed kidneys, 13 obstructed and
equivocal findings.32 The 32 patient studies used as a train-

ng set were selected to try to challenge all branches of the
ecision tree. As each patient was interpreted by RENEX, the
ules and certainty factors were adjusted to match the ex-
ert’s interpretations. RENEX agreed with the expert panel in
2% (12/13) of the obstructed kidneys, 93% (38/41) of the
nobstructed kidneys, and 78% (7/9) of the kidneys inter-
reted as equivocal for obstructions.32 Displays of the base-

ine and furosemide acquisitions used for review by the ex-
ert panel are illustrated in Figure 4. Processing time per
atient was practically instantaneous using a 3.0 GHz PC
rogrammed using IDL. Although this initial agreement was
ncouraging, it did not validate the method since the results
nly applied to patients in the training set.
A second study was performed to test RENEX in a prospec-

ive population consisting of 60 randomly selected studies
117 kidneys).72 Obstruction was excluded by the baseline
can in 17 subjects; 43 subjects received furosemide followed
y a second 20-minute acquisition. An expert and RENEX
ranted each kidney as obstructed, equivocal and nonob-
tructed; both the expert and RENEX were blinded to the
linical history. RENEX requested furosemide in 3/17 sub-
ects who did not receive furosemide and whose kidneys
ere considered by the expert reader to be nonobstructed.
ince there was no furosemide study, these studies were as-
igned an incorrect diagnosis of obstruction by RENEX even
hough a furosemide acquisition would have probably led
ENEX to the correct diagnosis. RENEX agreed with the
xpert reading in 86% (73/85) of nonobstructed kidneys,
3% (8/15) equivocal kidneys, and in 82% (14/17) of the
bstructed kidneys (Table 5). Of the 75 kidneys interpreted
s nonobstructed by RENEX, 73 (97%) were interpreted as
onobstructed by the expert reader.
A subsequent and more formal evaluation of RENEX has

een performed which consisted only of studies containing
oth baseline and furosemide acquisitions. Because the base-

ine scan excludes obstruction in approximately one third of
ur patients, selecting only studies with both baseline and
urosemide acquisitions increased the likelihood of including
idneys considered to be obstructed or equivocal by experts
nd represented a more challenging population because a
arge population of clearly nonobstructed kidneys was ex-
luded from study. In this study, 3 experts blinded to clinical

nformation reviewed 95 studies and resolved differences by p
onsensus (Taylor A, Garcia EV, Binongo J, et al, unpub-
ished data, 2007). Their results were compared with
ENEX. These results have been submitted for publication
nd showed that RENEX agreed with the experts as well as
he experts agreed with each other.

oes RENEX Get the Right
nswers for the Right Reasons?

t is possible that RENEX could give the right answers for the
rong reasons or that RENEX could get the right answer by

ccident. Knowledge-based decision support systems with a
ustification engine like RENEX can be queried; the justifica-
ion engine will respond to the query by providing the rules
reasons) used to reach (justify) a diagnostic decision. To
etermine if RENEX was giving the right answers for the right
easons, we designed a laborious experiment to validate the
omplicated process by which an expert physician reaches
onclusions as compared with RENEX.62 The RENEX justifi-
ation engine was evaluated in a prospective group of 60
atients (117 kidneys). Validation consisted of a blinded ex-
ert reviewing the baseline and postfurosemide MAG3 renal

mages and quantitative data sets provided by QuantEM 2.0
nd then identifying and ranking the main variables used to
etermine if a kidney is obstructed, equivocal or not ob-
tructed. Two parameters were then tabulated: (1) the fre-
uency the main rules associated with the diagnosis of
onobstruction or obstruction by the expert were also
rovided by RENEX and (2) the frequency that additional

ustification rules provided by RENEX were deemed to be
orrect by the expert. Only kidneys where RENEX and the
xpert agreed on the diagnosis (n � 87) as to the presence
f absence of obstruction were used for this evaluation;
idneys indeterminate for obstruction were excluded from
nalysis. In the 87 kidneys where there was agreement on
he diagnosis, RENEX agreed with 91% (184/203) of the
ules supplied by the expert to justify the diagnosis.
ENEX provided 103 additional rules justifying the diag-
osis and the expert agreed that 102 (99%) were correct
lthough these rules were considered to be of secondary
mportance. These results show that the justification en-
ine is essentially using the same rules as the expert to
each its conclusions. Importantly, in the cases where
here was disagreement, the process of the patient-by-
atient comparison between the rules used by the expert
nd those used by RENEX provide a mechanism for
nowledge discovery as to how to modify existing rules or
dd new ones to improve the performance of RENEX. To
ur knowledge, this is the first attempt at validating any
ustification engine. In an invited perspective, Porenta
oints out that the clinical acceptability of an expert sys-
em strongly depends on user acceptance and user accep-
ance can only be achieved if the user has confidence in
nd accepts the reasoning process of the expert system.73

ur study documents that our rule based expert system
ives the right answer for the right reason and has the

otential to be used not only to assist physicians in the
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Figure 4 (A) The standard display shows demographic data, the dose injected, dose counted on the camera, percent
dose infiltrated, the MAG3 clearance and the expected MAG3 clearance followed by the percent uptake, Tmax, T1/2, and
20-minute/max ratios for the whole kidney ROI. The voided volume, postvoid residual and urine flow rate were not
measured. The upper central panel shows 2-second images at the beginning of the acquisition. The upper right panel
shows the injection site; just beneath is a frame for viewing a dynamic cine, and pre and postvoid bladder images. The
central panel shows twelve 2-minute images followed by a postvoid image of the kidneys with the patient lying on the
camera in the same position as the initial images. The lower left panel shows the whole kidney ROIs and the whole
kidney renogram curves; the lower right panel shows the cortical ROIs and the cortical renogram curves. The MAG3
clearance was reduced (94 mL/min/1.73 m2 compared with a normal range of 226-439 mL/min/1.73 m2). The relative
uptake of the left kidney was 26%. The T1/2 of the left kidney was greater than 50 minutes and the T1/2 of the right
kidney was 19 minutes. The 20-minute/max ratio was bilaterally abnormal; consequently, the patient received furo-
semide followed by a second acquisition (Fig. 1C). (B) An expanded review is available to the reviewers. This display
shows the patient values and normal ranges for the MAG3 clearance, residual urine volume, percent relative uptake and
the Tmax, 20-minute/max, T1/2, and postvoid/max ratio for whole kidney and cortical ROIs. The expanded review page
also shows an enlarged parenchymal image obtained at 2 to 3 minutes, an enlarged display of the 19- to 20-minute
image, and quality control images showing the before and after injection syringe counts and time of the bolus arrival in

the kidneys. (Color version of figure is available online.)
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Figure 4 (continued) (C) This panel shows displays the 2-minute sequential images after the administration of 43 mg of
furosemide. The curves were generated from whole kidney and renal pelvic regions of interest. The T1/2 of the left renal
pelvis was 19 minutes and 46 minutes for the right renal pelvis. (D) This panel displays the baseline and furosemide
acquisition on the same scale. The time activity curve generated by the pelvic region of interest is also displayed on an
expanded scale. Even though the right kidney is abnormal, tracer washed out of the renal pelvis and the ratio of kidney
counts in the prevoid furosemide acquisition to the maximum counts was only 0.23. On a 5-point scale, obstructed,
probably obstructed, equivocal, probably nonobstructed and nonobstructed, the experts interpreted the right kidney
as probably nonobstructed. Activity washed out of the pelvis and the ratio of prevoid furosemide counts to the maximal
counts on the baseline study was only 0.23. RENEX interpreted the right kidney as not obstructed (certainty factor of
�0.42). Relative and absolute function of the left kidney were reduced, there was prominent pelvic retention, washout
was prolonged with a pelvic T1/2 of 19 minutes and the ratio of prevoid furosemide counts to the maximal counts on the
baseline study was abnormal at 0.59. The consensus interpretation of the experts was probably obstructed; RENEX also

interpreted the left kidney as obstructed (certainty factor of 0.34). (Color version of figure is available online.)
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nterpretation of diuretic renal scans but also as an educa-
ional tool for students and trainees.

imitations and
uture Directions

his study addressed the diuresis renography protocol rec-
mmended by the international consensus report where
aseline data are obtained followed by the administration of
urosemide and an additional period of imaging.5 There are
ther protocols in which furosemide is given 15 minutes
efore the radiopharmaceutical, at the same time as the ra-
iopharmaceutical or 5 to 10 minutes later.5,43,74,75 Obvi-
usly, the systems we describe at present do not apply to
hese protocols QuantEM 2.0 cannot detect and correct for
atient motion and, at this time, the software cannot distin-
uish between diffuse retention with slow washout due to
mpaired function and focal pelvic retention with slow wash-
ut due to possible obstruction. Robust algorithms to assign
he kidney regions of interest, algorithms to detect and cor-
ect for motion and algorithms to distinguish between diffuse
etention in a kidney and retention in a dilated renal collect-
ng system need to be designed, implemented and tested.
ne of the most important limitations is the absence of clin-

cal information. In all our studies, both the experts and the
ecision support systems were blinded to clinical informa-
ion other than the fact that the reason for the scan was
uspected obstruction. Our preliminary data suggest that the
ddition of clinical data will reduce the number of equivocal
r intermediate interpretations by 60 to 70%. Our future
lans include incorporating clinical information, adapting
he decision support systems to other diuresis renography
rotocols and to apply this approach to patients with sus-
ected renovascular hypertension.
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