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ovel Quantitative Techniques for Assessing
egional and Global Function and Structure Based
n Modern Imaging Modalities: Implications for
ormal Variation, Aging and Diseased States

andip Basu, MD,* Habib Zaidi, PhD,† Mohamed Houseni, MD,* Gonca Bural, MD,*
ay Udupa, PhD,* Paul Acton, PhD,‡ Drew A. Torigian, MD, MA,* and Abass Alavi, MD*

In this review, we describe the current approaches used for quantitative assessment of regional
and global function with positron emission tomography (PET) imaging (combined with struc-
tural imaging modalities) with emphasis on both research and clinical applications of this
powerful approach. We particularly refer to the impact of such measurements in assessing
physiological processes such as aging and measuring response to treatment in serious
disorders such as cancer. Although a multitude of methods has been described in litera-
ture, the optimal approaches that are both accurate and practical in clinical settings need
to be defined and refined. Standardized uptake value (SUV) continues to be the most widely
used index in the current practice. Calculating SUV at a single time point and assigning
standard regions of interest are inadequate and suboptimal for the purposes adopted by the
medical community. The concepts of partial volume correction for measured values in small
lesions, dual-time point and delayed PET imaging, and global metabolic activity for assess-
ment of various stages of disease may overcome deficiencies that are associated with the
current quantitative (ie, SUV) techniques. Serious consideration of these concepts will
enhance the role and reliability of these quantitative techniques, and therefore compliment
the World Health Organization or the Response Evaluation Criteria in Solid Tumors
(RECIST) criteria for managing patients with cancer and other disorders, including physiolog-
ical states such as aging and serious diseases such as atherosclerosis and neurological
diseases. We also introduce the concepts that allow for segmentation of various structural
components of organs like the brain for accurate measurement of functional parameters. We
also describe complicated kinetic modeling and methodologies that have been used frequently
for assessing metabolic and pharmacological parameters in the brain and other organs.
Simplified quantitative techniques based on these concepts are described, but should be
validated against the kinetic models to test their role as practical tools.
Semin Nucl Med 37:223-239 © 2007 Elsevier Inc. All rights reserved.
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8F-fluorodeoxyglucose (FDG) positron emission tomog-
raphy (PET) was introduced as a quantitative tech-

ique for calculating absolute metabolic rate of glucose in
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erms of mg/100 g/min by using complicated mathematical
chemes.1,2 This technique requires the insertion of an arte-
ial line and procurement of multiple blood samples, several
reviously determined constants (rate and lumped con-
tants), and a complex operational equation for calculating
etabolic rates for glucose. Obviously, this approach can be
sed in a limited fashion, mostly for research purposes. In
ddition, the assumptions that are made for calculating the
forementioned parameters are applicable only to normal
hysiological states and may not be valid in disease condi-
ions. With the widespread utility of PET in both research
nd clinical domains, efforts have been made to simplify

uantitative techniques that are reasonably accurate but sim-
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224 S. Basu et al
le enough to be used in the day-to-day application of this
odality as a practical tool. In this article, we describe the

xisting and evolving new approaches that may allow accu-
ate assessment of global and regional function and structure
y using modern tomographic imaging modalities.
On the basis of the experience gained during the past 2

ecades, PET imaging is probably the most optimal noninva-
ive modality for assessing the regional and global “metabolic
icture” of an organ or diseased sites anywhere in the entire
ody. Visual assessment of the images provided by PET gives
relative and subjective impression regarding the overall

andscape of function at the sites examined. Therefore, quan-
itative analysis has the potential to complement visual image
ssessment and minimize interobserver variability that is
ommonly encountered with qualitative techniques.3 Among
arious functional imaging techniques, PET is considered the
ost powerful modality for providing an accurate, reliable,

nd reproducible estimate of various physiological and met-
bolic parameters. Obviously, such measurements are in-
aluable both in conducting research and in the day-to-day
ractice of medicine. For the purposes of this scientific com-
unication, we have intentionally selected issues that relate

o quantitative measurement of regional and global glucose
etabolism with FDG as a model that can be adopted for

ther PET procedures.
The various methods of data analysis schemes have been

roadly categorized into 3 groups: (1) qualitative analysis, ie,
isual assessment; (2) semiquantitative analysis, ie, standard-
zed uptake value (SUV) and lesion-to-background ratio (L:B
atio); and (3) absolute quantitative analysis using nonlinear
egression (NLR), Patlak graphical analysis and derived
ethods, and simplified quantitative methods. Among these

nalysis schemes, the visual assessment, SUV, L:B ratio, and
implified quantitative methods require minimal effort and
re relatively straightforward, whereas absolute quantitative
easurements that are based on kinetic modeling can only be

enerated by dynamic imaging and blood sampling and are
herefore not practical in most settings. Because L:B ratios
nfrequently are used for either research or clinical purposes,
e have decided not to discuss this type of measurement in

his review.

ualitative Visual
ssessment Versus
uantitation With FDG-PET

isual assessment continues to play a pivotal role in the in-
erpretation of PET studies. This type of interpretation is
ased on a contrast between the sites of uptake of radiotracer
ither as the result of a normal physiological process or as a
esult of a pathological state compared with the surrounding
ackground. This type of assessment is particularly applica-
le to FDG-PET imaging in identifying regional glycolysis.
ith this technique, “metabolic contrast” reflects the concen-

ration of glucose transporter expression in the cell surface,
exokinase activity, and the level of glucose-6-phosphatase
n the cell. Despite its simplicity, qualitative interpretation r
uffers from several shortcomings, which include defining
nd using a threshold for assessment of the presence and
egree of tracer concentration among other factors. In addi-
ion, both inter- and intraobserver reliability of qualitative
easurements is poor for both diagnostic and therapeutic

rials. Hence, visual assessment, despite its critical role in the
aily practice of medicine, is unsuitable for research applica-
ions in which objective quantitative measures are desirable
nd of utmost importance for optimal results.

uantitative Metabolic
ate Assessment
nd Kinetic Modeling
uantitative kinetic analysis yields absolute rates of FDG
etabolism and has the potential to measure individual rate

onstants, thereby providing insight into various compo-
ents of glucose metabolism such as transport and phosphor-
lation. Advantages of this approach include availability of
ynamic data and low dependency on imaging time. How-
ver, the major reason that precludes the use of full kinetic
odeling in the clinical scenario is the complex and time

onsuming study procedure that includes a dynamic scan-
ing protocol and requirement for arterial blood sampling or
ynamic imaging of a blood-pool structure to obtain a precise

nput function.4

Tracer kinetic, or compartmental, modeling provides the
ink between activity levels measured in the functional scan
nd physiological parameters associated with the metabolism
f glucose by tumors, organs, or tissues. This modeling de-
cribes the behavior of FDG in cells mathematically, with a
ertain assumed number of compartments, each of which
epresents a distinct physical and/or biochemical stage in the
ehavior of the tracer. Such models were developed to de-
cribe the kinetics of the glucose analogs [14C]-deoxyglucose
nd FDG in the pioneering work on tracer kinetic model-
ng.1,2,5-7 FDG is transported from the blood pool across the
ell membrane by glucose transporters, where it is phosphor-
lated by the enzyme hexokinase. FDG competes with glu-
ose in the reaction with hexokinase, in which glucose is
hosphorylated to form glucose-6-phosphate. Unlike glu-
ose-6-phosphate, phosphorylated FDG does not undergo
urther metabolism and is trapped in the cells. Therefore,
ellular FDG uptake reflects the overall rate of membrane
ransport and the availability of hexokinase. Dephosphoryla-
ion of FDG-6-phosphate is slow and generally is ignored,
lthough more accurate kinetic modeling, which includes
his reverse process, can lead to better results.

The extraction of quantitative values from dynamic PET
maging data requires the fitting of the data to a mathematical

odel that describes the uptake and retention of the tracer in
issue. The dynamic behavior of FDG in vivo is assumed to
ollow a standard 3-compartment kinetic model (Fig. 1),
ith w tissue compartments and a single arterial input func-

ion. Compartment 1 (C1) represents the arterial concentra-
ion of free FDG in plasma. The first tissue compartment (C2)

epresents an extravascular pool of tracer in the tissue that is
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Techniques for assessing regional and global function and structure 225
vailable for phosphorylation, and the final compartment
C3) is the concentration of FDG that has undergone phos-
horylation by hexokinase.
Dynamic imaging data are combined with rapid arterial

lood sampling to provide time–activity curves for the spe-
ific tumor, organ, or tissue under study. These curves can be
t, generally using nonlinear least squares approximations, to
btain the rate constants K1 – k3 (k4 is small and generally
gnored). The glucose metabolic rate (MRglu) is calculated by
he following equation:

MRglu �
Cp

LC
�

K1 · k3

k2 � k3
�

Cp

LC
� Ki (1)

here Cp � plasma glucose concentration, K1, k2 � rate
onstants for forward and reverse transport of FDG, respec-
ively, k3 � rate of phosphorylation of FDG, Ki � net rate of
nflux of FDG, and LC � lumped constant relating FDG
inetics to that of glucose. Errors on MRglu, or on the mac-
oparameter Ki, derive from the variance and covariance of
he rate constants extracted from the fitting procedure, which
epend strongly on the noise in the imaging data. Separate
rom these statistical errors are potential biases introduced
rom a number of sources, including partial volume effects,
naccurate assumptions underlying the model (such as a 0
alue for k4), and the contribution from blood pool activity in
he imaging data. Despite these systematic errors, full com-
artmental kinetic modeling remains the gold standard
gainst which all other techniques, particularly simplified
odels, are judged.
A number of methods have been proposed, and a signifi-

ant amount of research has gone into defining the specific
ate constants, lumped constant, and other parameters of
DG quantitation. Although originally described in brain im-
ging,8,9 these were extrapolated into tumor imaging as well.
he methods described are nonlinear regression (NLR), Pat-

ak graphical analysis, and Patlak derived methods.4 These
ethods (except for the simplified quantitative techniques)

ll involve dynamic quantitation requiring acquisition of im-
ging data over 1 h with blood samples drawn at concur-
ently timed intervals. The regions of interest generated on
he reconstructed images and the analysis of radioactivity in
he blood at specific time-points enable one to generate time–
ctivity curves for both blood and tissue. The resultant FDG
etabolic rate reflects the rate of uptake of FDG into the

issue. Each method has its own pros and cons. However, in
eneral, as stated earlier, they have been used infrequently in

igure 1 Three-compartment kinetic model of FDG behavior. C1 is
oncentration of unmetabolized activity in arterial plasma, C2 is
oncentration of free tracer in tissue, and C3 is concentration of
racer after phosphorylation.
linical practice because of the complexity of such ap- c
roaches. The other important factor in oncological imaging
s that the patient may have numerous lesions, including both
he primary tumor and metastatic lesions, throughout the
ody. However, the field of view of the study in dynamic

maging methods like NLR or Patlak-Gjedde analysis is lim-
ted to 1 bed position. Hence, lesions in the specific bed
osition can be assessed, but additional scans are required to
ssess the other lesions. We shall briefly discuss the princi-
les of 2 main quantitative approaches: NLR analysis with a
-tissue compartment model and simplified tracer kinetic
pproaches, such as Patlak–Gjedde analysis.

onlinear Regression Analysis
n this method, the net rate of FDG influx (Ki) can be calcu-
ated from a dynamic PET study and from a standard 2-tissue
ompartment model, arterial input function, and nonlinear
egression analysis.1,2,5-7 This method, in addition to being
uantitative, is independent of uptake time and provides in-
ight into other rate constants. The usual disadvantages of a
ynamic study make its implementation complex.

atlak–Gjedde
raphical Analysis

his method originally was described by Patlak9 for a tracer
hat is irreversibly trapped in the tissue. With this technique,
he regional concentration at time t after injection can be
btained by the following equation:

c�t� � � · cp�t� � Ki�
0

T

cp�t�dt (2)

here c(t) � activity in the tissue as measured by the PET
canner at time t; cp(t) � concentration of FDG in the plasma;
� partition coefficient of FDG; Ki � net rate of FDG influx

nto the tissue; and T � duration of the PET scan. This
ethod is more robust and offers a number of advantages

ver NLR analysis, including a simplified scanning protocol,
bsence of noise amplification, the possibility for generating
arametric images, and so on. However, the typical disadvan-
ages of dynamic scanning remain as an obstacle to its routine
se. Also, the method is based on the assumption that de-
hosphorylation (k4) is negligible and, compared with NLR
nalysis, individual rate constants like K1 and k3 cannot be
btained.

tandardized Uptake
alue (SUV): New Concepts

urrently, SUV is the most commonly used semiquantitative
arameter in clinical PET studies across the world. Several
liases such as the differential absorption ratio (DAR), differ-
ntial uptake ratio (DUR), or standardized uptake ratio (SUR)
ave appeared from time to time in the literature as well. SUV
rovides a semiquantitative value and is defined as the tissue

oncentration of tracer, as measured by PET, divided by the
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226 S. Basu et al
njected dose normalized to patient weight multiplied by a
ecay factor.10

In practice, the SUV is calculated by dividing the activity
oncentration in the region of interest (ROI) drawn around
he lesion (MBq/mL) by the injected dose (MBq) divided by
he body weight (g):

SUV �
Tissue activity concentration �MBq/mL�

Injected dose �MBq�/Body weight �g�

�
1

decay factor of 18F
(3)

dvantages and
hortcomings of
imple SUV Measurement
nd Variables Affecting SUV

UV quantitation is usually an automated procedure that is
vailable with current software supplied with commercial
ET scanners. The major advantages of SUV calculation are
hat it is computationally simple (with no requirement for
lood sampling) and requires considerably less scanner time
han the dynamic acquisition protocols. Also, the SUV of the
issue has a linear relationship with the rate of glucose me-
abolism as measured by kinetic modeling. Two studies11,12

ave investigated this and registered correlation coefficients

able 1 Factors Influencing SUV Determination for FDG a
ssociated Required Corrective Measures

Factor Effects

atient-related factors
Body size and

habitus
Overestimation of SUV in heavie

with higher fat content
Serum glucose

levels
Reduced FDG uptake in target ti

with increasing blood glucose

echnical factors
Duration of uptake

period
Increase in SUV with increasing

malignant lesions after injectio
Partial-volume

effects
Underestimation of SUV in lesio

diameters that are smaller than
times the spatial resolution of
scanner

Size of the ROI and
nonuniformity of
tracer distribution
in the lesion

Low SUVmean for large ROIs and
random errors in smaller ROIs

Attenuation
correction and
reconstruction
methods (spatial
filter kernel,
image resolution,
number of
iterations)

Underestimation of SUV with hig
smooth reconstruction
f 0.91 and 0.84, respectively. This correlation is improved b
urther when body surface area is used for normalization
ather than body weight. Hence, SUV can be diagnostically as
iscriminating as the measurement of the metabolic rate for
lucose. As a result, static imaging with the generation of
UVs for tumors and other diseases has replaced the more
umbersome dynamic procedure in the routine clinical
ractice.
Many factors (Table 1) can affect the reliability of SUV.13

hese include (1) time interval between injection and imag-
ng, (2) degree of infiltration of administered FDG dose at the
ite of injection, (3) residual activity in the syringe, (4) cor-
ection for the decay of the injected dose, and (5) partial
olume effects caused by limited spatial resolution of the PET
nstrument.

UV and Body Habitus
n most programs, the SUV is normalized to patient body weight
SUVBW). Adipose tissue usually has much less metabolic activ-
ty than other tissues. Although body weight was originally used
or normalization purposes (Eq. 3), later other parameters such
s lean body mass (SUVLBM) and body surface area (SUVBSA)
ere noted to be superior14-16 compared with using body weight

or accurate calculation of SUV. The latter approach reduces the
ariation of SUV related to the patient body composition and
abitus. Zasadny and coworkers17 studied the relationship be-
ween SUVs in normal tissues and body weight in 28 nondia-

nded Regions of Interest, Their Undesirable Effects, and

Corrective Measures

ects Use of lean body mass (SUVLBM) or body surface
area (SUVBSA) as normalization factor

Control of blood glucose before administering
FDG and applying correction factor for glucose
level

n Standardize initiation of image acquisition
following administration of FDG

h Adopt an optimal partial volume correction factor

Standard size ROIs placed reproducibly in the
same location, SUVmax preferable to SUVmean

Standardize acquisition and reconstruction
algorithms for optimal comparison among
serial imaging sessions
t Inte

r subj

ssues
levels

time i
n
ns wit

2-3
the

high

hly
etic women with newly diagnosed untreated primary breast
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Techniques for assessing regional and global function and structure 227
ancer with body weights ranging from 45 to 107 kg, and ob-
erved a positive correlation between SUV and body weight for
iver and spleen metabolic activity. In heavy patients, SUVs for
hese tissues were up to two times higher than those of the
ighter patients. They proposed correction of SUV for lean body

ass (SUVLBM), which, according to these investigators, elimi-
ated the weight dependence of the SUV for blood FDG activity
nd weight dependence in other tissues. The reason for this
bservation lies in the fact that FDG uptake is relatively lower in
at compared with other tissues. Hence, in heavier patients with
high fraction of total body fat, which has very low amount of
DG uptake, SUV is overestimated in other tissues.
Kim and coworkers14 studied the potential for normaliza-

ion of FDG uptake with body surface area (SUVBSA) in 44
atients with cancer with body weights ranging from of 45 to
15 kg. They observed a strong positive correlation between
UVBW and body weight but only a weak correlation between
UVBSA and body weight with a near flat regression line. They
oncluded that SUVBW overestimates FDG uptake in large
atients and that SUVBSA was preferable over SUVBW. Subse-
uently two studies have confirmed this observation, and
ave concluded that SUVBSA was superior to both SUVBW and
UVLBM. However, the differences between the normalization
ethods, according to some authors, appear to be small ex-

ept in very obese patients.18

UV and Blood Glucose Level
erum glucose levels affect SUV measurement significantly,
nd many reports have demonstrated that SUVs of malignant
esions are substantially lower when FDG-PET is acquired in
yperglycemic states. In addition, hyperinsulinemia results

n increased glycolysis in adipose tissue and in muscles, and
herefore in low SUV measurements in other tissues. Most
ET centers apply a threshold maximum plasma glucose

evel ranging from 150 to 200 mg/dL for examining patients
efore proceeding with FDG-PET. Of interest, it has been
bserved by some authors19 that the effects of glucose
oncentration differ between malignant disorders and in-
ammatory processes. High concentration levels of blood
lucose up to 250 mg/dL do not appear to affect the SUV in
nflammatory or other benign lesions.

We must point out that SUV measurement at a single time
oint by assigning a standard ROI is inadequate for most

ndications used at this time. Therefore, further refinements
f this very useful quantitative measurement are essential for
ptimal utilization in the day to day practice of medicine.

hanges of
UV Over Time
nd Implications for
ifferentiating Benign

rom Malignant Lesions
y Dual-Time Point Imaging

mong the various factors described previously, variations in

he time interval between tracer injection and image acquisi- S
ion (uptake period) substantially influence SUV. In a study
y Hamberg and coworkers,20 the equilibrium time in bron-
hial carcinoma varied from 256 to 340 minutes after injec-
ion and decreased after therapy to 123 to 185 minutes after
njection. They concluded that the time interval of 45 to 60

inutes lead to a significant underestimation of true SUV
ecause, in most tumors, FDG uptake continues to increase
eyond this period and typically does not reach a plateau for
everal hours. Lodge and coworkers14 observed in their study
f high-grade sarcomas that tumors reached maximal FDG
ptake at 4 hours whereas such equilibrium was achieved
ithin 30 min in benign lesions. Hence, SUV measurements

mong study populations should be compared at the same
ime point after tracer administration. FDG uptake over ex-
ended time periods (over the course of 7-8 hours) also were
tudied by investigators at the University of Pennsylvania in
atients with nonsmall cell lung cancer.21 They were able to
emonstrate that although tumor sites revealed increased up-
ake of FDG during the course of 3 to 4 hours, surrounding
ormal tissues showed declining values with time.
There is an increasing body of literature describing non-

pecific were accumulation in a wide spectrum of physiolog-
cal states as well as in several benign pathologies. Although
his has led to active research concerning the role of this
odality in assessing disorders such as infection and inflam-
ation, there is a growing concern about the specificity of

his technique in effective management of patients with can-
er where detecting and measuring disease activity is the
ain focus for FDG-PET imaging. It is now abundantly clear

hat considerable overlap of SUV exists between active in-
ammatory processes and malignant lesions and that a
hreshold value for SUV alone cannot be generally applied to
ifferentiate between the 2. Several approaches have been
xplored to enhance the specificity of FDG-PET for examin-
ng several malignancies of which dual-time point FDG-PET
maging appears to be the most promising.

The recent literature describes the usefulness of dual-time
oint FDG-PET in this regard, and the technique has been
pplied to a wide variety of malignancies, including those of
he head and neck,22 lung,23 breast,24-26 gallbladder,27 cer-
ix,28 and central nervous system.29 The theoretical basis of
his approach stems from the fact that dephosphorylation in
umor cells is either absent or very slow compared with that
n normal cells because of their low glucose-6-phosphatase
ontent. This results in a build up of contrast between malig-
ant lesions and the normal tissues with time, which further
nhances lesion detectability. Furthermore, this has been
uccessfully exploited in distinguishing malignant from be-
ign lesions, where changes in SUV over time are signifi-
antly different between these two distinct pathologic
ntities.

Hustinx and coworkers22 studied the utility of dual-time
oint scanning in 21 patients with head and neck cancer who
ere scanned serially at 2 time points, the first at 70 minutes

range, 47-112) and the second at 98 minutes (range, 77-
42) after the intravenous injection of FDG. The mean inter-
al between emission scans was 28 minutes (range, 13-49).

UVs were generated for the cerebellum, tongue, larynx, ma-



l
w
f
e
r
p
(
2
(
0
a
c
c
i
T
t
u

a
3
d
w
m
t
w
8
o
(
p
t
p
p
w
1
p
o

c
r
K
5
s
p
w
t
w
m
e
c
p
t
1
T
p
t
c
i
t

n
s
b
b
c
h
m
4
(
2
l
�
i
i
t
S
w
s
i
p
p

a
c
t
t
v
h
P
m
l
u
t
m
n
e
b
d
o
t
a
s
t
H
i
F
p
o
i
d

t
fi
c
i
n

228 S. Basu et al
ignant lesion, and a matched contralateral site. Tumor SUVs
ere 4.0 � 1.6 (mean � SD) for the first scan and 4.5 � 2.2

or the second scan. Corresponding SUVs for the contralat-
ral sites were 1.2 � 0.5 and 1.1 � 0.5 for the 2 scans,
espectively. Tumor SUVs increased by 12% � 12% as com-
ared with a 5% � 17% decrease for contralateral sites
P � 0.05). SUVs for inflammatory lesions (2.0 � 0.7 and
.0 � 0.9), cerebellum (4.2 � 1.3 and 4.3 � 1.4), tongue
1.8 � 0.4 and 1.9 � 0.5) and larynx (1.5 � 0.6 and 1.5 �
.6) remained constant over time (�0.6%, �2.8%, �1.4%,
nd �2.4%; P � 0.05 when compared with tumor SUV
hanges). The ratio of tumor SUV to contralateral SUV in-
reased by 23% � 29% over time whereas this ratio for
nflammatory sites increased by only 5% � 15% (P � 0.07).
hey proposed this approach as a useful means for differen-

iating malignant lesions from inflammation and nonspecific
ptake in normal tissues.
Matthies and coworkers23 adopted this method for the

ssessment of pulmonary nodules. Thirty-six patients with
8 known or suspected malignant pulmonary nodules un-
erwent PET scanning of the thorax at 2 time points: the first
as at 70 minutes (range, 56-110) and the second was at 123
inutes (range, 100-163) after the intravenous administra-

ion of FDG. Tumor SUVs at the first and second time points
ere 3.66 � 1.95 and 4.43 � 2.43, respectively (ie, 20.5% �
.1% increase between the 2 measurements; P � 0.01). Four
f 20 malignant tumors had SUVs of �2.5 on the first scan
range, 1.12-1.69). Benign lesions at the first and second time
oints had SUVs of 1.14 � 0.64 and 1.11 � 0.70, respec-
ively (P value not significant). In this study, single-time
oint PET scanning with a threshold SUV of 2.5 (at time
oint 1) had a sensitivity of 80% and a specificity of 94%,
hile dual-time point scanning with a threshold value of a
0% increase in SUV between the first and second time
oints provided a sensitivity of 100% and a specificity
f 89%.
Recent studies by Kumar and coworkers25 and Mavi and

oworkers26 reported high sensitivity, specificity, and accu-
acy in breast carcinoma with a dual-time point approach.
umar and coworkers studied 54 breast cancer patients with
7 breast lesions who underwent 2 sequential FDG-PET
cans. The average percent change in the SUVs between time
oint 1 and time point 2 was calculated. All PET study results
ere correlated with follow-up surgical pathology results. Of

he 57 breast lesions, 39 were invasive carcinoma and 18
ere postbiopsy inflammation. Among the invasive carcino-
as, 33 (85%) showed an increase and 6 (15%) showed

ither no change or a decrease in SUV over time. The percent
hange in SUVs in these tumors from time point 1 to time
oint 2 (mean � SD) was � 12.6% � 11.4% (P � 0.003). Of
he 18 inflammatory lesions, 3 (17%) showed an increase and
5 (83%) showed either no change or a decrease in SUVs.
he percent change in SUVs from the time point 1 to the time
oint 2 (mean � SD) was �10.2% � 16.5% (P � 0.03). Of
he 57 normal contralateral breasts, 2 (3.5%) showed an in-
rease and 55 (96.5%) showed either no change or a decrease
n SUVs. The percent change in SUVs from time point 1 to

ime point 2 (mean � SD) was �15.8% � 17% (P � 0.005). i
In the study by Mavi and coworkers,26 152 patients with
ewly diagnosed breast cancer underwent 2 sequential PET
cans for preoperative staging, and SUVmax was measured at
oth time points. The percent change in SUVmax (�SUVmax%)
etween time points 1 (SUVmax1) and 2 (SUVmax2) was cal-
ulated. Patients were divided into 2 groups according to
istopathology as invasive and noninvasive. Invasive tu-
ors also were divided into 2 groups (�10 mm and

-10 mm). The tumor-to-contralateral normal breast
background) ratios of SUVmax at both time points for these
groups were measured, and �%SUVmax values were calcu-

ated. The mean � SD of the SUVmax1, the SUVmax2, and the
%SUVmax were 3.9 � 3.7, 4.3 � 4.0, and 8.3% � 11.5% for

nvasive; 2.0 � 0.6, 2.1 � 0.6, and 3.4% � 13.0% for non-
nvasive; and 1.2 � 0.3, 1.1 � 0.2, and �10.0% � 10.8% for
he contralateral normal breast groups, respectively. When
UVmax1, �%SUVmax, and the tumor-to-background ratios
ere compared among groups, all results were found to be

ignificant (P � 0.001). They concluded that dual-time point
maging is a simple and noninvasive method that may im-
rove the sensitivity and accuracy of FDG-PET in assessing
atients with primary breast cancer.
Lesion detectability increased from 83% at 1.5-hour im-

ges to 93% at 3-hour images in a study by Boerner and
oworkers24 in breast carcinoma. Ma and coworkers28 inves-
igated the usefulness of dual-phase FDG-PET scans in de-
ecting para-aortic lymph node (PALN) metastases from cer-
ical cancer. These data revealed that an additional scan at 3
ours is helpful for detecting PALN, especially for lower
ALN metastases. Nishiyama and coworkers27 adopted this
ethod in gallbladder carcinoma and concluded that de-

ayed FDG-PET is more helpful than early FDG-PET for eval-
ating malignant lesions. Spence and coworkers29 applied
his method in supratentorial gliomas coupled with kinetic
odeling. The estimated k4 values for tumors were not sig-
ificantly different from those of cerebral gray matter (GM) in
arly imaging but were lower at the delayed times. A report
y Zhuang and coworkers30 revealed an increase in SUV on
elayed scans in known malignant lesions, whereas the SUVs
f benign lung nodules decreased slightly over time, and
hose of the inflammatory lesions caused by radiation therapy
nd of lesions of painful lower limb prostheses remained
table over time. The application of this approach to predict
he nature of the bone marrow FDG uptake was studied by
ouseni and coworkers31 They noted that malignant lesions

n the bone marrow result in significantly higher levels of
DG uptake over time than those affected by chemothera-
eutic agents, whereas there is a substantial decrease in SUV
n repeat scans. Hence, they concluded that there is a signif-
cant difference in the dynamics of FDG uptake over time in
ifferent histopathological states of the bone marrow.
It is important to note that in many of these studies, dual-

ime point PET improved both the sensitivity and the speci-
city of PET for various malignancies, including breast can-
er, lung cancer, and head and neck cancer. Theoretically this
s due to two factors: continued increased uptake in malig-
ant lesions helps to differentiate them with higher specific-
ty, and increased lesion-to-background contrast (resulting
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Techniques for assessing regional and global function and structure 229
rom a combination of FDG washout from surrounding nor-
al tissues and enhanced FDG uptake in malignancy) leads

o higher sensitivity of lesion detection. This is notable since
n general, there is a trade-off between sensitivity and speci-
city for most other diagnostic imaging tests, usually indicat-

ng that improvement in performance of one of these param-
ters results in worsened performance in the other.

These data clearly demonstrate that relying solely on abso-
ute measurements with SUV or other parameters may not
llow optimal separation of malignant lesions from benign
bnormalities. Therefore, change in SUV may prove to be
uperior for improving both the specificity and the sensitivity
f this quantitative technique.

artial Volume
orrection of SUV

he partial volume effect (PVE) is one of the important lim-
ting technical factors for accurate quantitation with PET,

ostly related to the scanner resolution. However, physio-
ogical and patient motion during data acquisition are also

ajor factors in degrading spatial resolution, thereby also
ontributing to the PVE. The phenomenon is also applicable
o other imaging techniques including SPECT and structural
maging, when objects with less than 2 to 3 times the spatial
esolution of the scanner are examined. This effect has been
xtensively addressed in brain PET studies,32-39 when at-
empts were made to measure the exact concentration of the
racers such as FDG in the brain. The spatial resolution of
ET systems varies among the current models. Typically, the
est resolution (as measured by phantoms) achieved by the
odern generation of clinical whole-body PET scanners is at

est 4 mm. However, in practice the actual spatial resolution
f the images reconstructed is substantially less than that
pecified by laboratory experiments. This limited spatial res-
lution does not allow for an accurate measurement of the
rue concentration of the radiotracer in structures and lesions
ess than 2 to 3 times the spatial resolution of the PET scanner
s defined by the full-width at half-maximum of a point
pread function.

The contrast between the lesion and the surrounding
ackground decreases as the size of the lesion becomes
maller, and may disappear completely beyond a certain
oint.40 One method to correct for the PVE is to use the lesion
ize as determined by CT as the basis for the calculation of the
orrect SUV. Hickeson and coworkers41 investigated the im-
lications of this effect in the assessment of pulmonary le-
ions, and noted that there is a significant underestimation of
UV in lesions smaller than 2 cm in size. By correcting the
easured value by using lesion size measured from the CT

can (which was assumed to represent the true size of the
esion), improved differentiation between malignant and be-
ign lesions was noted. Avril and coworkers18 examined the
ole of a similar approach in breast cancer, and noted that
orrection of SUV for the PVE and normalization for blood
lucose level yielded the highest diagnostic accuracy among

everal PET quantitative procedures. Lubberink and cowork- t
rs42 compared the results of 110mIn-DTPA-D-Phe1-octreotide
ET images with those of the 111In-DTPA-D-Phe1-octreotide
PECT scans, and observed that partial volume correction
reatly improved detection of small tumors and allowed ac-
urate quantitation of tracer concentration in lesions of var-
ous sizes (Fig. 2). The PVE correction is of great importance
n the setting of monitoring response to therapeutic interven-
ion, where the reduction in the size of a tumor could result in
nderestimation of the true concentration of compounds
uch as FDG in the intended sites.

pplications of Partial Volume
orrection in Clinical Scenarios

pplications in Oncology
ne method to correct for the resolution effect is to use the

esion size determined on CT or MR imaging as the basis for
alculating the SUV. Hickeson and coworkers41 reported an
ncrease in accuracy from 58% to 89% by using this tech-
ique for assessing metabolic activity of lung nodules mea-
uring less than 2 cm when a SUV threshold of 2.5 was
dopted to distinguish between benign and malignant lesions
Figs. 3-6). In this study, each lesion’s SUV was determined
y using 2 different methods. The maximum voxel SUV was
etermined in a circular ROI with a diameter of 0.8 cm (2
oxels) at the plane with maximal FDG uptake in the lesion.
n the second method, the SUV was corrected for underesti-
ation of the true metabolic activity of the entire lesion be-

ause of the suboptimal spatial resolution and the PVE. Two
OIs were drawn around the lesion. The smaller of the 2

ncluded all voxels associated with the lesion. In practice, this
as drawn at least 0.8 cm outside the 50% uptake level of the
aximum activity to include all of the counts resulting from

he solitary pulmonary nodule. The second larger ROI sur-
ounded the smaller ROI as well as its surrounding back-
round. Thus, lesion background could be determined from

igure 2 Sphere recovery functions for partial volume correction for
10mIn-PET, 111In-SPECT, and FDG-PET. (Reprinted with permis-
ion of the Society of Nuclear Medicine from Lubberink et al.42)
he average uptake outside the smaller ROI and inside the
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230 S. Basu et al
arger ROI. Note that the halfway point between the maxi-
um lesion activity and the surrounding background activ-

ty is frequently used as the true size of the lesion. The back-
round uptake was then subtracted from the average uptake
n the small ROI. Therefore, the corrected SUV was calcu-
ated by including the injected dose, the patient’s weight, and
ime after injection by using the following formula:

orSUV

�Region’s activity �MBq� � Background activity �MBq�
Lesion’s size on CT scan �cm3� �

� Injected dose �MBq�
Body weight �g� �

(4)

pplications in Neurology
orrection for partial volume correction was used by inves-

igators at the University of Pennsylvania in the 1980s when
T and low-resolution PET instruments were used to exam-

ne patients with Alzheimer’s disease (AD) and other central
ervous system disorders that usually result in cerebral atro-
hy.32 This technique was later investigated by using modern
egmentation methodologies and high-resolution MR imag-
ng.43,44 The latter has allowed for accurate measurement of
M and white matter (WM) as well as cerebral spinal fluid

CSF) volumes in the brain.45,46

Kohn and coworkers45 described a new computerized sys-

Figure 3 (A) Profile of small lung nodule with uniform
resolution; lung itself shows uniformly low FDG activity.
through same nodule in same lung is indicated by th
indicated by broken line. Thin line indicates profile o
indicates that from uninvolved adjacent lung parenchym
scanner indicated in A is equal to that using current P
Springer Science and Business Media from Hickeson et
em developed to process standard spin-echo magnetic reso- t
ance imaging data for estimation of brain parenchyma and
erebrospinal fluid volumes. In phantom experiments, these
stimated volumes corresponded closely to the true volumes
r � 0.998), with a mean error less than 1.0 cm3 (for phan-
om volumes ranging from 5 to 35 cm3), with excellent intra-
nd interobserver reliability. In a clinical validation study
ith actual brain images of 10 human subjects, the average

oefficient of variation among observers for the measurement
f absolute brain and CSF volumes was 1.2% and 6.4%,
espectively. The intraclass correlation for 3 expert operators
as found to be greater than 0.99 in the measurement of
rain and ventricular volumes and greater than 0.94 for total
SF volume. The authors concluded that their technique to
nalyze MR images of the brain performed with acceptable
evels of accuracy, and concluded that it can be used to mea-
ure brain and CSF volumes for clinical research. This tech-
ique, they believed, could be helpful in the correlation of
euroanatomic measurements to behavioral and physiologi-
al parameters in neuropsychiatric disorders.

Tanna and coworkers33 adopted this computerized seg-
entation technique in a retrospective analysis of digitized T2-
eighted MR images of 16 healthy elderly control subjects and
6 patients with AD. They quantified ventricular and extraven-
ricular CSF and studied the effects of aging and AD on brain
unction as determined by FDG-PET. In both groups, the degree
f atrophy as measured by these techniques was used to correct
or metabolic rates obtained by PET. Patients with AD had
igher total; extraventricular, total ventricular, and third ven-

uptake using “ideal” PET scanner with perfect spatial
file of perceived FDG activity with current PET scanner
ed curve. True distribution of FDG (ideal profile) is
ived FDG activity from lung nodule and thinner line
ground). Note that area under profile using “ideal” PET

anner indicated in (B). (Reprinted with permission of
FDG
(B) Pro
ick-lin
f perce
a (back
ET sc
ricular CSF volumes (49%, 37%, 99%, and 74%, respectively),
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Techniques for assessing regional and global function and structure 231
nd 7% lower brain volumes than the control group. Patients
ith AD also showed a more marked decline in brain volumes

nd a greater increase in CSF volumes with advancing age than
he control group. The patient group had a 25.0% increase in
orrected whole-brain metabolic rates compared with the con-

Figure 4 A 72-year-old woman with small cell lung carc
FDG-PET scan demonstrate focus of mildly increased up
threshold for malignancy. (C) Axial chest CT image dem

D, corSUV was obtained by drawing ellipsoid or circul
that of area of perceived increase in activity at plane of m
diameter of 0.8 cm larger than first ROI to determine bac
inside larger ROI). corSUV was then obtained by deter
activity, dividing by lesion’s size on CT and ratio of injec
of this lesion was 3.54, which exceeds threshold for mal
in Figure 4B. (Reprinted with permission of Springer Sc

igure 5 SUVs of benign and malignant lung lesions measuring equal
o or less than 2 cm using both methods. (Reprinted with permis-

ion of Springer Science and Business Media from Hickeson et al.41) S
rol group who had only a 15.8% increase by applying the par-
ial volume correction factors. The use of this technique, they
oncluded, could provide a basis for further studies of aging and
ementia, by calculating the accurate rates of regional metabo-

ism in these settings.

is shown. In (A) and (B), axial and coronal images of
right middle lobe. SUVmax was 1.39, which is less than
tes that nodule measures 1.0 � 0.8 cm.
(in black) with diameter of 0.8 cm (2 voxels) larger than
l FDG uptake, and drawing another ROI (in gray) with
d activity (activity per volume outside smaller ROI and
activity in first smaller ROI corrected for background
e to body mass, and correcting for decay of 18F. corSUV
y. Horizontal line through nodule approximates profile
nd Business Media from Hickeson et al.41)

igure 6 SUVs of benign and malignant lung lesions measuring more
han 2 cm using both methods. (Reprinted with permission of
inoma
take in
onstra

ar ROI
axima

kgroun
mining
ted dos
ignanc
pringer Science and Business Media from Hickeson et al.41)
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Bural and coworkers47 studied the effects of a novel quan-
itative MR imaging segmentation scheme that allows for ac-
ual SUV (instead of metabolic rates as reported by Tanna and
oworkers as referenced previously) calculation of the re-
ional GM, WM, and CSF volumes. This approach resulted
n overcoming the difficulties associated with conventional
ow resolution imaging techniques for measuring actual met-
bolic activity of the GM. These investigators calculated the
olumes of GM, WM, and CSF by using a special segmenta-
ion technique on the MR images. This was followed by com-
utation of the mean SUV representing the whole metabolic
ctivity of the brain from the FDG-PET images. They also
easured the WM SUV from the upper transaxial slices (cen-

rum semiovale) of the FDG-PET images. The volumes of the
M, WM, and CSF were summed to calculate whole brain
olume to enable calculation of global cerebral metabolic
ctivity by multiplying the mean SUV by the total brain vol-
me. Similarly, the whole-brain WM metabolic activity was
easured by multiplying the mean SUV for the WM by the
M volume. CSF metabolic activity was considered to be 0.

hus, by subtracting the global WM metabolic activity from
hat of the whole brain, they were able to measure the global
M metabolic activity alone. Finally, by dividing GM global
etabolic activity by GM volume, an accurate SUV for GM

lone was determined. The brain volumes ranged between
100 to 1546 cm3. The mean SUV for total brain was 4.8 to 7.
lobal cerebral metabolic activity of the brain ranged from
565 to 9566 SUV-cm3. The mean SUV for WM was 2.8 to
.1. On the basis of these measurements, they reported
hat the GM SUV in the sample examined ranged from 8.7
o 11.3.

dvances in Medical
mage Segmentation
mage segmentation, the process of identifying objects of in-
erest in the given multidimensional image and delineating
heir spatial occupation in the image, has been identified as
he key problem of medical image analysis, and remains a
opular and challenging area of research.48 Image segmenta-
ion is increasingly used in many clinical and research appli-
ations to analyze medical imaging data sets and consists of 2
elated tasks: recognition and delineation. Recognition is the
rocess of roughly determining the object’s whereabouts in
n image and does not involve the precise specification of the
egion occupied by the object. It is a high-level act of indi-
ating, for example, on an MR image of the human brain, that
this is the white matter object, this is the gray matter object,
his is the cerebrospinal fluid object,” etc. Human-assisted
ecognition can be accomplished, for example, by using the
ouse cursor to point at object regions or to specify seed
oints. Delineation is the process of determining the object’s
recise spatial extent and composition including gradation. If
one is the object system of interest in an image of the knee,
or example, then delineation consists of defining the spatial
xtent of the femur, tibia, fibula, and patella separately and

or each voxel in each object, specifying an objectness value. c
nce the objects are defined separately, the bones can be
ndividually visualized, manipulated and analyzed.

Knowledgeable humans usually outperform computer al-
orithms in the high-level task of recognition. However, care-
ully designed computer algorithms outperform humans in
he precise, accurate, and efficient delineation. Clearly, hu-
an delineation that can account for graded object compo-

ition (which comes from natural object material heteroge-
eity, noise, and various artifacts such as partial volume
ffects) is impossible. Most of the challenges in completely
utomated segmentation may be attributed to the shortcom-
ngs in computerized recognition techniques, and to the lack
f delineation techniques that can handle graded composi-
ion and the tendency of voxels to hang together in space (as
fuzzy cloud) in the presence of this gradation. In the rest of

his section, we will present a brief overview of image seg-
entation with examples illustrated in the clinical applica-

ions considered in this paper.
Emphasis on object recognition is far less in the literature

han on delineation. Hence, we shall focus mainly on delin-
ation methods in this review. A large variety of methods are
vailable for delineation. Often, delineation is itself consid-
red to be the total segmentation problem, as such its solu-
ions are considered to be equivalent to solutions to the entire
egmentation problem. It is, however, helpful to distinguish
etween recognition and delineation for understanding, and
opefully solving, the difficulties encountered in segmenta-
ion. Approaches to delineation can be broadly classified as
oundary-based, region-based, and hybrid. Boundary-based
ethods output an object description in the form of a bound-

ry surface that separates the object from the background.
he boundary description may be as a hard set of primitives,

e, points, polygons, surface patches, voxels, etc., or as a
uzzy set of primitives such that each primitive has a grade of
boundariness” associated with it. Region-based methods pro-
uce an object description in the form of the region occupied
y the object. The description may be simple as a (hard) set of
oxels, in which case each voxel in the set is considered to
ontain 100% object material, or as a fuzzy set, in which case
embership in each voxel may be any number between 0

nd 100%. Previous information about object shape is more
asily captured via boundaries than in region description.
ybrid methods attempt to combine information about
oundaries and regions in seeking a solution to the delinea-
ion problem. If we combine the approaches for recognition
nd delineation, there are 12 possible classes of approaches
o segmentation. Much has been written elsewhere about
edical image segmentation algorithms, and as such, inter-

sted readers are encouraged to consult the detailed and
omprehensive reviews and book chapters published on the
ubject.3,49-51

Within the context of quantitative PET imaging, image
egmentation has found numerous clinical and research ap-
lications.3 This includes estimation of organ volumes or
umor volumes as well as definition of target treatment vol-
mes in radiation therapy,52 extraction of parameters of clin-

cal relevance such as the left ventricular region in nuclear

ardiology,53 automated ROI delineation of structures of in-
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Techniques for assessing regional and global function and structure 233
erest in dynamic functional imaging,54 generation of func-
ional images to highlight regions of similar temporal behav-
or (components),55 determination of the attenuation map in
mission tomography,56 anatomically-guided image recon-
truction and partial-volume segmentation,37 and construc-
ion of voxel-based anthropomorphic phantoms based on
igh-resolution anatomical images. For the latter, the inter-
sted reader is refereed to a recent review describing the
evelopment of such computational models in connection
ith Monte Carlo modeling tools in radiological sciences.57

One example (Fig. 7) of the application of image segmen-
ation shows a representative slice of a clinical T2-weighted

R image through the brain and the corresponding segmen-
ation results separately showing each tissue class (GM, WM,
SF). MR images were first corrected for inhomogeneity and
ere subsequently intensity standardized before applying a

egmentation method on them. The mean intensity and stan-
ard deviation for each of GM, WM, and CSF regions are
hen estimated from the training data set and are fixed once
or all. A fuzzy connectedness framework was utilized for
reating a brain intracranial mask, and the fuzzy membership
alue of each voxel in each brain tissue was estimated, and
nal segmentation of the brain tissues was simply performed
ia a maximum likelihood criterion as described by Zhuge
nd coworkers.46

Another example involves segmentation of the lung paren-
hyma. Historically, segmentation of the lungs on CT scans
as a popular research subject given its usefulness in com-
uter-based analysis of thoracic CT images and computer-
ided diagnosis. As a consequence, plenty of image segmen-
ation approaches were proposed and many of them found
pplications in clinical settings. For example, the software
ystem 3DVIEWNIX58 was used to segment the CT image of
he lungs to obtain the left and the right lung. The steps were
s follows: (1) The Threshold operation was used to segment
he lung tissue from the rest of the CT image. (2) Subse-
uently, Interactive2D was used to manually remove the areas
hat were not a part of the lungs or were a part of the airway
ree. (3) The mask that was produced covered the lung area
nly. Using Interactive2D once again, the left lung was re-
oved and hence the mask for the right lung was obtained.

4) Algebra was used to obtain the left lung by subtracting the
ight lung mask from the entire lung mask. Figure 8 displays
he segmentation results on a chest CT in one subject.

Figure 7 Segmentation technique used to calculate SUV in
corrected and intensity standardized T2-weighted ima
corresponding to segmented WM, GM, and CSF, respec
Within the realm of oncological PET imaging, image seg- s
entation is vital for a variety of specific applications for
umor quantitation in staging, assessment of tumor response
o therapy, and definition of target volumes in radiation ther-
py treatment planning.59 One such novel automated system
or the segmentation of oncological PET data aiming at pro-
iding an accurate quantitative analysis tool was recently pro-
osed.52 The initial step involves expectation maximization
EM)-based mixture modeling using a k-means clustering
rocedure, which varies voxel order for initialization. A mul-
iscale Markov model is then used to refine this segmentation
y modeling spatial correlations between neighboring image
oxels. Anthropomorphic phantom experiments were con-
ucted for quantitative evaluation of the performance of the
roposed segmentation algorithm. The comparison of actual
umor volumes to the volumes calculated using different seg-
entation methodologies including standard k-means, spa-

ial domain Markov Random Field Model (MRFM), and the
ew multiscale MRFM showed that the latter dramatically
educes the relative error to less than 8% for small lesions
7-mm radii) and less than 3.5% for larger lesions (9-mm
adii). The analysis of the resulting segmentations of clinical
ncologic PET data seems to confirm that this methodology
hows promise and can successfully segment patient lesions.
or problematic images (Fig. 9), this technique enables the

dentification of tumors situated very close to nearby high
ormal physiological uptake.
To enhance lesion detectability, the use of similarity mea-

ures for analysis of dynamic oncological imaging to enhance
he contrast between normal tissues and lesions is an appeal-
ng approach that needs to be investigated further.60 One
uch technique, proposed originally for cardiac imaging and
ow being investigated for oncology PET studies, uses the
ross-�B-energy operator, a nonlinear similarity measure

M, and CSF. (A) Axial slice of intensity inhomogeneity
-D) Color overlays on same axial T2-weighted image
(Images courtesy of Jay Udupa, PhD).

igure 8 Illustration of lung CT segmentation results. From left to
ight: original axial CT image, right lung segmentation, and left lung
GM, W
ge. (B
egmentation. (Images courtesy of Jay Udupa, PhD.)
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hich quantifies the interaction between 2 time-signals in-
luding their first and second derivatives.55 Similarity mea-
ure between the time activity curve (TAC) of each pixel and
he mean value of the TACs of a reference region of the
ynamic image series is calculated, thereby generating im-
ges demonstrating temporal changes in radioactive tracer
istribution.
As far as partial volume correction is concerned, the accu-

acy of algorithms depends in part on the degree of accuracy
n the segmentation of the anatomical images and the coreg-
stration of anatomical images with the PET data. These ef-
ects have been investigated extensively in the literature for
oth the voxel-based and region-based partial volume cor-
ection strategies.36,39,61 It was demonstrated that errors in
he segmentation procedure have greater impact but are rel-
tively limited to the mis-segmented region.61 Overall, it ap-
ears that the success of the segmentation of the structural

nformation provided by MR images, for instance, has a
igher impact on the accuracy of the corrected estimates,39

ompared with the influence of image coregistration, al-
hough some authors recently suggested that mis-registration
rrors have the strongest impact on data accuracy and preci-
ion.36 Notwithstanding, it was suggested that in the absence
f major sources of registration or segmentation errors, re-
overed activity concentration estimates have been found to
e typically within 5% to 10% of true tracer concentration
ith a standard deviation of a few percent in both phantom

nd simulation studies.34-36,61 An important development
hat can be exploited for future simultaneous PET/MR imag-
ng technology dedicated for brain research is to combine
arious MR imaging segmentation methodologies for both
artial volume correction and attenuation compensation.62

oncept of Global Metabolic
ctivity Based on Combined
tructure-Function Assessment

n Healthy and Diseased States
he concept of global metabolic activity was first introduced
y Alavi and coworkers63 in assessment of the brain in pa-
ients with AD and in age-matched controls. These investiga-
ors were able to demonstrate that by multiplying segmented
rain volumes as determined from MR images by the mea-
ured mean cerebral metabolic rates for glucose, significant

Figure 9 Illustration of automated segmentation procedu
segmentation (8 segments) utilizing traditional MRFM, a
with permission from Montgomery et al.52)
ifferences between these two populations can be demon- m
trated. The same investigators have proposed adopting a
imilar approach for assessing global normal organ function
nd overall disease activity in other settings47 This concept
ould require calculating tissue volume by utilizing modern

omputer based algorithms and accurate (partial volume cor-
ected) measurement of metabolic activities (or other func-
ional process) at each site of interest. As noted above, with
ecent advances made in such domains, it is feasible to cor-
ect for partial volume effects on low spatial resolution func-
ional imaging techniques. By multiplying partial volume
orrected metabolic measures (such as SUV, rates of metab-
lism, etc.) by volumetric measures from structural images to
ield the MVP for the organ of interest or the diseased site, it
ould be feasible to calculate the global function in the in-

ended tissues. By combining these measurements in the en-
ire body for various pathological states, one can calculate the
lobal metabolic activity of the underlying process. The
ower of this concept stems from its ability to rely on both
tructural and functional alterations that take place as a con-
equence of normal processes such as aging or disease states.
his is important, as it is well documented that existing uni-
imensional measurement (Response Evaluation. Criteria in
olid Tumors, or RECIST) criteria, a standard ROI-based
UV, or other semiquantitative measurements are often
rone to inaccuracy and high variability in their generated
esults.13

This concept is particularly applicable to cancer both at the
nitial stage and following treatment. The use of this ap-
roach may prove to be essential for testing new therapeutic
gents. Similarly, this approach can be effectively employed
n other states such as atherosclerosis, cardiac disorders, and
entral nervous system diseases. Below, we present some data
enerated based on these concepts.

pplications of Global
etabolic Activity in Neurology

ne of the major domains of neurology in which the assess-
ent of global metabolic activity is of great interest is that of
europsychiatric disorders. To elucidate the relationship be-
ween reduced cognitive function and cerebral metabolism in
atients with AD, Alavi and coworkers63 hypothesized that
he absolute amount of glucose used by the entire brain
ould prove to be a more reliable indicator of disease than

ET. From left to right: original clinical image, resultant
ultant segmentation using multiscale MRFM. (Adapted
re for P
nd res
etabolic rates calculated for a unit of brain weight alone.
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hey investigated 20 patients with the probable diagnosis of
D and 17 age-matched controls who underwent FDG-PET

maging and MR imaging within a few days of each other. The
ncorrected cerebral metabolic rate for glucose (CMRGlc)
alues were atrophy-corrected using the following equation:

trophy corrected average CMRGlc

�
Mean CMRGlc

Percentage of brain tissue in the intracranial volume
(5)

Absolute whole brain metabolism was calculated by using
he formula:

bsolute whole brain metabolism

� Atrophy corrected mean CMRGlc � Brain volume (6)

verage metabolic rates, when corrected for atrophy, were
.91 � 1.02 and 4.43 � 0.87 (mg of glucose per 100 cm3

rain tissue per minute) for AD patients and controls, respec-
ively. Two other indices were determined as well: atrophy-
eighted total brain metabolism (calculated by multiplying

he brain volume, determined from MR image analysis, by
he average metabolic rate) and absolute whole brain metab-
lism (calculated by multiplying the brain volume by the
verage metabolic rate corrected for atrophy). The former
howed a very significant difference between the 2 groups
29.96 � 7.90 for AD patients compared with 39.1 � 7.0 for
ontrols, P � 0.001). Atrophy-weighted total brain metabo-
ism also correlated with mini-mental status examination
cores (r � 0.59, P � 0.01). Absolute whole brain metabo-
ism was found to be significantly different between AD and
ontrol groups and correlated well with mini-mental status
xamination scores. These data demonstrated that although

able 2 Whole Brain PET Data for AD and Controls63

CMRGlc
(Uncorrected)
(Mean � SD)

CMRGlc
(Corrected)
(Mean �SD)

D patients 3.15 � 0.83* 3.91 � 1.02†
ontrol patients 3.83 � 0.70 4.43 � 0.87

Significantly different from controls, P � 0.01.
Not significantly different from controls, P � 0.11.
Significantly different from controls, P � 0.0008.
Significantly different from controls, P � 0.014.

able 3 Recovered Whole Brain PET Data for AD and Contro

Recovered CMRGlc
(Uncorrected)
(Mean � SD)

CMRGlc
(Correcte

(Mean � S

D patients 4.89 � 1.22* 6.06 � 1.48
ontrol patients 5.38 � 0.88 6.22 � 1.07

MRGlc in mg glucose/100 ml/brain tissue/min; atrophy-weighted
metabolism in mg glucose/brain/min.

Not significantly different from controls, P � 0.17.
Not significantly different from controls, P � 0.72.
Significantly different from controls, P � 0.026.

Significantly different from controls, P � 0.18.
he metabolic rate per unit weight of the brain is unchanged
n AD compared with controls, atrophy-weighted total brain

etabolism and absolute whole brain metabolism are signif-
cantly affected. They concluded that both indices could
rove to be sensitive correlates for cognitive dysfunction in
D (Tables 2 and 3).

pplication of Global
etabolic Activity for
uantitation of Atherosclerosis

ural and coworkers64 described a technique for quantitating
he extent of atherosclerosis in the aorta by multiplying SUVs
n the aortic wall with aortic wall volumetric data provided by
T to yield MVPs. They examined this approach in 18 pa-

ients who had both FDG-PET and contrast-enhanced CT of
he chest and abdomen. All had homogeneous diffuse FDG
ptake in all segments of the aortic wall. The patients were
ivided into 3 groups according to their age, and FDG uptake
as measured in different segments of the aorta by calculat-

ng the mean SUV for each segment. On each axial CT image,
OI tracings along the inner and outer wall contours of the
orta were generated. The inner surface area was subtracted
rom the outer surface area, and net area values for each
egment were subsequently multiplied by slice thickness to
alculate aortic wall volume. By multiplying SUV by the wall
olume, they were able to calculate the atherosclerotic bur-
en (AB; a special instance of the MVP) for each segment of
he aorta. They then compared the aortic wall volumes,
UVs, and AB values in each arterial segment for each age
roup. When the aortic wall volumes, SUVs, and AB values in
ach aortic segment for each age group were compared, AB

Atrophy-Weighted Total
Brain Metabolism

(Mean � SD)

Absolute Whole-Brain
Metabolism
(Mean � SD)

29.96 � 7.90‡ 37.24 � 9.65§
39.09 � 7.02 45.09 � 8.52

Atrophy-Weighted Total
Brain Metabolism

(Mean � SD)

Absolute Whole Brain
Metabolism
(Mean � SD)

46.61 � 12.24‡ 57.86 � 14.89§
55.23 � 9.82 63.73 � 10.07

brain metabolism in mg glucose/brain/min; absolute whole brain
ls63

d)
D)

†

total
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alues, SUVs, and wall volumes were found to increase with
ge (P � 0.05; Fig. 10 and Table 4).

pplication of
lobal Metabolic Activity

o Diffuse Hepatic Steatosis
ural and coworkers47 adopted this approach to compare the
DG uptake in liver and hepatic MVPs between normal sub-

ects and subjects with diffuse hepatic steatosis by using
DG-PET and MR imaging. They investigated 24 subjects in
his study (11 men, 13 women, age range 21-75 years). All
ubjects had FDG -PET and MR scans within a time interval
f 52 � 60 days. Twelve of the 24 subjects had the diffuse
epatic steatosis based on MR imaging criteria. The remain-

ng 12 were selected as age-matched subjects, as they had
ormal appearing livers on MR images and on FDG-PET
cans. They calculated the mean and maximum hepatic SUVs
or both groups for every subject from the FDG-PET images.
hey also calculated the volume of the liver for each subject

rom MR images by summing the surface area values and
ultiplying by slice thickness. Subsequently, the hepatic
VP was calculated by multiplying liver volume by the mean

epatic SUV in each subject. The mean and maximum he-
atic SUVs and the hepatic MVPs were compared for two
roups. Mean and maximum hepatic SUVs for the group with
iffuse hepatic steatosis were 2.2 � 0.1 and 3.2 � 0.4, re-
pectively, and 1.8 � 0.2 and 2.4 � 0.3 for the control group,
espectively, which were all statistically significantly different
P � 0.05). Hepatic MVP for the group with diffuse hepatic
teatosis was 3.7 � 0.2 (SUV � L), and 2.3 � 0.9 (SUV � L)

igure 10 Assessment of changes in global metabolic activity of aortic
therosclerosis (atheroburden) with increasing age. (Reprinted with
ermission from Bural et al.64)

able 4 SUVs (Mean � SD) for Each Aortic Segment and for

ge (Years) Ascending Aorta Arch of the Aorta

1-40 (n � 5) 1.7 � 0.3 1.8 � 0.3
1-60 (n � 7) 2.0 � 0.4 1.9 � 0.5
1-80 (n � 6) 2.3 � 0.3 2.3 � 0.1

value 0.04 0.07
or the control group, which were statistically significantly
ifferent (P � 0.05).

pplication of Global
etabolic Activity in Oncology

nvestigators from the University of Pennsylvania have exam-
ned the concept of whole body metabolic burden (WBMB)
n assessing disease activity in lymphoma patients.47 Individ-
al lesion metabolic burden (MB) was calculated by measur-

ng the volume on CT (VCT), the mean SUV measured on PET
f the CT volume (SUVmeanCT), and the recovery coefficient
RC):

MB � SUVmeanCT(VCT) ⁄ RC (7)

here RC recovers counts that extend beyond the CT volume
s the result of partial volume effects and was obtained from
calibration plot study of hot sphere activity within a warm
ackground phantom for the PET scanner used. For lesions
3 cm, RC was 1. The preliminary results showed that MB is
useful measure when corrected for partial volume effects

nd operator error in drawing ROIs. The WBMB was defined
s the sum of the individual metabolic burden of all lesions
dentified. This index appeared promising to monitor
hanges in total body tumor burden in patients undergoing
reatment.

WBMB � �
i�1

n

MBi (8)

here n is the number of individual tumors outlined. Akin to
ingle lesion MB, the WBMB had units of SUV � volume.
xamples of this have been depicted in Table 5.
More recently, Larson and coworkers65 proposed the con-

ept of total lesion glycolysis (TLG), which was defined as
LG � SUVmean � volume of PET lesion. They further de-
ned the response index (also known as Larson-Ginsberg
ndex, LGI) as:

TLG(LGI)

�
[(SUVmean)1 � (Vol)1 � (SUVmean)2 � (Vol)2]

(SUVmean)1 � (Vol)1

� 100 (9)

here “1” and “2” denote the pre- and post-treatment FDG-
ET scans, respectively. They investigated a group of 41 lo-
ally advanced lung (n � 2), rectal (n � 17), esophageal (n �

tal Aorta64

scending Thoracic
Aorta Abdominal Aorta Total SUV

1.7 � 0.3 1.6 � 0.3 1.7 � 0.3
2.1 � 0.5 1.8 � 0.2 2.0 � 0.4
2.4 � 0.3 2.2 � 0.4 2.3 � 0.3
the To

De
0.03 0.04 0.001
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6) and gastric (n � 6) cancers. They concluded that the
isual response score and �TLG are substantially correlated
ith other response parameters and are highly reproducible.

uture Applications and
dvances for Quantitative

maging Techniques
he role of PET during the past decade has evolved rapidly

rom that of a pure research tool to a methodology of enor-
ous importance in specialties such as oncology. FDG-PET

s widely used for the diagnosis, staging, assessment of tumor
esponse to therapy, and detection of tumor recurrence be-
ause metabolic changes usually precede changes that are
ssociated with structural imaging alone including tumor
ize.

During the next few years, it is expected that sophisticated
uantitative analysis methodologies will become widely
vailable in clinical settings and will not be limited to re-
earch in PET facilities with advanced scientific and technical
upport. As a result, it is likely that commercial software for
ccurate quantitative analysis will undergo major adjust-
ents in the future to meet the challenges that will be faced in

he routine and practical applications of this approach.
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