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ardiac Positron Emission Tomography Imaging
osef Machac, MD

Cardiac positron emission tomography (PET) imaging has advanced from primarily a
research tool to a practical, high-performance clinical imaging modality. The widespread
availability of state-of-the-art PET gamma cameras, the commercial availability of perfusion
and viability PET imaging tracers, reimbursement for PET perfusion and viability procedures
by government and private health insurance plans, and the availability of computer software
for image display of perfusion, wall motion, and viability images have all been a key to
cardiac PET imaging becoming a routine clinical tool. Although myocardial perfusion PET
imaging is an option for all patients requiring stress perfusion imaging, there are identifi-
able patient groups difficult to image with conventional single-photon emission computed
tomography imaging that are particularly likely to benefit from PET imaging, such as obese
patients, women, patients with previous nondiagnostic tests, and patients with poor left
ventricular function attributable to coronary artery disease considered for revasculariza-
tion. Myocardial PET perfusion imaging with rubidium-82 is noteworthy for high efficiency,
rapid throughput, and in a high-volume setting, low operational costs. PET metabolic
viability imaging continues to be a noninvasive standard for diagnosis of viability imaging.
Cardiac PET imaging has been shown to be cost-effective. The potential of routine quan-
tification of resting and stress blood flow and coronary flow reserve in response to
pharmacologic and cold-pressor stress offers tantalizing possibilities of enhancing the
power of PET myocardial perfusion imaging. This can be achieved by providing assurance
of stress quality control, in enhancing diagnosis and risk stratification in patients with
coronary artery disease, and expanding diagnostic imaging into the realm of detection of
early coronary artery disease and endothelial dysfunction subject to risk factor modifica-
tion. Combined PET and x-ray computed tomography imaging (PET-CT) results in enhanced
patient throughput and efficiency. The combination of multislice computed tomography
scanners with PET opens possibilities of adding coronary calcium scoring and noninvasive
coronary angiography to myocardial perfusion imaging and quantification. Evaluation of the
clinical role of these creative new possibilities warrants investigation.
Semin Nucl Med 35:17-36 © 2005 Elsevier Inc. All rights reserved.
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oronary artery disease (CAD) continues to be a leading
cause of death in modern industrialized countries. A

teady growth in the use of myocardial single-photon emis-
ion computed tomography (SPECT) perfusion imaging has
een charted in the past 2 decades and, as a result, SPECT has
ecome an important component of the clinical management
f this disease. This is attributable to its high success rate in
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roviding useful information about myocardial perfusion
nd function.

Despite the success of cardiac SPECT imaging, room for
ignificant improvement still exists. Despite a high sensitivity
f 90% to 94% for multivessel coronary disease, conventional
PECT imaging has a limited sensitivity of 60% to 76% for
etecting significant single-vessel disease.1,2 The presence of
iffuse disease in all 3 coronary vessels may decrease the
ensitivity for each individual vessel, and “balanced isch-
mia” may mask the presence of disease altogether.3-7 Diffuse
oronary artery disease without segmental stenosis fre-
uently is the substrate for plaque rupture and coronary
vents.8-10 Identification of early disease is a target of inter-
ention through diet, glycemic control, lifestyle changes, and
harmacologic therapy.11-16 The detection of preclinical cor-
nary disease by conventional radionuclide imaging is lim-

ted by incomplete extraction of tracer by the myocardium
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18 J. Machac
uring first passage17-19 and by the absence of hemodynam-
cally significant coronary obstruction.

The use of vasodilator stress agents like dipyridamole or
denosine, which are used in approximately 40% of all stress
maging procedures, does not provide independent informa-
ion about the adequacy of the vasodilator stress. Despite a
igh overall effectiveness, the surreptitious use of caffeine,
iffuse epicardial disease, or diffuse small vessel disease may
ontribute to slightly decreased negative prognostic predic-
ive value of pharmacologic myocardial perfusion imaging
ompared with exercise.20 Our reliance on relative regional
eficiencies in perfusion may mask a uniformly poor re-
ponse to vasodilatory stimulation.

SPECT imaging also is limited by artifacts stemming from
onuniform attenuation. The recognition of attenuation arti-
acts through intensive training, experience, and the use of
ated SPECT imaging,21 still leaves a frequent uncertainty
bout possible underlying CAD in the presence of arti-
act.22,23

Another area of possible improvement is the relative low
fficiency of conventional gamma cameras. Coupled with a
imit on the maximal dose of radiotracer, there is a lower limit
n the time required for image acquisition. From the patient’s
oint of view, common acquisition protocols take several
ours to complete. The half-lives of currently used radioiso-
opes limit the number of repeat tracer injections.

ecent Changes in
he Status of PET Imaging
espite the fact that the clinical value of cardiac PET imaging
as demonstrated 20 years ago,24-26 its clinical use has been
inimal. The clinical impracticality of PET included limita-

ion to a few research centers, the need for a cyclotron, the
xpense of PET, lack of reimbursement, and limited availabil-
ty of user-friendly software for cardiac image processing and
isplay, with a few exceptions.
All of that has changed. With more than 1000 PET cameras

nstalled in North America (GE Medical Systems, personal

able 1 Cardiac PET Tracers

Agent

Physical
half-

life215

Mean p
range (

2

3N NH3 10.0 min 0
2Rb 78 s 2
5O H2O 2.0 min 1
8F FDG 110 min 0

able 2 Cardiac PET Tracer Dosimetry222

Agent
Activity
(mCi)

ED
(re

3N NH3 20 0.16
2Rb 60 0.09
5O H2O 60 0.25

8F FDG 10 1.100
ommunication, 2004), there is an extensive infrastructure in
ET imaging. With an average use of only 4 oncologic studies
eing performed per PET scanner per day (GE Medical Sys-
ems, personal communication, 2004), there is potential for
art-time availability of most PET scanners for cardiac imag-

ng. Myocardial PET perfusion imaging with rubidium-82
82Rb), reimbursed by the Center for Medicaid and Medicare
ervices (CMS) since 1995, is possible with a commercially
vailable generator. Mobile 82Rb generators are available in
ome regions for centers that choose to offer PET myocardial
erfusion imaging only one to several times a week. 18F flu-
rodeoxyglucose (FDG) PET imaging is now reimbursed for
yocardial viability. Metropolitan areas in North America
ow have at least one commercial supplier of FDG. More
ecently, CMS reimbursement became available for myocar-
ial perfusion imaging with 13N ammonia.

he Power of PET Imaging
ET imaging differs from conventional radionuclide imaging
ecause it uses radionuclides that decay with positron emis-
ion. A positron has the same mass as an electron but has a
ositive charge. The positron travels a short distance, up to a
ew millimeters, interacts with an electron, and the two un-
ergo a mutual annihilation, resulting in the production of 2
11-kev gamma photons, 180° apart form each other. PET

maging consists of detection of these photons in coinci-
ence. Imaging by PET with electronic coincidence localiza-
ion using a ring detector leads to high acquisition efficiency.
his results in high-quality images acquired in a short time
nd multiple sequential acquisitions. The short half-lives of
2Rb and 13N ammonia (Table 1) result in low radiation ex-
osure for the patient (Table 2) from multiple intervention
tudies or follow-up studies and allow other radionuclide
maging studies on the same day. High image uniformity is a
esult of the ability of PET to perform effective nonuniform
ttenuation correction, thus minimizing attenuation artifact.
he ability to calibrate the PET system allows quantification
f myocardial flow and glucose utilization.

on
16-

Production Extraction

Cyclotron 80%219

Generator 50-60%220

Cyclotron Diffusible
Cyclotron 1-3%221

Critical
Organ

Organ Dose
(rem)

Bladder 0.52
Kidneys 1.98
Heart 0.49
ositr
mm)2
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Cardiac PET imaging 19
PET imaging offers a potentially high resolution of 5 to 7
m, compared with 15 mm with SPECT imaging,27 although

n cardiac imaging, resolution is degraded by respiratory and
ardiac wall movement. Cardiac imaging offers some but not
he full potential resolution of PET.

yocardial PET Perfusion
racers and Imaging Protocols

3N Ammonia
he principal cardiac PET radiotracers are listed in Tables 1
nd 2. 13N ammonia has been used for most of the scientific
nvestigations in cardiac PET imaging for the past 2 decades.
ts 10-minute half-life requires an on-site cyclotron and ra-
iochemistry synthesis capability. A sample imaging protocol

s given in Table 3. Pharmacologic stress imaging usually
ollows resting injection and imaging, after the initial activity
as been allowed to decay, by staggering patients, or using
ifferential doses for rest and stress. Both rest and stress

mages can be gated. A dynamic acquisition is acquired for
he quantification of blood flow. This can be accomplished by
erforming separate dynamic and gated acquisitions with the
ame injection, or through list-mode acquisition. A third in-
ection may be included for cold-pressor testing. 13N ammo-
ia imaging requires coordinating the activities of at least 4
eople; the cyclotron operator, the radiochemist, the PET
echnologist, and the supervising physician. It can be a
aunting task with a large number of rest and stress 13N
mmonia studies on the same day.

In the bloodstream, 13N ammonia consists of neutral am-
onia (NH3) in equilibrium with its charged ammonium

NH4) ion. The neutral NH3 molecule readily diffuses across
lasma and cell membranes. Inside the cell, it re-equilibrates
ith its ammonium form, which is trapped in glutamine via

he enzyme glutamine synthase.28,29 Despite back diffusion,
he first-pass trapping of 13N ammonia at rest is high, al-
hough decreasing with higher blood flow.

13N ammonia allows good quality gated and ungated im-
ges (Fig. 1), taking full advantage of the superior resolution
f PET imaging. Interestingly, normal volunteers show mild
eterogeneity or mild defects of 13N ammonia retention in the

ateral wall of the left ventricle compared with the other seg-
ents. The mechanism of this finding is not known.30 This
ust be taken into account for both visual and quantitative

able 3 Imaging Protocol for 13N Ammonia PET Imaging

Procedure Time

ositioning (Scout) 5 min
ransmission imaging 10 min
njection and blood clearance 5 min
est gated perfusion imaging 10-20 min

3N decay waiting time 45 min
harmacological stress 7 min

njection and blood clearance 5 min
tress imaging 10-20 min

otal duration 100-120 min
nalysis. 13N ammonia images may be degraded by occa- U
ional intense liver activity, and increased lung activity in
atients with lung congestion.31

xygen-15 (15O) Water
5O water is neither an approved tracer nor reimbursed for
linical imaging in the United States but is included in this
eview as an important tracer for quantitative investigations
f myocardial blood flow.32 The ability of water to diffuse
reely across plasma membranes makes this tracer a favorite
or quantitation of myocardial blood flow. However, this very
roperty leads to poor contrast between the myocardium and
ardiac blood pool, requiring subtraction of blood pool ac-
ivity. The use of 15O water is restricted to sites with a cyclo-
ron.

ubidium-82 (82Rb)
2Rb is produced in a commercially available generator by
ecay from strontium-82 attached to an elution column. 82Rb

s eluted with 25 to 50 mL of normal saline by a computer-
ontrolled elution pump, connected by IV tubing to the pa-
ient. The strontium-82 containing generator is replaced ev-
ry 4 weeks (t1/2 � 25 days). 82Rb decays by positron
mission with a short half-life of 75 s (Table 1). The generator
s fully replenished every 10 minutes, and 90% of maximal
vailable activity can be obtained within 5 minutes after the
ast elution.33 Whereas the short half-life of 82Rb taxes the
erformance limits of PET scanners, it facilitates the rapid
ompletion of a series of resting and stress myocardial perfu-
ion studies (Tables 4 and 5). Thus, 82Rb is a very efficient
maging agent for routine clinical usage. The fixed cost of the
2Rb generator may be an initial hurdle. Although the cost per
atient at a low volume of studies per day is high, the cost
ith 6 to 10 studies per day is competitive with SPECT trac-

rs.
82Rb, like thallium-201, is a cation and an analog of potas-

ium. It is extracted from plasma by myocardial cells via the
a�/K� ATPase pump. Myocardial extraction of 82Rb is sim-

lar to thallium-201 (201Tl)34,35 and slightly less than N-13
mmonia (Table 1), decreasing during hyperemia.36,37 82Rb
xtraction can be altered by severe acidosis, hypoxia, and

igure 1 13N Ammonia PET images demonstrating anterior and lat-
ral defects during pharmacological stress and significant improve-
ent at rest, consistent with ischemia. SA, short axis; HLA, horizon-

al long axis; VLA, vertical long axis (courtesy of Dr. H Schelbert,

CLA School of Medicine, CA).
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20 J. Machac
schemia.38-40 Thus, uptake of 82Rb is a function of both blood
ow and of myocardial cell integrity.

atient Preparation and Stress Testing
atient preparation for stress and rest myocardial PET perfu-
ion imaging is identical to SPECT perfusion imaging. Myo-
ardial PET perfusion imaging usually is performed with
harmacologic stress, primarily with dipyridamole or aden-
sine, despite the fact that 13N ammonia imaging is feasible
ith treadmill stress testing and despite isolated satisfactory

esults with exercise using 15O water41 or 82Rb.42

maging of 82Rb
espite the short half-life of 82Rb, modern PET gamma cam-
ras are able to obtain good quality images (Figs. 2 and 3).
maging with 82Rb does not take full advantage of the supe-
ior resolution of PET because of the relatively long mean
ath (2.6 mm) of the energetic 82Rb positrons (Table 1) and
ue to the need for filtering with the short-lived tracer.
Our protocol (Table 4) begins with a low dose (20mCi)

njection of 82Rb and a short 3-min scout acquisition and
uick reconstruction for proper positioning. The patient then
eceives a 50- to 60-mCi dose at rest, acquired in 2D gated
ode for 6 min beginning at 2 min after the onset of injec-

ion. This is followed by another 50- to 60-mCi injection, at
est, using a phasic (dynamic), 8-min acquisition, for perfu-
ion imaging. The dynamic acquisition allows a retrospective
election of the onset of the myocardial phase, which is de-
ayed in heart failure, low cardiac output, or poor bolus qual-
ty, and allows blood flow quantification. This is followed by
n 8-min transmission scan with a germanium-68 pin source.
he patient then undergoes pharmacologic stress. At peak

able 4 Imaging Protocol for 82Rb PET Imaging With a Bis-
uth Germanate (BGO) Crystal PET Scanner (the Mount
inai Medical Center, NY)

Procedure Time

Positioning (Scout) 5 min
Rest gated imaging 8 min
Rest perfusion imaging 8 min
Transmission imaging 8 min
Pharmacological stress 7 min
Stress imaging 8 min

Total duration 44 min

able 5 Imaging Protocol for 82Rb PET Imaging With Lutetium
rthosilicate (LSO) Crystal PET Scanner223

Procedure Time

Rest transmission imaging 4 min
Rest perfusion 2D imaging 5 min
Rest gated 3D imaging 3 min
Pharmacological stress 7 min
Stress transmission imaging 4 min
Stress perfusion 2D imaging 5 min
Stress gated 3D imaging 3 min
Total duration 31 min
a

tress, the patient is injected with the final 50- to 60-mCi 82Rb
ose, for an 8-min dynamic (phasic) acquisition. The total
amera acquisition time is approximately 45 min. The need
or repositioning, repeating an acquisition, or clinical factors
ay extend the required time.
For the rest and stress perfusion image reconstruction, we

igure 2 A, Normal stress and rest 82Rb PET images. B, Resting
nd-diastolic (ED) and end-systolic (ES) gated images, showing uni-
ormly good contractility.

igure 3 A, Stress and rest of 82Rb PET images demonstrating severe
xtensive apical, septal, and inferior scarring and only minimal basal
eptal ischemia. B, Resting end-diastolic and end-systolic gated im-
ges, showing poor or absent contractility in the scarred regions,

nd poor overall left ventricular function.
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Cardiac PET imaging 21
ave found that filtered back projection with a reconstruc-
ion filter and measured attenuation correction produces the
est myocardial image uniformity. Iterative reconstruction
roduced greater regional nonuniformity in normal con-
rols.43 These results are specific to our PET scanner (AD-
ANCE-GE Medical Systems) and should be checked for
ther scanners. For gated wall motion images, we use itera-
ive reconstruction with segmented attenuation correction to
uppress the higher level of noise. The resulting images can
e displayed using any of a number of software packages
eveloped for SPECT and adapted for PET.
An important decision is the choice of 2D versus 3D PET

maging, specific for each type of PET scanner. In studies
ith our bismuth germanate (BGO) crystal scanner, acquisi-

ion in 3D mode with high injected doses (50-60 mCi) of
2Rb and immediate acquisition resulted in excessive dead-
ime and randoms. We obtained good results by delaying
cquisition for 5 min after injection, although that defeats the
urpose of imaging early in trying to maximize counts. Sim-

lar image quality could be obtained with low-dose (20 mCi)
2Rb 3D imaging as with high-dose (50-60 mCi) 2D imag-
ng.44,45 Our experiments with phantoms showed similar res-
lution and image quality for 3D and 2D images in lean
ndividuals. In obese individuals, both contrast and image
uality were better with 2D imaging. Quantification with 3D

maging should be done with caution, since 3D imaging
ithout proper correction produces significant axial nonuni-

ormity.46 A clear benefit of 3D imaging with our scanner

Figure 4 LVEFs obtained from gated 82Rb PET imaging
(MICH/Xe) software, correlated with planar gated blood
ould be realized if a less expensive low-dose 82Rb generator t
ere offered. One could then obtain similar results with low-
ose 3D imaging as with high dose 2D imaging, at lower cost.
Lutetium orthosilicate (LSO) crystal detector PET scanners

CTI, Knoxville, TN), offer the ability to function in 3D mode
t high activities. The cardiac PET laboratory at the Mid
merica Heart Institute of Kansas City, MO, acquired in
uick succession, 2D perfusion and 3D gated imaging at rest
nd with stress (Table 5). A quantitative comparison47 be-
ween 2D and 3D 82Rb perfusion acquisitions showed the
esting images to be identical. 2D and 3D dipyridamole stress
mages showed significant differences, although follow-up
tudies showed stress 3D imaging to perform as well as 2D
ode imaging in accuracy of perfusion defect detection. An-

ther laboratory observed that compared with a BGO 2D
ystem, an LSO 3D system using a lower 30- to 50-mCi 82Rb
ose obtained reduced noise levels, albeit with increased
ackground levels,48 presumably as the result of a higher
andoms level. These observations need to be explored fur-
her. Germanium-based 3D scanners also are available (Phil-
ps, Cleveland, OH).

With proper image processing, good quality 82Rb PET-
ated images can be obtained in the vast majority of patients.
oor gated image quality results from arrhythmia or a slow or
ragmented 82Rb injection. We compared visually assessed
egional and global left ventricular function from gated 82Rb
ET studies to either gated SPECT images or gated planar
lood pool images and we demonstrated a 92% agreement in
egmental wall motion scores.49 More recently, we compared

GS/Xe, Emory Tool Box (ECT/Xe), and Michigan 4D
imaging.236
and Q
he left ventricular ejection fraction (LVEF) calculated with 3
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22 J. Machac
ommercial software packages from gated 82Rb PET images to
VEFs obtained from planar gated blood pool images. The
esults showed all three methods to perform satisfactorily,
ith correlation coefficients of 0.81 to 0.8350 (Fig. 4). An-
ther group compared 3D gated 82Rb PET imaging with an
SO system to gated Tc-99 month sestamibi SPECT. The
uthors found a good correlation (r � 0.91) for the LVEFs
etween the 2 methods.51 Regional wall motion and LVEFs
btained from 13N ammonia gated PET images also yielded
xcellent agreement with other wall motion modalities.52

he Value of
ET for Clinical Imaging

mage Uniformity in PET Imaging
major challenge for cardiac radionuclide perfusion imaging

s nonuniform attenuation of gamma photons in the chest,

igure 5 A. Dipyridamole stress and rest 99mTc sestamibi SPECT
mages. The stress images show a moderate inferior defect and pos-
ible mild anterior defect with mild improvement in the anterior
all and apex at rest. B, The stress and rest PET images showed
niform distribution.

able 6 Diagnostic Accuracy of PET Myocardial Perfusion Im

Sensitivity (%) Specificity (%) N

95 100
94 95
93 78
97 100
93 100
98 93
84 88
95 95
93 92 79
arying markedly between men and women, and among in-
ividuals within each gender. Image uniformity is probably
he most important property of cardiac PET perfusion imag-
ng. With coincidence detection, the probability of attenua-
ion for the two gamma photons is uniform along the line
etween any 2 detectors. This can be measured and cor-
ected. With a conventional gamma camera, resolution dete-
iorates with distance from the gamma camera, along with
ttenuation at increasing depth within the subject, which is
ifficult to model and correct reliably.53 Although normal
aps for SPECT images are nonuniform and different for
en and women, the maps with 82Rb PET are uniform and

dentical for both genders.54 This is illustrated in Figure 5 for
patient referred for dipyridamole 99mTc sestamibi SPECT

maging for preoperative risk evaluation. The gated SPECT
mages showed global hypokinesis. Even though attenuation
rtifact was suspected, the study could not exclude inferior
all scarring, and possible mild apical and anterior wall isch-

mia. A short time afterward, stress and rest 82Rb PET images
howed uniform distribution. Coronary angiography, per-
ormed despite these results, showed normal coronary arter-
es, with mild diffuse left ventricular dysfunction, probably
ue to chronic hypertension.
Table 6 lists 8 studies that compared PET myocardial per-

usion imaging with angiography, some performed with 13N
mmonia and others with 82Rb. Representing a total of 791
atients, they showed a mean 93% sensitivity and 92% spec-

ficity for CAD. Table 7 lists studies that compared PET myo-
ardial perfusion imaging with 201Tl SPECT imaging in the
ame patients. These studies showed higher overall sensitiv-
ty, specificity, and accuracy for PET compared with SPECT
maging.

Nondiagnostic or uncertain interpretation of a noninvasive
est is one of the factors prompting physicians to recommend
urther invasive diagnostic studies. In 2748 patients, Patter-
on and coworkers55 found a reduction in the number of
nterpretations classified by 2 experienced physicians as
probably” normal or abnormal, from 37% with 201Tl SPECT,
o 21% with 82Rb PET. Regional quantification has been
hown to further improve the accuracy of PET perfusion
maging56,57 with a 99% sensitivity, 83% specificity, and
00% normalcy rate for CAD and a high interobserver agree-
ent of 94% among 3 physicians.58,59

During the last 10 to 15 years, both SPECT and PET im-

for CAD

tients Agent Author

0 NH3, 82Rb Gould et al224

3 82Rb Demer et al225

2 82Rb Go et al226

5 NH3 Schelbert et al227

9 NH3 Yonekura et al228

6 82Rb Williams et al229

1 82Rb Stewart et al230

5 NH3 Tamaki et al231
aging

o. Pa

5
19
20
4
4

14
8
2

1 Average
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Cardiac PET imaging 23
ging have undergone significant improvements.60-65 A re-
ent comparison between Tc-99m sestamibi SPECT and
b-82 PET myocardial perfusion imaging revealed a signifi-
ant margin of improvement for CAD detection accuracy
ith Rb-82 PET compared to SPECT (see Bateman et al241).
he current literature on the accuracy of PET in comparison
ith gated attenuation-corrected SPECT is inadequate.
onetheless, despite ongoing improvements in the accuracy
f SPECT, uncertainty remains in many patients even after
ttenuation correction, with differences in the ability of at-
enuation correction systems to reduce artifacts.66

SPECT imaging in women is challenged by breast attenu-
tion artifact, as well as smaller heart size.67-69 Williams and
oworkers70 observed a high specificity of stress PET imaging
n female patients in relation to coronary angiography. In
omen who had undergone both stress SPECT and stress
ET imaging within a period of 3 months, the SPECT and
ET imaging tests had similar high sensitivity, but the spec-

ficity for PET was significantly higher than for SPECT. Figure
features a 72-year-old female status post heart transplant.

able 7 Comparison of PET and SPECT Myocardial Perfusion

Author Tracer Accu

o et al232 (n � 132) Rb-82
T1-201

tewart et al233 (n � 81) Rb-82
T1-201

amaki et al234 (n � 51) NH3
T1-201

otal (n � 264) PET
SPECT

igure 6 A, 99mTc sestamibi dipyridamole stress and rest SPECT
mages show a mild-to-moderate anterior wall defect at stress with a
uggestion of partial improvement at rest. B, The 82Rb PET imaging

tudy shows normal images.
he SPECT images showed a moderate anterior wall defect,
ith a suggestion of improvement at rest. Even through at-

enuation artifact was suspected, disease could not be ruled
ut. The PET imaging study showed normal images. In pa-
ients studied with coronary angiography, Patterson and co-
orkers71 showed that sensitivity and specificity of CAD de-

ection with PET were equally high for men and women.
An increasing challenge to noninvasive diagnostic imaging

s posed by the growing prevalence of moderate and severe
besity in the general population (Table 8). The prevalence of
besity is greater in women, in older individuals, and among
frican Americans and Hispanic Americans.72 Obese patients
early always produce attenuation artifacts on myocardial
PECT perfusion imaging, leading to uncertain results.73,74

igure 7 shows SPECT and PET images of a 290-lb, 51-year-
ld male, with risk factors for CAD. The SPECT attenuation-
orrected images show mild to moderate inferior and apical
efects which slightly improved on the resting images, ac-
ompanied by 1-mm ST depression with nearly maximal
xercise. Rb-82 PET images obtained a short time afterward
howed a normal distribution. The defects seen on SPECT
ven after attenuation correction can still be attributed to
ttenuation.

There are limitations to the ability of PET to image very
bese individuals. Most imaging tables are limited to 400- to
50-lb loads. Frequently, the size of the scanner opening is
he limiting factor, particularly if it is 60 to 63 cm in diameter.
everal currently marketed PET scanners with an opening of
0 cm can be more easily accommodate very large patients.75

maging in the Pediatric Population
he pediatric population also poses a challenge for diagnostic
PECT imaging. Infants and children can derive benefit from
ssessment of coronary vessels following switch operations,
orrection of anomalous coronary arteries (Kawasaki’s dis-
ase), or in patients with myocardial injuries. Image quality is

able 8 Prevalence of Obesity (BMI >30) in Adults235

Year Men (%) Women (%)

1960 10.7 15.8
1972 12.1 16.6
1978 12.7 17
1990 20.6 25.9

ing for Detection of CAD in the Same Patients

(%) Sensitivity (%) Specificity (%)

95 82
79 76
87 82
87 52
98 100
96 100

93 82
85 67
Imag

racy

92
78
85
78
98
98

91
2000 27.7 34
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imited by poor resolution and low usable activity of 201Tl.
9mTc sestamibi and 99mTc tetrofosmin images are compro-
ised by high liver activity in close proximity to the small
eart. We have found the results of PET 82Rb myocardial
erfusion imaging in infants and in small children to be ex-
ellent. The short half-life of 82Rb or 13N ammonia allows
ufficiently high doses of tracer to be delivered to achieve
ood quality images with low radiation exposure to the child.

rognostic Value
f Myocardial PET Imaging
iven the proven value of PET myocardial perfusion imaging

n the diagnosis of CAD, it is expected that the prognostic
alue of gated PET is also high, similar to SPECT imaging. In
53 patients studied with 82Rb PET imaging, Yoshinaga and
oworkers showed 94% event-free survival during a 3-year
eriod in patients with normal PET scans, compared with
2% with mild defects, 58% with moderate defects, and 45%
urvival with severe defects.76 VanTosh and coworkers77

howed that a normal stress PET study in women with chest
ain and significant cardiac risk factors predicts a very low
ardiac event rate.

etection of Diffuse and Early Disease
ET imaging appears to be useful in the diagnosis and prog-
ostication at an early stage in disease and in the measure-
ent of the response to dietary and lifestyle changes and

ntilipid drug therapy.78,79 Merhige and coworkers80 studied
28 patients with CAD with stress and rest 82Rb PET. After
ggressive lipid-lowering therapy, 80 patients demonstrated

igure 7 A, Stress and rest attenuation-corrected (AC) 99mTc sesta-
ibi SPECT images of a 290-lb, 51-year-old male. The SPECT im-

ge shows mild-to-moderate inferior and apical ischemia and partial
carring. B, The stress and rest PET images showed normal
istribution.
mprovement in myocardial perfusion, 64 patients showed (
o change, and 34 showed progression of CAD despite treat-
ent at a mean follow-up of 1.5 years. Then, 7.5 months after

he second scan, coronary events had occurred in 3.3%,
0.9%, and 17.7% of patients, respectively. Thus, PET per-
usion imaging identified 26% of patients with progressive
AD, despite lipid lowering therapy, at a high-risk of subse-
uent hard coronary events.

ase to Apex Flow Gradient Quantification
nvasive studies with Doppler flow and pressure probes have
emonstrated a continuous gradient between the proximal
nd distal portions of coronary arteries with diffuse, though
onobstructive disease, resulting in a gradient in flow re-
erve.82 In such patients, once attenuation correction has
een successfully applied, Gould and coworkers demon-
trated with PET a graded, longitudinal, base-to-apex myo-
ardial perfusion gradient significantly different from normal
ontrol subjects (Fig. 8).82 This observation was confirmed
y Pampaloni and coworkers.83 An abnormal base-to-apex
erfusion gradient observed during vasodilator stress sug-
ests the presence of early or preclinical CAD.

igure 8 Schema of a longitudinal base-to-apex myocardial perfu-
ion abnormality caused by diffuse coronary artery narrowing com-
ared with segmental perfusion defects caused by localized stenosis.

Reproduced with permission from Gould et al.82)
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Cardiac PET imaging 25
uantification of Myocardial Blood Flow
he noninvasive quantification of myocardial blood flow and
oronary flow reserve is one of the most potentially useful but
s yet clinically unrealized applications of myocardial PET
maging. Formal quantification of blood flow usually re-
uires a multi-frame (50 frames or so) dynamic PET acquisi-
ion. Myocardial and blood-pool activity curves are gener-
ted and corrected for decay, partial volume effect, and tissue
ross-talk. A compartmental model is then applied to solve
or blood flow.

The rapid equilibration of 15O water between plasma, in-
erstitial space, and intracellular water allows the use of a
imple 1-compartment model,84 making this tracer a favorite
n scientific studies of quantitative myocardial perfusion. 15O
ater is not a very useful clinical perfusion imaging agent
ecause of its poor image quality and a requirement for a
yclotron. 13N ammonia has been used for blood flow mea-
urements in many pioneering studies of myocardial vascular
athophysiology.85 With the use of a 2-compartmental
odel, satisfactory reproducibility and accuracy are obtain-

ble.86,87 Quantification of blood flow with 82Rb is possible as
ell. Because of its 75-s half-life, myocardial and blood pool

ime-activity curves are noisy. Compartmental analysis of
2Rb in humans has yielded a fair reproducibility in our lab-
ratory (r � 0.83).88 Lin and coworkers demonstrated that
ith specialized wavelet-based noise reduction methods, the

orrelation between 82Rb flow with 15O water flow was excel-
ent (r � 0.94).89

Limitations of compartmental modeling include the need
or a multiframe dynamic acquisition, requirement for high
xpertise, and the fact that it is time-consuming. It is likely
hat standardized acquisition protocols and commercial de-
elopment of analysis software will make this important PET
apability accessible for routine use.

It is possible to estimate blood flow and coronary flow
eserve using methods which, although lacking the rigor of
ompartmental analysis, offer greater simplicity and ease of
se. The simplest approach uses the ratio of 82Rb uptake
uring stress and during rest after normalization for injected
ctivity. The uptake ratio reflects coronary flow reserve, al-
hough it ignores the effects of cardiac output on the plasma
racer activity and decreasing extraction fraction of 82Rb dur-
ng hyperemia. The stress/rest 82Rb uptake ratio has been
sed successfully as an index of blood flow response to stress
he presence of left ventricular hypertrophy and in the detec-
ion of coronary steal syndrome.90-92

able 9 Clinical Applications of Coronary Flow Reserve Quan-
ification

1. Verification of efficacy of pharmacological vasodilation
2. Detection of global/diffuse disease
3. Evaluation of extent of multivessel disease
4. Evaluation of significance of individual vessel lesions
5. Detection of coronary steal syndrome-collaterals
6. Evaluation of endothelial function
7. Monitoring therapy
A compromise alternative proposed by Yoshida and co- v
orkers93 corrects the uptake of 82Rb or 13N ammonia by the
ummed blood pool activity and by the relation between the
xtraction fraction and blood flow obtained from animal ex-
eriments.94,95 This approach (simple model) was validated

n animal experiments. We have adapted this method for
uman studies. A comparison of the simple model with the
ompartmental model yielded a fair correlation (r � 0.72, P

0.001), and excellent reproducibility (r � 0.97), less sus-
eptible to noise than the compartmental method.96 Using a
imilar method of measuring 82Rb retention, DeKemp and
oworkers showed a good reproducibility and good correla-
ion with microsphere flow measurements (r � 0.74; P �
.001) in animal studies.97

linical Applications of Myocardial
lood Flow and Coronary Flow Reserve

ome clinical applications of coronary flow reserve (CFR) are
isted in Table 9. The first application is quality control to
erify the global response to vasodilator stress. A normal flow
eserve (greater than 2.0 in our normal population), provides
ssurance that the stress test was adequate. In patients with
ecreased flow reserve, ie, patients who ingested some caf-
eine, those who have small vessel disease because of hyper-
ension or diabetes or endothelial dysfunction because of
yperlipidemia or diabetes,98,99 or patients with end-stage

iver disease,100,101 the sensitivity of conventional imaging to
etect epicardial coronary disease may be limited. In the
bsence of flow reserve quantification, the adequacy of re-
ponse to pharmacological stress is unknown.102

Another important application is to help detect extensive
picardial disease in a high-risk patient with normal or min-
mally abnormal stress and rest images due to “balanced isch-
mia.” Figure 9 shows stress and rest images of a 70-year-old
ale with multiple risk factors for CAD and mild chest pain.

igure 9 Tomographic slices (A) and the polar maps (B) of stress and
est 82Rb PET images of a 70-year-old male with multiple risk factors
or CAD and mild chest pain. The images suggest only minimal
pical and inferolateral ischemia. The CFR was 1.3, indicating se-

ere diffuse disease.
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26 J. Machac
uring dipyridamole stress, the ECG response was negative,
nd the stress 82Rb PET images showed only minimal apical
nd inferolateral ischemia. This would not necessarily be a
atient for invasive evaluation, were it not for the fact that the
lobal CFR was only 1.3 (normal CFR �2.0). The patient’s
ngiogram showed 3-vessel disease, which was deemed most
evere in the OM1 branch of the left circumflex artery. Quan-
ification of coronary flow reserve has recently been shown to
mprove differenciation between 3-vessel and 1-vessel dis-
ase. Flow reserve quantification thus helps define the full
xtent of multi-vessel disease,103 by assessing disease severity
ot only in the abnormal segments but also in the “normal”
egments, when these “normal” segments are used for nor-
alization of stress and rest images.
Coronary arteriography is considered the “gold standard”

or evaluating the severity of coronary stenosis. Muzik and
oworkers found a high diagnostic accuracy and sensitivity
sing absolute 13N ammonia blood flow for the detection of
oronary disease. In patients with a low probability of CAD,
he specificity was also high, whereas an abnormal flow re-
erve in regions with angiographically normal territories in
atients with CAD elsewhere was postulated to represent
arly functional vascular abnormality.104 Because the resis-
ance to blood flow through a stenotic lesion depends on a
umber of lesion characteristics, the physiologic significance
f coronary lesions of intermediate severity often is difficult
o determine from angiography alone.105-108 Multiple factors
ther than lesion diameter influence the measured coronary
ow reserve, including the heart rate, resting blood flow, the

eft-ventricular end-diastolic pressure, contractility, and the
agnitude of dipyridamole-induced hyperemia,109-112 Nev-

rtheless, there is a role for the accurate assessment of the
hysiological severity of coronary stenoses as a more objec-
ive determination of medical versus mechanical treatment of
oronary artery stenosis and for monitoring of the results of
heir treatment, since clinical tools, such as chest pain, are
oorly related to stenosis severity.
Another application of occasional usefulness in interven-

ion is the assessment of collaterals in diseased regions. It is
xiomatic that blood flow in diseased arteries does not in-
rease to the same degree as in normal vessels. In multivessel
isease, in regions supplied by collaterals, blood flow may
ctually decrease with stress, demonstrating “coronary steal,”
hich can be detected by quantification of regional blood
ow.113-115 Knowledge of such collaterals, which can’t always
e seen angiographically, can help in the planning of high-
isk intervention procedures.

Another application is the monitoring of the progression
r possible regression of diffuse disease in atherosclerosis,
ypertension, diabetes, hyperlipidemia, and posttransplant
asculopathy.116-118 The patient shown in Figure 9 declined
ABG and allowed the revascularization of only the OM1,

he most severely diseased vessel. The patient was placed on
rigorous antilipid regimen with diet and medication. One

ear later, the PET study was repeated. The study did not
how any focal abnormality, and the global CFR was 2.2
normal), and at 2 years, the CFR was 2.9, demonstrating

eversibility of the hemodynamic effects of CAD with diet r
nd antilipid medication alone, a phenomenon documented
n the literature.119-121

etection of Early Disease
ecreased CFR has been found even in the absence of coro-
ary stenoses, in normal-appearing vessels in patients with
oronary disease in other vessels.122-124 The presence of even
ild, nonobstructive coronary disease was found to be pre-
ictive of progression to clinically significant disease in 6
ears.125 Quantitative PET offers a sensitive tool to detect
arly disease in high risk asymptomatic individuals with fam-
ly history of CAD.127 CFR has been shown to be decreased in
ypertrophic disease states,127 in poorly controlled diabetes
r hyperlipidemia.128-130 Glycemic control and reduction of
erum lipids through low-fat diet, exercise and antilipid
rugs have been shown to lead to improvements in
FR.131,132

old Pressor Stress Testing. The vascular endothelium
lays an important role in the regulation of circulatory func-
ion and in the structural and functional integrity of the vas-
ular wall.133 Intracoronary acetylcholine normally causes
ndothelial release of nitric oxide (NO) and vasodilation. In
he presence of endothelial disease, acetylcholine produces
ack of vasodilation, or even vasoconstriction. Abnormal en-
othelium-dependent coronary vasomotion has been found
o be an independent predictor of coronary artery disease and
f coronary events.134-136 Normal response has been restored
fter cholesterol lowering and antioxidant therapy.137

Endothelial function also can be studied with flow-de-
endent vasodilation in response to cold-pressor testing
CPT).138 CPT consists of immersing one hand in ice or ice
ater for 60 s before the injection of a flow tracer and for
0 s after the injection. CPT results in sympathetic stimu-

ation139 and alpha-adrenergic mediated vasoconstriction
f vascular smooth muscles, which is, under normal con-
itions, offset by flow-mediated vasodilation and a possi-
le direct adrenergic-induced endothelium-dependent va-
odilator response.140 In the presence of endothelial
isease or atherosclerosis, the vasoconstrictor component

s left unopposed.141,142 Changes in luminal area of the
picardial vessels during CPT correlate with changes in
oronary blood flow, demonstrating that flow-dependent
asodilation can be studied with measurements of coro-
ary blood flow.143,144 A 30% to 40% increase in blood
ow is considered a normal response to CPT. Despite an-
iographically normal coronary arteries, a diminished or
ven paradoxically decreased endothelium-dependent
ow response may result in a mismatch between demand
nd supply, that has been related to myocardial ischemia
uring daily life.145-147 An example is given by a 58-year-
ld female with hyperlipidemia and chest pain, who was
nitially diagnosed with a distal LAD artery occlusion,
hich was treated with a stent. After several years of doing
ell, the patient presented with atypical chest pains at
ight and in cold weather. An angiogram showed no ob-
tructive disease. The patient underwent serial imaging at

est, CPT, and adenosine stress testing with Rb-82 PET
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Cardiac PET imaging 27
maging. The results are shown in Figure 10. The resting
mages are normal. The adenosine stress images show mild
nteroapical hypoperfusion suggestive of a base-to-apex
ow gradient, as proposed in Figure 8. The cold-pressor

mages show moderate anteroapical and extensive mild
nterior, anterolateral, and septal hypopoperfusion ac-
ompanied by her usual chest pain. The patient was given
calcium channel blocker, and more aggressive antilipid

herapy with complete relief of symptoms.
Abnormal responses to CPT have been found in early cor-

nary artery disease,148 hyperlipidemia,149,150 insulin resis-
ance,151 diabetes,152,153 elevated CRP levels,154 the metabolic
yndrome,155 elevated leptin levels in obese individuals,156

nd smoking.157,158 Endothelial dysfunction is reversible
ith insulin-sensitizing drugs in the case of insulin resis-

ance, improved glycemic control or ACE inhibitors in dia-
etes, L-arginine, citric acid or smoking cessation in smokers,
nd antilipid therapy in patients with elevated serum lip-
ds.159-162 Abnormal CPT results have been associated with

enopause,162 that can be reversed by long-term hormone
eplacement therapy.163

The response to CPT is more dramatic compared with
he minimal changes in angiographic CAD lesion charac-
eristics or lumen diameter164 and tends to be more sensi-
ive than the response to hyperemia (dipyridamole or
denosine).165 The fact that some patients with risk factors
ave a normal response to CPT, whereas others have an
bnormal response, or that some “normal” subjects may
ave an abnormal response,166 attest to the variability of
he susceptibility of the individual. Of relevance is the
bservation that only 50% of the total attributable risk
urden for CAD can be related to conventional risk fac-

igure 10 82Rb PET tomographic images (A) and polar maps (B) of
denosine stress, CPT, and resting images of a 58-year-old female
ith atypical chest pains at night and in cold weather but no ob-

tructive coronary disease. Resting perfusion is normal. The adeno-
ine stress images show mild anteroapical hypoperfusion. The cold-
ressor perfusion images show moderate anteroapical and extensive
ild anterior, anterolateral, and septal hypopoperfusion.
ors,167,168 warranting an alternative determination of risk m
or the development of atherosclerosis. Noninvasive CPT
an serve as an early marker of endothelial dysfunction,
nd development of atherosclerosis, that is susceptible to
eversibility with diet and medication.169

s Myocardial PET Perfusion
maging Cost-Effective?
he use of PET perfusion imaging has been shown to be
ost-effective through its enhanced diagnostic power. The
esults of an analysis by Gould and coworkers170-172 are
hown in Figure 11. The most expensive diagnostic ap-
roach is that of coronary angiography in all patients with
pretest probability of less than 70%. In patients with a

reater than 70% likelihood of disease, angiography is
ore cost-effective for diagnosis. Both SPECT and PET

chieve a savings compared with performing angiography,
ue to deceased referral for unnecessary coronary cathe-
erization. PET achieves a savings compared with SPECT
or patients with a probability of disease between 0 and 60.
f only half of patients with an abnormal noninvasive test
ndergo angiography, then the cost savings of PET is even
reater. A cost analysis by Patterson and coworkers173

ame to similar conclusions.
Merhige174 studied what actually happens when PET im-

ging is introduced into clinical practice. 102 patients stud-
ed with stress-rest 82Rb PET imaging were identified, with a

ean pretest probability for CAD of 37% were compared
ith 102 matched patients tested with SPECT. After a fol-

ow-up of 12 months, the use of PET led to a reduction in the
alse positive rate resulting in a reduction in angiographies.

hile there was no significant change in the rate of angio-
lasties, there was a reduction in the number of bypass op-
rations. The diagnostic cost per patient was similar for
PECT and PET, despite higher cost of PET per study, due to
ower referral for further diagnostic studies. The therapeutic

igure 11 Comparative costs of 201Tl SPECT, 82Rb PET, and coronary
ngiography as a function of disease prevalence. (Reprinted by per-

ission of the Society of Nuclear Medicine.238)
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28 J. Machac
ost per patient was lower with PET, attributable to a reduc-
ion in the number of bypass operations, as predicted by
atterson and coworkers.175

yocardial Viability
hy PET Viability Imaging Matters

iability imaging is reviewed separately in this seminar. The
onsideration of myocardial viability is important in a patient
ith impaired left ventricular function because of coronary

rtery disease with a possibility of revascularization. Flow
easurements in these dysfunctional regions by SPECT or

ET perfusion imaging, particularly those with mild-to-mod-
rate flow reduction do not by themselves distinguish be-
ween regions with potentially reversible dysfunction and
egions with irreversible dysfunction.176 Combined meta-
olic and perfusion PET imaging offers diagnostic power in
he prediction of myocardial functional recovery of viable
yocardium.
It also has high prognostic power in predicting symptom-

tic improvement in patients with congestive heart failure177

nd predicting high level of cardiac events in patients with
oor left ventricular function in the presence of significant
reas of perfusion-metabolism mismatch treated medically,
nd lower event rate in patients undergoing revasculariza-
ion.178-183

The clinical value of cardiac FDG-PET imaging in the as-
essment of myocardial viability in combination with perfu-
ion imaging was demonstrated more than 18 years ago.184 In
irect comparison between thallium-201 SPECT or 99mTc
estamibi with FDG imaging in the same patients with very
oor left ventricular function, FDG-PET imaging showed in-
remental benefit over thalium-201 stress-redistribution /re-
njection or 99mTc sestamibi SPECT imaging in predicting
unctional recovery, while in patients with relatively pre-
erved left ventricular function, the predictive value was sim-
lar.185,186 PET viability imaging also has been successfully
pplied in infants and children with high accuracy, similar to
hat seen in adults.187

In our protocol, the patient undergoes resting perfusion
maging with 82Rb and, whenever possible, pharmacologic
tress 82Rb perfusion imaging. This is followed by FDG-PET
maging, which begins with glucose loading and supplemen-
ary insulin.188 The patient is injected with FDG. After a 1-h
est, the patient then undergoes emission PET imaging, along
ith a transmission scan.
Because 82Rb is an analog of 201Tl, it is not surprising that

2Rb often shows reversible stress-rest defect, whereas 99mTc
estamibi or 99mTc tetrofosmin SPECT studies show extensive
xed defects.189 Nevertheless, FDG-PET imaging frequently
hows additional viability in patients with fixed 82Rb perfu-
ion defects or in patients with only partial stress-inducible
eversibility. An example is a 49-year-old male with a history
f myocardial infarction, very poor left ventricular function,
nd congestive heart failure. Exercise stress 99mTc MIBI im-
ges (Fig. 12) showed severe apical, anterior, lateral, and

nferior defects, with no improvement on the rest images. (
ipyridamole stress 82Rb images showed severe apical, ante-
ior, lateral, and inferior defects, and a moderate to severe
eptal defect. The resting images, however, showed marked
nterior, septal and anterolateral improvement, and inferior
mprovement. The extent of stress-inducible ischemia was at
east 50% of the myocardium. In addition, the FDG PET
mages showed preserved or increased activity in the antero-
ateral, lateral, inferior and posterior walls, demonstrating a
lassical mismatch pattern in these regions, occupying at
east 50% of the myocardium. About 75% of the myocardial

ass showed either stress-inducible ischemia or hibernation,
ncluding most of the regions considered scarred by MIBI
PECT imaging. In some instances, it is not necessary to
roceed with FDG PET viability imaging, if the stress and rest

2Rb PET imaging provides evidence of ischemia, rather than
carring.

tudies of PET Perfusion
racer Kinetics for Viability
ecause 82Rb is an analog of 201Tl, an attempt was made to
nalyze myocardial kinetics with 82Rb. Despite the short half-
ife of 82Rb, animal studies showed that acutely injured, post-
schemic myocardium that eventually proved to be viable
howed retention of 82Rb, whereas myocardium, which
roved to be necrotic, showed washout of 82Rb.190 This was
upported by clinical studies that measured the washout rate
etween 1 to 2 min after injection versus 4 to 6 min afterward

igure 12 A, 99mTc sestamibi (MIBI) exercise stress and rest images in
49-year-old male with known CAD and congestive heart failure.
he MIBI images show severe apical, anterior, lateral, and inferior
efects with no improvement on the resting images. B, The dipyrid-
mole stress 82Rb images show severe apical, anterior, lateral and
nferior-basal defects, and a moderate-to-severe septal defect. The
esting 82Rb images show marked anterior, septal and anterolateral
mprovement, and mid-inferior improvement. The FDG-PET im-
ges showed preserved or increased activity in the anterolateral,
ateral, inferior and inferior-basal walls, demonstrating a classical

ismatch pattern in these regions.
Fig. 13) and compared uptake and retention of 82Rb in com-
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Cardiac PET imaging 29
arison to FDG-PET imaging studies.191,192 Another study
ound a significant difference in 82Rb kinetics between meta-
olically active and irreversibly injured myocardium.193 We
ound a greater 82Rb washout rate with increasing severity of
efects, regardless of the FDG uptake.194 This issue remains
pen to further studies.
Beanlands and coworkers195 studied the ability of 13N am-
onia kinetic modeling to calculate viability and compared

he results with 18F FDG uptake. Flow and the volume of
istribution were both reduced in the hypoperfused regions
f patients with scar, whereas partially preserved flow and
olume of distribution were seen in regions with viability.
he sensitivity and specificity of this combination were 100%
nd 90%, respectively. These interesting results deserve fur-
her studies.

echnical Problems
ncountered
ith Cardiac PET Imaging

he vast majority of patients tolerate PET imaging well. Oc-
asional patients do feel claustrophobic. Patients should be
ffered sedation in that event. Frequently, a thorough expla-
ation of the procedure, providing reassurance, soothing or
avorite music, and close supervision can overcome this dif-
culty without medication.
Myocardial PET imaging is subject to artifacts. A faulty

etector block can cause a major streak and defect artifact.
ecognition and checking the PET blank study aids in diag-
osing the problem. The assumption of successful PET atten-
ation correction is that the transmission scan reflects the
rue position of the heart, diaphragm and adjacent structures.
ignificant displacement of the average position of the heart
ue to hyperventilation during stress or a change in respira-
ory pattern after falling asleep will violate that assumption
nd leads to artifact.

Our recent work with 178 patients studied with dipyrid-
mole stress and rest 82Rb PET imaging196 showed that prev-

igure 13 Schematic of the imaging protocol utilizing washout or
etention of Rb-82 for assessing myocardial viability. (Reprinted by
ermission of the Society of Nuclear Medicine.239)
lence of noticeable vertical heart movement of more than 10 f
m was 6% in an unselected group of 100 patients, 17% in
subset of 78 asymptomatic patients, and 14% in a subset of
7 patients at low risk of CAD. Despite that, there was no
ignificant increase in frequency of PET scan defects with
arge or small heart drop in any of patient subgroups, includ-
ng in the group with low probability of CAD. Fortunately

otion does not always lead to artifactual findings, but
hould be suspected in cases of basal anterolateral, antero-
eptal or lateral defects in the presence of excessive displace-
ent.
Analysis of artifacts in PET perfusion images due to trans-
ission-emission misregistration was recently published by

oghin and coworkers,197 who performed 1177 studies with
ither 82Rb or 13N ammonia, while varying the order of trans-
ission and emission scans. They found that 21% of subjects
ad artifactual defects due to transmission-emission misreg-

stration. Misregistration defects were predicted by horizon-
al plane misregistration, which was predicted by diaphragm
isplacement between rest and dipyridamole stress images, a
reater body mass index, and small heart size. Misregistration
as greatest with transmission scans performed early in the

maging protocol. This was predictably greater in obese indi-
iduals, suggesting delayed displacement of the diaphragm
fter positioning due to pressure from abdominal contents.
y shifting the emission images to match the transmission
can during postprocessing, the quantitative severity and size
f defects was significantly decreased.
This problem needs appropriate software to display super-

mposed emission and transmission scans, timely visual or
utomatic recognition of misregistration movement, both in
lane and between transaxial planes, and taking corrective
easures. When feasible, a separate transmission scan with

ach of the resting and stress studies used in some laborato-
ies is a useful step (Table 5). In our protocol (Table 4), we
erform the transmission scan after the resting scans, just
efore the pharmacological stress, thus close in time to both
est and stress imaging. This may account for the relatively
ower frequency of displacement misregistration artifact in
ur studies.198

mpact of PET-
omputed Tomography (CT)

ombined PET and CT imaging in a single combined
ET-CT unit has become the preferred approach for PET

maging in oncology. Approximately 80% new PET units
nstalled in 2003 were PET-CT units (GE Medical Systems,
ersonal communication, 2004). Table 10 summarizes the
otential benefits of PET-CT in cardiac imaging. First, the
cout CT scan can, in a few seconds, check the proper posi-
ioning of the patient. The CT transmission scan lasting 15 to
0 s reduces imaging time. The time savings is not only the
ime needed for the pin-source transmission scan, but be-
ause the CT transmission scan is relatively free of noise, it
educes the amount of noise in the attenuation-corrected
mission scan, thereby reducing the length of time required

or the emission scan itself. One group reported saving 12
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in per study after switching from a dedicated PET system to
PET-CT system.199 Because 30 to 35 min are required for

he entire study, with possibly 45 minutes for the more dif-
cult patients,200 throughput should be enhanced.
PET-CT imaging holds both challenges and solutions for

he attenuation correction problem. It is possible to repeat
he CT transmission scan separately for both rest and stress
mages.201 The CT transmission and PET emission scans can
e easily displayed using existing display software. The CT
ransmission map can be potentially moved to provide more
eliable attenuation correction.

CT attenuation correction also is more susceptible to arti-
acts produced by metallic implants or pacemakers, than pin
ource-produced attenuation maps. A very short scanning
ime for the CT attenuation map may under-sample the po-
ition of the heart and diaphragm, due to cardiac contraction,
nd respiratory movement,202 seen frequently in whole body
ET imaging for oncology purposes.203 The transmission
can needs to be obtained over a sufficient number of respi-
atory and cardiac cycles, to match the average position of the
eart during the emission scan at rest and again during
tress.204 The radiograph tube current used for the transmis-
ion scan needs to be low, to minimize radiation exposure.
uch an approach has been taken at the Brigham and Wom-
n’s Medical Center (Table 11). The most optimal protocol
or PET-CT has not yet been determined, due to the limited
xperience with PET-CT imaging of the heart. Respiratory
ating of the CT as well as the PET images offers the potential
or a closer emission-transmission match.205-207 It is hoped
hat PET camera manufacturers will address this important
eed.
Another potential application of PET-CT is the possibility

f obtaining coronary calcium scores at the same imaging
ession as the PET scan, which is feasible with an 8- or 16-
lice multidetector CT scanner. Calcium scoring requires a
igher current from the CT radiograph tube than the trans-
ission scan, resulting in higher patient radiation exposure,

ut still lower than for CT diagnostic imaging. The clinical
alue of coronary calcium scoring is at this time still an open
uestion in clinical practice. In patients with risk factors but
ew symptoms being screened for CAD, calcium scoring can
dd specificity when the calcium score is low and the perfu-
ion results are equivocal or abnormal due to endothelial
ysfunction. The calcium score can add sensitivity in the
etection of preclinical CAD, even in the presence of normal
yocardial perfusion. Facta and coworkers208 found that the
resence of calcium is associated with mild functional alter-
tion of coronary circulation in apparently healthy individu-
ls, whereas in type 2 diabetic patients, coronary vasomotion

able 10 Value of PET-CT

1. Positioning
2. Attenuation correction
3. Calcium scoring
4. Coronary angiography
5. Contrast ventriculography
bnormalities were independent of epicardial calcifications.
y contrast, Prior and coworkers209 found that the flow re-
ponse to CPT or adenosine did not correlate with calcium
cores. Glass and coworkers210 found that the presence, lo-
ation, and severity of myocardial perfusion defects or angio-
raphic lesions did not correlate with global calcium scores.
hus, regional coronary disease and calcium deposition pro-
ide different information. Their interaction and significance
eeds to be explored.
An intriguing possibility is the potential value of CT coro-

ary angiography performed together with PET rest and
tress and/or viability imaging in selected patients. Multislice
16 slices or greater) CT scans have been found to have suf-
cient temporal resolution to image, with intravenous con-
rast, coronary arteries with a diameter or 1.5 mm or greater,
ith a reported sensitivity for 50% or greater coronary le-

ions of 86% to 92%, a specificity of 93% to 99%, and accu-
acy of 93% compared with invasive coronary angiogra-
hy.211,212 There are limitations in visualizing lesions in the
mallest distal vessels, and in the presence of heavy calcifica-
ions. The latter limitation can be overcome with the aid of
he PET perfusion results.213

It is conceivable that patients with known or suspected
isease could be studied with sequential stress-rest perfusion

maging and CT angiography and ventriculography, allowing
cquisitions of superimposed images of both coronary anat-
my, perfusion, wall motion, and viability.214 This complete
et of spatially mapped information could add precision and
ase to decision-making for interventions in multivessel dis-
ase intervention planning, or in patients with physiologi-
ally abnormal perfusion but anatomically normal coronary
rteries. This proposition still needs to be tested in clinical
tudies.

uture Prospects
he extensive infrastructure of PET scanners, availability of
erfusion and viability tracers and reimbursement have set
he stage for more widespread use of PET for indications
hown to be of benefit. In the meantime, there have been
everal major paradigm shifts in the understanding and man-
gement of coronary disease, in which PET imaging of the
eart is well suited to play a role. One is the shift in emphasis
rom the assessment of structural to functional alterations.

ith quantification of myocardial blood flow, PET can detect

able 11 Imaging Protocol for 82Rb PET Imaging With a
ET–CT Scanner234

Procedure Time

Positioning (Scout) 1 min
CT transmission scan 1 min
Rest gated imaging 8 min
Rest perfusion imaging 8 min
Pharmacological stress 7 min
CT transmission scan
Stress imaging 8 min
Total duration 33 min
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arly endothelial disease in the absence of obstructive dis-
ase, which is predictive of future development of disease,
ven in patients that lack classical risk factors, and which can
e reversed by lifestyle, dietary, and pharmacologic interven-
ions. Thus, the study of endothelial dysfunction is suggested
o be a key to the early diagnosis and control of early coronary
isease. Another unique feature of PET is the ability to image
s yet nonroutine tracers labeled with isotopes like 18F, 11C,
nd 13N. Finally, a major paradigm shift is offered by the
ntriguing potential of combined multimodality imaging,
epresented by PET-CT imaging. The growing PET infra-
tructure is allowing PET imaging to become a tool in the
oninvasive assessment of in vivo cellular metabolism, recep-
or function and gene expression, which hold great potential
n applications beyond perfusion and glucose metabolism
iscussed in this review.
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