

Positron Emission Tomography for Prostate, Bladder, and Renal Cancer

Heiko Schöder, MD, and Steven M. Larson, MD

Prostate cancer, renal cancer, bladder, and other urothelial malignancies make up the common tumors of the male genitourinary tract. For prostate cancer, common clinical scenarios include managing the patient presenting with 1) low-risk primary cancer; 2) high-risk primary cancer; 3) prostate-specific antigen (PSA) recurrence after apparently successful primary therapy; 4) progressive metastatic disease in the noncastrate state; and 5) progressive metastatic disease in the castrate state. These clinical states dictate the appropriate choice of diagnostic imaging modalities. The role of positron emission tomography (PET) is still evolving but is likely to be most important in determining early spread of disease in patients with aggressive tumors and for monitoring response to therapy in more advanced patients. Available PET tracers for assessment of prostate cancer include FDG, ¹¹C or ¹⁸F choline and acetate, ¹¹C methionine, ¹⁸F fluoride, and fluorodihydrotestosterone. Proper staging of prostate cancer is particularly important in high-risk primary disease before embarking on radical prostatectomy or radiation therapy. PET with ¹¹C choline or acetate, but not with FDG, appears promising for the assessment of nodal metastases. PSA relapse frequently is the first sign of recurrent or metastatic disease after radical prostatectomy or radiation therapy. PET with FDG can identify local recurrence and distant metastases, and the probability for a positive test increases with PSA. However, essentially all studies have shown that the sensitivity for recurrent disease detection is higher with either acetate or choline as compared with FDG. Although more data need to be gathered, it is likely that these two agents will become the PET tracers of choice for staging prostate cancer once metastatic disease is strongly suspected or documented. ¹⁸F fluoride may provide a more sensitive bone scan and will probably be most valuable when PSA is greater than 20 ng/mL in patients with high suspicion or documented osseous metastases. Several studies suggest that FDG uptake in metastatic prostate cancer lesions reflects the biologic activity of the disease. Accordingly, FDG can be used to monitor the response to chemotherapy and hormonal therapy. Androgen receptor imaging agents like fluorodihydrotestosterone are being explored to predict the biology of treatment response for progressive tumor in late stage disease in castrated patients. The assessment of renal masses and primary staging of renal cell carcinoma are the domain of helical CT. PET with FDG may be helpful in the evaluation of "equivocal findings" on conventional studies, including bone scan, and also in the differentiation between recurrence and posttreatment changes. The value of other PET tracers in renal cell carcinoma is under investigation. Few studies have addressed the role of PET in bladder cancer. Because of its renal excretion, FDG is not a useful tracer for the detection of primary bladder tumors. The few studies that investigated its role in the detection of lymph node metastases at the time of primary staging were largely disappointing. Bladder cancer imaging with ¹¹C choline, ¹¹C methionine, or ¹¹C- acetate deserves further study. Semin Nucl Med 34:274-292 © 2004 Elsevier Inc. All rights reserved.

Prostate cancer is the most common malignancy among men in the United States, accounting for approximately one third of all cancer diagnoses. Approximately 230,000 new cases of prostate cancer will be diagnosed in 2004.¹ Nowadays prostate cancer is most commonly diagnosed by prostate-specific antigen (PSA) screening. The tumor has a variable biology, ranging from low-grade indolent cancers to aggressive tumors that inexorably spread and kill the patient principally by metastatic involvement of bone marrow and bone.

Prostate cancers vary widely in their rate of growth, aggressiveness, and tendency to metastasize. The biology of this disease evolves from a small, slow-growing, androgen-dependent "indolent" carcinoma toward a more and more aggressive, androgenindependent tumor during the course of progression.^{2,3} Recently,

Department of Radiology/Nuclear Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY.

Address reprint requests to: Heiko Schöder, MD, Department of Radiology/ Nuclear Medicine, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021.

Scher and coworkers have described this concept of "clinical states" that helps stratify patients for management.⁴ The states model notes individual patient status as primary tumor, PSA relapse, noncastrate metastases, and castrate metastases. It seems to us that this clinical-states model also could provide a framework for recommendations for appropriate diagnostic imaging in a given clinical scenario. For example, positron emission tomography (PET) imaging is unlikely to be useful in indolent primary tumors, but PET may be useful in more aggressive primary tumors with a high risk of local extension and metastatic involvement.

In the United States, three important practice patterns dominate diagnosis and management of prostate cancer: 1) the widespread use of serum assays for PSA during routine health surveillance, followed by ultrasound directed biopsies of the prostate, has led to early diagnosis of prostate cancer. Therefore, more than 70% of prostate cancers are now diagnosed when the tumor is organ confined, and radical prostatectomy, brachytherapy, or external beam radiation are used with curative intent. 2) In individual patients, nomograms are used as an aid to management decisions by predicting the likely pathological stage of the disease and the probability of recurrence and metastases after treatment with curative intent. These nomograms combine information from PSA, Gleason score at biopsy, and clinical stage at presentation. 3) Prostate cancer, either primary or metastatic, almost always is responsive to androgen withdrawal (medical or surgical castration). For this reason, patients with more aggressive tumors are likely to receive treatment with antiandrogens early in the course of their disease. Such therapy is likely to have an important impact on functional imaging tests such as PET.

Primary Prostate Cancer

As for other malignancies, the primary staging is important in patients with prostate cancer, especially in the more aggressive local tumors. The extent of prostate cancer should be determined as accurately as possible to direct therapy rationally based on the clinical stage and to evaluate the prognosis. Both the clinical stage of the disease and the probability for nonlocalized disease (extracapsular extension, seminal vesicle invasion, nodal disease) will determine the choice of therapy.

Greater than 75% of patients with newly diagnosed prostate cancer now present with clinically localized disease. Hence, the diagnostic yield of imaging studies in an unselected group of prostate cancer patients would be very low. Instead, functional imaging studies particularly are likely be most meaningful in the more aggressive primary lesions. Therefore, rather than uniformly applying a certain test in all patients, specific imaging studies should be based on the clinical state of the patient. This decision could be based on commonly used tables or nomograms for presurgical risk stratification.5-7 Nomograms usually combine PSA, Gleason score,8 and clinical stage to predict the pathologic stage of the disease⁵ or incorporate data from surgical pathology to predict the probability for PSA relapse and survival.9 The nomograms are considerably more accurate than any of the clinical parameters in isolation. For instance, using the clinical examination alone, the true stage of prostate cancer will be underestimated in as many as 30% to 60% of patients.¹⁰ By definition, however, nomograms only indicate a certain likelihood for organ-confined disease, but they do not provide exact staging information in the individual patient.^{5,9,11} Therefore, it would be desirable to have an accurate, noninvasive staging tool, which then should be applied in selected groups of patients (eg, high risk for nonorgan-confined disease based on nomogram).

Role of Conventional Imaging Studies for Primary Staging

Transrectal ultrasound (TRUS) is the most commonly used imaging modality for viewing the prostate. However, only 60% of tumors are visualized by TRUS, and the method often is used simply to localize the prostate, as a guide to biopsy. Nonetheless, it is said that in the hands of experts, TRUS detects extracapsular extension with accuracy between 58% and 86%. However, a recent multicenter trial TRUS casts doubt on this statement because TRUS was no more accurate at predicting organ-confined disease than was the digital rectal examination.^{12,13}

Computed tomography (CT) lacks soft-tissue contrast resolution for the detection of cancer within the prostate. Its role in the local staging of prostate cancer also is limited because of its low accuracy (24% for extracapsular extension and 69% for seminal vesicle invasion).¹⁴

In experienced hands, the most accurate imaging test for primary staging is magnetic resonance imaging (MRI) using an endorectal coil in conjunction with a pelvic phased-array coil.¹⁵ Although not perfect, this test can identify and localize the primary tumor and assess for potential extracapsular extension (sensitivity 50%; specificity 95%¹⁶; and seminal vesicle invasion. In addition, MRI can detect or exclude perineural invasion of tumor with high accuracy,¹⁶ which is an important criterion when nerve-sparing surgery is considered. Overall sensitivity and specificity for the local staging of prostate cancer range between 51% and 89% and 67% and 87% respectively, with accuracy between 54% and 88%.^{17,18}

Prostate cancer is associated with characteristic alterations in the concentration of certain metabolites, such as an increase in prostate choline and a decrease in prostate citrate levels, as compared with normal prostate tissue. These metabolic alterations can be detected by magnetic resonance spectroscopy (MRS).¹⁹ The addition of spectroscopy to MRI alone may aid in the detection of prostatic cancer tissue and may increase the specificity of MRI. The addition of MRS to MRI improved staging accuracy significantly when used by an inexperienced reader compared with that by an experienced reader, and the latter was able to further improve the accuracy.²⁰ However, MRS is sensitive to technical artifacts and currently still considered investigational; it is not yet in widespread use. It also needs to be emphasized that these data from MRI and MRS were generated by a few experienced institutions; it remains to be seen whether the reported high sensitivity and specificity can be reproduced once the technique enjoys widespread use.

Role of PET for Primary Staging

Available PET Tracers for the Imaging of Prostate Cancer and the Biochemical Rationale for Their Use

FDG. PET imaging with [18F] 2-fluoro-D-deoxy-glucose (FDG) takes advantage of the increase in glycolytic flux in cancer cells (Table 1). In rapidly growing, de-differentiated tumors, aerobic glycolysis is increased and respiration decreased.²¹ Even under aerobic conditions, as much as 50% of the ATP produced in tumor cells is derived from glycolysis (in contrast to approximately 10% in normal cells, which mostly rely on oxidative phosphorylation as a source for energy). Increased glycolysis is associated with quantitative and qualitative changes in enzyme expression and activities, glucose transporter molecules, as well as cytoskeletal arrangements. Some of these processes have been studied in prostate cancer. In vitro (cell cultures), rapidly dividing DU145 prostate cancer cells depend on high levels of glucose consumption, whereas relatively slow-growing LNCaP cells were found to be less dependent on glucose.²² Glucose can be used for the synthesis of ATP and as

	¹⁸ F FDG	¹¹ C Methionine	¹¹ C Choline	¹⁸ F Choline	¹¹ C Acetate	¹⁸ F FDHT
Normal biodistribution	Myocardium, bowel, liver, spleen, kidney	Pancreas, liver, spleen, kidney, salivary glands	Lung, liver, kidney, adrenal	Renal cortex, liver, spleen, salivary glands	Lung, spleen, pancreas, liver, kidney (mild in BM and bowel)	Liver, blood pool, small intestine (excr.)
Primary mode of excretion	Renal	Urinary	Intestinal	Urinary	Intestinal	Intestinal
Urinary activity?	+++	++	+	++*	Minimal†	-
Suitable for						
Detection of primary PCA	-	-	-	-	-	-
Primary staging (LN, mets)	-	?	+	?	+	-
PSA relapse						
Local recurrence	(+)§	?	+++	++	+++	-
Distant metastases	+	++	+++	+++	+++	-
Prognostic value?	+	?	?	?	?	Likely
Therapy monitoring?	++	?	?	?	?	+
Typical activity in mCi (MBq)	370-555	370-555	370-925	185-260	555-925	370-555
Imaging start at min p.i.	45–60	5–10	5	3	5–10	Dynamic: immed. static: 60 min
EDE in mSv/MBq	2 × 10 ⁻²	5 × 10 ⁻³ ‡	5 × 10 ⁻³	$3.5 imes 10^{-2}$	6.2×10^{-3} ¶	No data

Table 1 Characteristics and Suggested Applications of PET Tracers for Imaging of Prostate Cancer

EDE, effective dose equivalent.

*Beginning at 5 min p.i.

[‡]Deloar et al.¹⁷⁹

When using a combined PET/CT.

DeGrado et al.72

[¶]Seltzer et al.¹⁸⁰

precursor for DNA synthesis. Glucose also serves as a substrate for the synthesis of diacylglycerol, which is a ligand for protein kinase C (the latter plays an important role in cellular signal transduction.²³ Although no clear relationship between these biochemical alteration and FDG uptake in prostate cancer has been demonstrated, they do provide the rationale for the hypothesis that FDG may selectively detect more aggressive tumors, which depend on higher glucose metabolism. Indeed, in vitro studies in prostate cancer xenografts showed higher FDG uptake in tumors with higher Gleason score,²⁴ and in clinical studies FDG uptake correlates with PSA level and PSA velocity as measures of tumor size and progression.²⁵⁻²⁷

The initial results of prostate cancer imaging with FDG were disappointing.^{28,29} These negative results were likely related to four factors: 1) limited sensitivity of FDG for prostate cancer lesions; 2) urinary excretion of FDG with tracer activity in ureters and bladder, making it difficult to distinguish lymph nodes or local recurrence; 3) use of older image reconstruction techniques, leading to streak artifacts in the pelvis³⁰; and 4) the lack of appropriate patient selection.

However, despite its poor reputation from earlier reports, FDG is in fact not an unsuitable tracer for the investigation of prostate carcinoma but needs to be used in carefully selected groups of patients.^{27,31-34} It is our belief that the use of adequate imaging techniques (iterative reconstruction, segmented attenuation correction)³⁵ and especially the application of combined PET-CT imaging can reduce the number of false-negative and false-positive findings.

However, urinary excretion of FDG remains undesirable for examining pelvic malignancies. Other PET tracers, in particular choline and acetate, have therefore been studied in patients with prostate cancer. According to unanimous initial reports these agents hold great promise.

Acetate. Shreve and coworkers introduced ¹¹C-acetate as a potential PET tracer for various malignancies, including prostate cancer.^{36,37} In a small group of 18 patients, acetate showed a higher sensitivity than FDG for the detection of local recurrence or metastatic disease. These investigators suggested that the lack of urinary excretion and good tumor:background ratio make acetate a more suitable tracer for imaging of prostate cancer.

During the past few years this tracer also has been used for the imaging of prostate cancer.^{26,38,39} Acetate be can also be labeled with ¹⁸F fluorine, although methods for safe and efficient synthesis are still under investigation. Preliminary data from animal experiments and one case report suggest that this agent might be useful for imaging of prostate cancer.^{40,41}

Acetate uptake in tumor cells is related to lipid synthesis.42,43 Yoshimoto and coworkers42 incubated tumor cell lines and fibroblasts with ¹⁴C acetate and analyzed the production of ¹⁴CO₂ and other ¹⁴C-labeled metabolites. In addition, glucose metabolic rate was assessed with ³H deoxyglucose (DOG) and the cell growth rate by ³H thymidine incorporation into DNA. Tumor cell to nontumor cell ratios were higher for acetate than DOG. ¹⁴C acetate was metabolized and incorporated into the cellular lipid pool, mostly phosphatidylcholine (which is a building block for cellular membranes) and neutral lipids. Of note, the amount of ¹⁴C in lipids correlated with cellular growth activity as measured by ³H thymidine incorporation. The remaining fraction of ¹⁴C acetate was converted into CO₂ and amino acids. Although there were differences between tumor cell lines, in each case at least 70% of the activity was always found in intracellular lipids or amino acids. This is in contrast to the myocardium, where acetate is mainly used for oxidative metabolism.44-46

Additional studies in prostate cancer provided the pathophysiologic rationale for the incorporation of acetate into lipids: Normal prostate tissue shows high citrate production and accumulation.^{47,48} In prostate cancer, however, citrate content is significantly reduced. In addition, some citrate also is transported from the mitochondrion to cytosol, where it is converted to oxaloacetate and acetyl-CoA.⁴⁷ The latter is the building block for fatty acids, which are used for membrane synthesis and metabolism. Other studies demonstrated an increase in fatty acid synthesis and accumulation, as well as

[†]Kato et al.⁵³

overexpression of the key enzyme fatty acid synthase (FAS) in prostate cancer.⁴⁹ This overexpression of FAS occurs early in cancer development and in hormone-responsive tumors (such as prostate cancer) is more pronounced as the tumor progresses toward the more advanced stage.⁵⁰ Recent studies have also shown that (¹⁴C) acetate is predominantly incorporated into intracellular phosphatidylcholine, that acetate uptake is an indirect measure of the FAS pathway,⁴³ and that FAS-mediated lipid synthesis mainly affects lipids in membrane rafts⁴³ (membrane rafts are associated with signal transduction processes)^{51,52} that are relevant for tumor growth and metastasis.

Acetate is not a cancer-specific tracer but also accumulates in normal and hyperplastic prostate tissue. In fact, the standardized uptake value (SUV) for ¹¹C-acetate uptake was found to be higher in individuals with normal prostate tissue younger than 50 years of age than in normal prostate of older subjects (>50 years) or those with benign prostatic hypertrophy (BPH).⁵³ In addition, there was no difference in prostate SUV between older subjects with normal prostate (2.3 \pm 0.7) and patients with proven prostate cancer (1.9 \pm 0.6). The relationship between intensity of acetate uptake in prostate cancer and PSA and is unclear.^{26,39} Although many prostate cancer patients have been studied with ¹¹C-acetate, full papers published to date include only about 150 patients.

Choline. In the human body, choline is needed for the synthesis of phospholipids in cell membranes, methyl metabolism, transmembrane signaling, and lipid–cholesterol transport and metabolism.⁵⁴ Intracellular choline is rapidly metabolized to phosphorylcholine (PC); it may also undergo acetylation to form acetylcholine or oxidation to form betaine (mainly in liver and kidney). The phosphorylated, the polar PC molecule is trapped within the cell. Various studies have revealed an increased choline uptake as well as an upregulated activity of choline kinase and elevated levels of PC in cancer cells.⁵⁵⁻⁵⁷ These observations gave rise to the development and clinical evaluation of MRS imaging, which revealed a high content of PC in prostate cancer,¹⁹ whereas in normal tissue this choline metabolite was found in low concentrations or was undetectable.

Based on these observations, Hara and coworkers introduced ¹¹C-choline for the imaging of malignancies⁵⁸⁻⁶¹ including prostate carcinoma. The efficacy of radiolabeled choline (labeled to ¹¹C or ¹⁸F) for localizing primary or metastatic prostate cancer has now been studied in more than 250 patients.⁶²⁻⁶⁷

¹¹C-choline blood clearance is very rapid (approximately 7 min), and the major amount of tracer remains trapped within cells. This allows for imaging as early as 3 to 5 min after tracer injection and provides images of good diagnostic quality.^{58,59} Physiologically increased tracer uptake is noted in salivary glands, lung, liver, kidneys, and adrenal glands.68 The short half life time for ¹¹C (20 min) poses a logistic challenge in many institutions. This has been addressed with the recent successful synthesis of ¹⁸F-labeled choline compounds. Hara and coworkers⁶⁹ synthesized F-18 fluoro-ethyl-choline (FEC) and DeGrado and coworkers synthesized fluoromethyl-dimethyl-2-hydroxyethylammonium (FCH).⁷⁰⁻⁷² In vitro (cultured PC-3 human prostate cells) studies revealed that cellular uptake and phosphorylation by choline kinase were very similar for FCH and natural choline but were lower for FEC.⁷¹ Both compounds show rapid clearance from the blood pool, appearing in the urinary bladder 3 to 5 min after injection. This is in contrast to ¹¹C choline, which shows very little urinary excretion, the activity concentration in the bladder was always lower than in prostate cancer or metastases.73 It has been suggested that early urinary appearance of F-18 choline compounds is caused by incomplete tubular reabsorption of intact tracer or by enhanced excretion of oxidized metabolites.⁷⁰

All three labeled choline compounds show rapid clearance from blood pool and rapid uptake in prostate tissue.69,70,73 FEC concentration in the prostate reaches its highest activity at 55 min p.i. (SUV 4.4 versus 2.8 at 5 min),⁶⁹ whereas FCH uptake shows a peak at approximately 3 min p.i. followed by a plateau.⁷⁰ It is unclear whether this difference would be clinically relevant because beyond 5 to 8 min p.i., the increasing accumulation of excreted tracer in the urinary bladder exceeds activity in the prostate and may interfere with visualization of abnormalities in the prostate (similar to FDG). Although urinary activity can be eliminated by bladder irrigation, this is neither desirable nor always feasible. Therefore, imaging of the prostate with ¹⁸F-labeled choline compounds should probably commence at about 1 min after IV injection (to allow for tracer clearance from the blood pool). Subsequently, as urinary activity increases (which would interfere with visualizing prostate tumors) but blood pool activity is low, images of the remainder of the body can be acquired.

Just like FDG, methionine, or acetate, choline is not a cancerspecific agent. Individuals with BPH show tracer uptake that is higher than in normal prostate tissue and lower than in carcinoma. However, in individual patients the intensity of uptake in the prostate cannot reliably distinguish between benign changes and cancer.⁷³ Nonspecific uptake of (¹⁸F) choline in granulocytes and macrophages⁷⁴ and (¹¹C) choline in reactive lymph nodes⁶⁶ have also been described.

Intense bowel activity can be observed with all choline compounds and can be a reason for false-positive findings.^{64,66} Imaging of the abdomen and pelvis may benefit from fasting, as pancreatic juice and bile both contain PCs (and hence excreted activity). Falsenegative findings have been described for metastases in lymph nodes of less than 1 cm in size.^{64,66}

Currently, it is unclear whether choline uptake in prostate cancer lesions can serve as an indicator of biologic aggressiveness. In at least one study,⁷³ there was no correlation between SUV of (¹¹C) choline in prostate cancer and tumor grade or Gleason score.

Methionine. ¹¹C-methionine has been used as a tumor imaging agent for several years.75-78 Its uptake reflects increased amino acid transport and, in part, protein synthesis; it also is related to cellular proliferation activity.^{79,80} In cancer, methionine uptake also is correlated with the amount of viable tumor tissue.⁸¹ Nilsson was the first to use this tracer in prostate cancer, reporting promising results in metastatic tumor.⁸² Macapinlac and coworkers⁸³ compared the biodistribution of ¹¹C methionine and FDG in 29 patients with androgen-independent metastatic prostate cancer. Both agents showed good uptake in index lesions. Tumor uptake of methionine occurred faster (peak at around 10 min followed by plateau) than that for FDG (sometimes continued rise >45 min). ¹¹C-methionine undergoes rapid clearance from the blood pool, which is faster than for FDG. Methionine is primarily metabolized in liver and pancreas, but shows no significant renal excretion. This biodistribution may explain why methionine appears to be more successful than FDG in imaging prostate cancer and nodal metastases.34

¹⁸*F Fluorodihydrotestosterone (FDHT).* The androgen receptor plays an important role in the proliferation and growth of prostate cancer. Virtually all patients with prostate cancer initially respond to androgen withdrawal, but eventually, the cancer cell will begin to grow, despite continued low levels of androgen. There is growing evidence that the escape from suppression offered by androgen

ablation therapy is related to continued signaling through the androgen receptor.^{2,84}

Imaging of the androgen receptor expression and its modulation or occupation by drugs might hence prove useful in treatment monitoring. For this purpose, the group at Washington University, St. Louis, developed the radiotracer 16β -¹⁸F-fluoro- 5α -dihydrotestosterone (FDHT), which is radiolabeled analog of dihydrotestosterone, the primary ligand of the androgen receptor.85 Recently, Larson and coworkers32 studied the biodistribution and binding characteristics of FDHT in seven patients with metastatic prostate cancer. Patients were imaged before and after therapy. Seventy-eight percent of 59 lesions had both FDHT and FDG uptake, and the remainder had FDG but not FDHT uptake. Further work is underway to evaluate this metabolic heterogeneity. Many patients with prostate cancer eventually develop resistance to androgen ablation. It is thought that this development of androgen independence characterizes a more aggressive prostate cancer phenotype. Accordingly, one might speculate that prostate cancer lesions that show FDHT uptake indicate presence of differentiated tumor cells likely to respond to androgen withdrawal. In contrast, lesions with persistent FDG uptake but lack of FDHT uptake might represent a more aggressive, androgen-independent tumor cell clone. This pattern of differential tracer uptake is in analogy to thyroid and breast cancer (inverse relationship between FDG and Iodide uptake or FDG uptake and estrogen receptor binding). Studies are ongoing to further elucidate the clinical usefulness of FDHT in certain subgroups of prostate cancer patients.

Clinical Results for Diagnosis and Local Staging With PET. Early studies investigating the role of PET with FDG in primary prostate cancer produced disappointing results.^{28,29} In contrast to other malignancies, most primary prostate carcinomas show relatively low FDG uptake. Small size, slow doubling time (2-4 years in most cases) and specifics of prostate metabolism (see above) might be contributing factors. Although recent work described the expression mRNA and protein for the of glucose transporters GluT-1 and in particular GluT-12 in prostate cancer,86 it is uncertain whether expression levels and activity are in any way related to tumor metabolism or aggressiveness. There also is conflicting data concerning the relationship between FDG uptake in prostate cancer and clinical markers of tumor aggressiveness. At least one study suggested an increased probability for a positive FDG-PET scan in patients with advanced clinical stage and higher PSA (but not Gleason score)²⁶; no such relationship was found in another study (whereas tracer uptake in the primary tumor did not correlate with Gleason grade or levels of PSA in other reports.87

Efforts have been made to reduce urinary bladder activity from renally excreted FDG, which might cause streak artifacts and interfere with the detection of abnormal FDG uptake in the adjacent prostate gland.^{29,87} These efforts included forced diuresis and constant bladder irrigation via an indwelling Foley catheter. These procedures, which are time-consuming and do not seem practical in a busy outpatient PET center, have generally not improved the results. For instance, Effert and coworkers²⁹ used FDG-PET in 48 patients with various stages of prostate cancer and 16 patients with BPH. Despite continuous bladder irrigation during image acquisition, the authors did not find any difference in intensity or patterns of tracer uptake between cancer and benign prostate hypertrophy. Liu and coworkers⁸⁷ used oral hydration and intravenous Lasix for forced diuresis and reported similar results. They included 24 patients with organ-confined newly diagnosed prostate cancer and a mean PSA level of 13 ng/mL (range, 3.7-28.1). All but one patient had a Gleason score of 6 or greater. Histopathology from biopsies or

prostatectomy specimens served as standard of reference. Using an arbitrary tumor/back ground ratio >2.5, the authors could only identify one carcinoma, yielding a sensitivity of 4%.

Oyama and coworkers²⁶ compared the diagnostic yield of ¹¹Cacetate and FDG-PET in a mixed group of 22 patients with primary prostate carcinoma. Five patients subsequently underwent prostatectomy whereas 17 were treated with androgen withdrawal therapy. The sensitivity for localizing the primary tumor was 100% for acetate and 83% for FDG. (This high sensitivity for FDG may have been due to the inclusion of many patients with higher stages of the disease.) The intensity of ¹¹C-acetate uptake in the primary tumor was generally higher than that of FDG uptake, with SUVs ranging from 3.3 to 9.9 as compared with 1.9 to 6.3 for FDG. These results are encouraging, but the study had some methodological shortcomings. Patients with BPH were not included for comparison and histologic proof was only provided for the primary tumor but not sites of suspected metastases. Indeed, several studies have now shown that neither FDG nor acetate or choline reliably distinguish between prostate cancer and benign changes, such as BPH or prostatitis.^{28,29,53,65,87} De Jong and coworkers⁶⁵ compared uptake patterns of ¹¹C-choline in 25 patients with biopsy proven carcinoma and 5 with BPH. Although all primary tumors were detected and noncancerous prostate tissue, on average, showed lower tumor uptake than did cancer, there was considerable overlap in SUV (SUV_{benign}: mean = 2.3, range 1.3–3.2; SUV_{cancer}: mean = 5.0, range: 2.4–9.5). Using ¹¹C-acetate, Kato and coworkers⁵³ found no difference in prostate SUV between older subjects with normal prostate (2.3 \pm 0.7) and patients with proven prostate cancer (1.9 \pm 0.6).

Incidentalomas. Occasionally, focal intense tracer uptake can be noted in the prostate gland. This can be noted for FDG and has also been described for ¹¹C-choline. With the use of combined PET-CT, it is now possible to localize the foci accurately and distinguish them from focal excreted tracer in the prostatic urethra (Fig. 1). Just as for thyroid "incidentalomas," such findings always require further investigation; we recommend at least a digital rectal examination and PSA measurement.

Metastatic Disease

Both nodal and osseous metastases are relatively rare in the current patient population with newly diagnosed prostate carcinoma. For instance, before the widespread use of serum PSA for prostate cancer screening, the number of patients with pelvic lymph node metastases at the time of radical prostatectomy for clinically localized carcinoma was greater than 20%.88 In more recent series, because most prostate cancers are detected early, this has decreased to 2 to 10%.^{89,90} The prevalence of pelvic lymph node metastases correlates directly with T stage, serum PSA levels, and histologic grade.⁵ Consequently, a high suspicion of lymph node metastases is based on the finding of 1) prebiopsy serum PSA level greater than 20 ng/mL, 2) poorly differentiated tumor on needle biopsy of the prostate (Gleason score 8-10), or 3) palpable locally advanced tumor.⁹¹ In these patients, the probability for nodal metastases is 30% or greater.91,92 Detection and localization of metastases is an important clinical issue in this group of patients, which may affect patient management. Once enlarged lymph nodes are detected, CT-guided biopsy can be performed before embarking on prostatectomy or radiation therapy. Treatment with curative intent may not be justified once the cancer has spread to lymph nodes and distant sites. Unfortunately, the statistical nature of nomograms does not provide accurate information in the individual patient.

In addition, whether lymph node metastases are found depends on the extent of the lymphadenectomy.^{93,94} Further, it has been

Figure 1 Incidental focal FDG uptake in the prostate gland of an 80-year-old patient with T-cell lymphoma using PET for staging of his disease. Coronal and transaxial PET images show focal FDG uptake beneath the urinary bladder (arrow), which on PET-CT fusion image localizes to the prostate. PSA was 87 ng/mL. (Color version of figure is available online.)

shown that a number of patients with clinically localized disease harbor "subclinical" or micrometastases in pelvic lymph nodes⁹⁵ which can only be detected by serial HE staining of nodes or even with IHC or PCR of pelvic lymph node specimens. Finally, in some institutions patients with limited nodal disease, which is diagnosed before surgery, may still undergo prostatectomy and pelvic lymph-adenectomy, followed by aggressive antiandrogen therapy. In some reports, long-term recurrence free survival was similar to that in patients without overt nodal metastases.^{96,97} Nevertheless, although specific treatment approaches may vary between institutions, it is important to identify metastatic disease before embarking on surgery or irradiation.

The presence of lymph node metastases is an important factor in determining the likelihood for tumor recurrence after radical prostatectomy.⁹⁸ In addition, the volume of nodal metastatic disease is an important determinant for the progression to distant metastases⁹⁹ as well as for death from prostate carcinoma.⁹⁶ However, while it was originally assumed that most patients with N + disease had a poor prognosis, several more recent studies have shown remarkable survival rates in selected surgical patients with pelvic lymph node metastases, in particular those with low volume disease or "microscopic" (<2 mm) nodal metastases.^{96,100,101}

Role of Conventional Imaging

All anatomic imaging modalities rely on size criteria, which are neither sensitive nor specific and subject to debate. The "optimal cut-off" for lymph node size may depend on the exact location in the pelvis (eg, diameter >7-10 mm in largest diameter). Using a short

axis diameter of 1 cm as the cut-off, studies have shown sensitivities between 27% and 75% with specificities between 66% and 100%.^{102,103} By decreasing the size threshold to 7 mm and by sampling suspicious lymph nodes by fine-needle aspiration, Oyen and coworkers¹⁰² reported a sensitivity of 78% and specificity of 100%. However, this approach is not widely used. New-generation CT and MRI scanners can visualize the pelvic and abdominal lymph nodes with better resolution, but it remains to be demonstrated whether this translates into a better diagnostic accuracy. As a major limitation, lymph node size does not correlate well with the presence of prostate cancer metastases.¹⁰⁴ Even in patients with PSA levels greater than 25 ng/mL, in whom the percentage of pathologic lymph nodes is substantial, the sensitivity of CT is only 30% to 35%.¹⁰⁵ A similarly low sensitivity for nodal metastases (35%) was found in a summary of seven studies using body MRI for the staging of prostate cancer.¹⁰³ It is conceivable that the use of new superparamagnetic iron oxide particles might increase the detection accuracy in the future.¹⁰⁶ Unfortunately, there is a logistic challenge in that the contrast agent has to be injected 24 h before imaging. At the same time, there is now also growing interest to investigate the potential role of sentinel lymph node mapping in patients with prostate cancer.^{107,108} In experienced hands the technical success rate (SLN visualization or detection by gamma probe) approached 95%, and the false-negative rate was < 1%.¹⁰⁸

Bone metastases also are rare in the current patient population. For this reason, the routine use of bone scan for primary staging has been discouraged. In a large retrospective analyses, the yield for osseous metastases was less than 1% in patients with PSA of <20 ng/mL: among 306 men only 1 (PSA 18.2 ng/mL.) had a positive bone scan, yielding a negative predictive value 99.7%.¹⁰⁹ Others have suggested that bone scans should not be ordered if the PSA is <10ng/mL.¹¹⁰

Role of PET

It is generally accepted that FDG-PET has too low a sensitivity to be useful for the diagnosis of lymph node metastases during primary staging of prostate cancer.^{30,111} In an initial study of 34 patients with untreated prostate cancer and known or suspected metastases, Shreve and coworkers³⁰ compared FDG with CT bone scan and clinical follow-up. The evaluation of pelvic lymph nodes was severely limited by bladder activity and streak artifacts. And although the quality of FDG-PET images of the pelvis has improved significantly with the use of iterative reconstruction algorithms, it is unlikely that this test could reliably diagnose nodal metastases in the primary staging. As stated above, many primary prostate cancers show relatively low FDG uptake, and the same is likely also true for nodal metastases.

Similarly, FDG also has a limited sensitivity for the detection of osseous metastases. Shreve and coworkers^{30,112} reported a sensitivity of 65% in 22 patients with 202 bone lesions (SUV 2.1–5.7). An even lower detection rate was reported by Yeh and coworkers¹¹²: only 16% of lesions noted on bone scan were visualized by FDG-PET. However, more recent evidence suggests that FDG is an accurate means in assessing the biologic activity of bone metastases (see the section "Response to Therapy and Prognostic Value").

¹¹C-acetate PET detected lymph node and bone metastases with 100% and 86% sensitivity, respectively.²⁶ However, both the number of patients studied and number of lesions were very small, so that further investigation is clearly needed.

The utility of ¹¹C-choline PET for nodal staging of prostate cancer before prostatectomy was assessed by de Jong and coworkers.⁶⁶ In 67 patients, lymph node metastases were detected with a sensitivity of 80% and specificity of 96%. PET scan was true positive in 12 of 15 patients with histologically proven nodal metastases and was true negative in 50 of 52 without metastases. Of note, a solitary distant nodal metastasis was found in the common iliac nodes in 5 of these 12 patients.

Although PET bone scanning with ¹⁸F-fluoride, especially in combination with CT looks extremely promising,¹¹³ it is likely that ¹⁸F PET bone scanning will be useful in the same general clinical situation, ie, patients with PSA >20 ng/mL and suspicion for osseous metastases.

PSA Relapse

In most cases, recurrent disease presents initially as biochemical recurrence (BCR), with an increase in serum levels of PSA. Approximately one-third of patients undergoing radical prostatectomy and a similar number of patients with radiation therapy will develop BCR. In the majority of cases, this early rise in PSA occurs in isolation without any symptoms or other objective findings. The clinical behavior of the patient group is extremely heterogeneous and it is not unusual for patients to survive for 5 to 10 years with an elevated PSA as the only evidence of recurrent disease. Imaging studies are frequently negative.

Conventional Imaging Studies

Local Recurrence. The most commonly used imaging technique in the detection of local recurrence is TRUS. The technique is more sensitive than digital rectal examination (75% versus 44%) but less specific (67% versus 91%).¹¹⁴ In this study the overall TRUS-guided

biopsy detection rate was only 41%. The likelihood for tumor detection was higher in patients with a PSA greater than 4 ng/mL. It is difficult to estimate the rate of false-negative TRUS and TRUSguided biopsies, but as many as 28% of patients with normal initial biopsies demonstrate cancer in subsequent biopsies.^{115,116}

CT is not a suitable method for the early detection of local recurrence.¹¹⁷⁻¹¹⁹ In nonselected patients, the rate of CT-detected local recurrences was only 11% (2 of 18 patients), despite a relatively high PSA level of 12.4 ng/mL and a mean PSA velocity of 30 ng/mL/ yr.¹¹⁸ In another study only 36% of local recurrences were detected, and in all of these patients the lesion was larger than 2 cm in size.¹¹⁹ Salvage RT appears most effective in patients with PSA relapse of less than 1.5 ng/mL,¹²⁰ and CT cannot detect these early and small recurrences. However, CT can be used for monitoring previously established nodal and visceral disease.

MRI has been investigated for its use in identifying local recurrence and metastatic bony disease in patients with rising PSA after radical treatment.¹²¹⁻¹²³ In a small number of patients MRI appeared to have a high sensitivity and specificity of 100% for detecting local recurrence after radical prostatectomy.¹²⁴ Similar data (sensitivity 95% and specificity 100%) were reported in a recent study in 48 patients with local recurrence.¹²³ It remains to be seen whether these data can be reproduced outside of specialized centers. Of note, in the latter study 30% of local recurrences were detected outside the prostatic bed (in seminal vesicles, along surgical margins or elsewhere in the pelvis), which would be important for directing biopsies to these sites of suspected disease.

Metastatic Disease. The bone scan is the most commonly used test in patients with BCR; a survey among urologists revealed that 70% order a bone scan a part of the workup in patients with rising PSA after radical prostatectomy or radiation therapy.¹²⁵ However, large retrospective studies have shown that the positive yield of a bone scan is less than 1% to 2% in patients with PSA levels less than 10 ng/mL.^{110,126,127} Even with PSA levels of 10 ng/mL the fraction of bone scan-detected bone metastases is in the single digit range, and this value is now frequently recommended as the cut-off for ordering a bone scan. In one study the probability for a positive bone scan was less than 5% until PSA increased to 40 to 45 ng/mL. The use of clinical nomograms may help refine the patient population in whom a bone scan should be performed. In patients with abnormal bone scan, the extent of osseous metastatic disease from prostate cancer is an independent prognostic marker.¹²⁸⁻¹³⁰

The role of CT in the detection of bone metastases is limited and its routine use not recommended. In contrast, MRI is both sensitive and specific for this purpose. MRI can detect metastases earlier than the bone scan, when they are still developing in the bone marrow. The bone marrow survey is a dedicated MRI technique that covers the axial and proximal appendicular skeleton. The inability to cover the entire skeleton at a reasonable time and at reasonable cost has prevented the widespread use of whole body MRI for detection of metastases. Although newer MRI techniques can cover the entire torso within a reasonable time¹³¹ it is unlikely that the method will enjoy widespread use in patients with prostate cancer.

Lymph node metastases can be detected by CT or MRI but at this time both are limited by their use of size criteria. In a retrospective study in 45 patients, the fraction of CT-detected lymph node metastases was higher in patients with PSA levels of greater than 4 ng/mL (50%) than in those with lower PSA levels (17%).²⁵

Contribution of PET

Studies With FDG. Seltzer and coworkers²⁵ imaged 45 patients with BCR (mean PSA 3.8 ng/mL) with abdominopelvic CT and

С

Figure 2 62-year-old male with osseous metastases from prostate cancer; PSA = 6.5 ng/mL. (A) Bone scan shows abnormal tracer uptake in the spine and pelvis. (B) CT, (C) PET, and (D) PET/CT fusion images of the pelvis. Note absence of FDG uptake in the sclerotic lesion in the right iliac bone, which shows intense tracer uptake on the bone scan. (Color version of figure is available online.)

FDG-PET. CT and PET were positive for nodal metastases in 33% and 27%, respectively. The authors then applied an arbitrary cut-off value for PSA and found a higher detection rate for lymph node metastases in patients with PSA greater than 4 ng/mL (CT: 50%, PET: 50%) as compared with those with lower PSA levels. The study had some limitations in that attenuation correction was not routinely performed, biopsy confirmation was available in only 12 of the 45 patients, and a method-inherent bias favored CT results (only enlarged lymph nodes were biopsied). It was concluded that both imaging modalities are of limited use for the detection of metastatic disease in patients with low levels of PSA. In our own experience in 93 patients with BCR and a PSA of 4.38.6 ng/mL, FDG-PET was positive in 35% of cases, detecting local recurrence, nodal, or osseous metastases. The majority of true-positive lesions (30 of 35) were distant metastases (Figs. 2 and 3). A PSA level of 2.4 ng/mL provided the best tradeoff between patients with positive and negative scan (sensitivity/specificity 79%/66%). Because of the low yield of truepositive findings, FDG-PET is therefore not recommended in postprostatectomy patients with BCR whose PSA levels are less than 2.4 ng/mL.27

Other PET tracers, in particular choline and acetate, have been studied in patients with PSA relapse. According to unanimous initial reports these agents hold great promise for detecting recurrent disease in patients with BCR.38,39,63,67

Studies With Acetate. The value of ¹¹C-acetate in patients with BCR has been addressed specifically in three studies, ^{31,38,39} which

included a total of approximately 100 patients. Kotzerke and coworkers³⁹ specifically studied the value of ¹¹C-acetate PET in visualizing local recurrence in the prostate bed and adjacent tissues. Thirty-one patients with BCR and a mean PSA of 15 ± 30 ng/mL (range 0.9-151) were included. TRUS (followed by biopsy if suspicious nodules were detected) and 6 months of clinical follow-up served as standard of reference. Recurrent disease was eventually proven (21 biopsy, 2 TRUS only) in 18 patients. PET showed focal abnormal tracer uptake in the prostate bed in 15 of these individuals (sensitivity 15/18 = 83%). PET was false negative in three patients (PSA 1.3; 4.4 and 12.6 ng/mL). There were no false-positive findings. In addition to local recurrence, distant lymph node or bone metastases were seen in five patients each. The proportion of tumors detected appeared independent of PSA levels. In a subgroup of patients with PSA levels less than 2 ng/mL, five of eight local recurrence were noted by PET, thereby identifying patients who might benefit from salvage RT. (Salvage RT for local recurrence appears most promising in patients with PSA levels < 1.5-2.0 ng/mL¹³² and would only be initiated in patients without distant disease.) The three tumors not detected by acetate PET were less than 1.5 mL in volume.

Oyama and coworkers studied 46 patients with rising PSA after prostatectomy or primary radiation therapy.³⁸ All patients underwent PET with ¹¹C-acetate and FDG (furosemide and bladder catheter for the latter). Abnormal tracer uptake, suspicious for recurrent disease, was detected in 59% of acetate studies but only 17% of FDG

Figure 3 FDG-PET shows response to therapy in this patient with osseus metastases from prostate cancer who had a PSA of 5.88 ng/mL. (A) CT, PET, and PET-CT fusion images show abnormal FDG uptake within a sclerotic lesion in the axis (second cervical vertebra). (B) A follow-up study 6 months later, after combined androgen withdrawal therapy, shows an identical CT image but lack of FDG uptake. (C) Bone scan images at time point 1 (left panel) and 6 months later (right panel) are almost identical with several lesions in spine and pelvis. (Color version of figure is available online.)

Figure 4 (A) FDG and ¹¹C acetate PET scan in 73-year-old male with PSA relapse (9.1 ng/mL) approximately 2 years after external beam RT with curative intent. FDG images (left panel) show no abnormal tracer uptake, whereas 11C acetate images (right panel) clearly demonstrate abnormal tracer uptake in pelvic lymph nodes. (B) CT shows mildly enlarged pelvis lymph nodes. (Images reprinted by permission of the Society of Nuclear Medicine from Oyama et al.³⁸).

studies (Fig. 4). Using CT, bone scan, biopsy, or "high clinical probability" as the standard of reference, 30% of patients had their disease identified by acetate PET, whereas only 9% had disease identified by FDG-PET. In this study, the probability for lesion detection was higher in patients with PSA levels greater than 3 ng/mL (59%) as compared with those with lower PSA levels (4%). This is in contrast to data by Kotzerke and coworkers³⁹ (see above).

Fricke and coworkers³¹ compared FDG and ¹¹C-acetate PET in prostate cancer patients with suspected local recurrence or metastatic disease (PSA range, 0.4–400 ng/mL). An arbitrary SUV greater than 2 was used to identify disease. Overall, local recurrence or metastases were detected in two thirds of patients with FDG and 80% of patients with ¹¹C-acetate. The intensity of FDG uptake in these lesions was generally lower that that for acetate (median SUV 1.4 versus 3.2). In a subset of 15 patients who were imaged with both tracers, acetate showed a higher sensitivity than FDG for local recurrence and nodal metastases (70% versus 43% and 75% versus 30%). However, distant disease mostly in bone) was detected more frequently with FDG (75% of cases versus 50% with acetate). It was suggested that PET imaging with more than one tracer might be necessary in the evaluation of patients with BCR.

Studies With Choline. Price and coworkers⁶² investigated the distribution of FDG and F-choline in cell cultures and patients with androgen-dependent and androgen-independent prostate cancer. FCH uptake was 80% and 60% greater than FDG uptake in androgen-dependent and -independent cells. In patients with primary or metastatic prostate cancer, more lesions were visualized with FCH. Prostatic uptake was 2.8-fold higher for FCH than for FDG and appeared more focal. Local disease recurrence was detected in three patients with FCH but only one with FDG. Six patients showed abnormal uptake of FCH in lymph nodes in comparison with two patients with FDG. FCH was retained in tumor tissue for 1 h after administration, consistent with its phosphorylation and incorporation into cellular lipids.

De Jong and coworkers studied 22 patients with rising PSA and 14 without evidence for BCR after prostatectomy or radical radiation therapy^{67 11}C-choline PET was true negative in 14 of 14 patients without BCR. Among the 22 patients with elevated PSA levels, sites of recurrent disease were identified in 12 (5 of 13 with radical prostatectomy and 7 of 9 with radiation therapy). In the 10 patients with negative PET, all other imaging studies had also failed to demonstrate sites of disease. Of note, all patients with PSA levels less than 5 ng/mL had a negative PET scan.

The largest study to date was conducted by Picchio and coworkers,63 who compared 11C-choline and FDG in 100 men with BCR (mean PSA, 6.5 ng/mL; range, 0.14-171). Seventy-seven individuals had undergone prostatectomy, and 23 had been treated with radiation therapy. PET findings were compared with those in "conventional imaging studies" and in those individuals with negative PET using PSA levels after 1 year of follow-up. More abnormalities, suspicious for recurrent disease, were noted with choline than with FDG (47% versus 27% of studies; Fig. 5). Patients (35 of 47) with abnormal choline scan also had recurrent disease identified by conventional imaging. There was only one patient with negative choline scan in whom conventional imaging studies found the site of disease. Overall, choline PET proved more accurate than FDG for detecting local recurrence as well as nodal and distant metastases. A negative choline scan likely indicates a good prognosis because 80% of these patients showed stable PSA levels at 1 year of follow-up.

Studies With Methionine. Nunez and coworkers³⁴ compared the diagnostic yield of FDG and ¹¹C-methionine in 12 castrate patients with progressing prostate cancer, defined as 50% increase in the PSA levels and the development of new lesions or worsening of preexisting lesions on bone scan, CT, or MRI. Of all lesions assessed, 93% were osseous metastases. On average, the intensity of methionine uptake in these lesions was significantly higher than that of FDG and more lesions were detected with ¹¹C-methionine PET. The number of lesions on methionine PET correlated better with the number of lesions on bone scan. Using conventional imaging (CT, MRI, bone scan) as the their standard,

Figure 5 Transaxial PET images in a patient with a man with PSA relapse (PSA = 3.8 ng/mL) approximately 6 years after radical prostatectomy. ¹¹C choline PET shows abnormal tracer accumulation in the prostate bed (A), whereas FDG image appears normal (B). T₂-weighted spine-echo MRI (C) and contrast-enhanced, fat-suppressed T₁-weighted MRI (D) clearly show abnormal soft tissue in the prostate bed (arrows). (Images used with permission from Picchio et al. J Urol 169:1337-1340, 2003.)

the sensitivity for the detection of bone and soft tissue metastases was 48% and 34%, respectively, for FDG-PET as compared with 70% and 70%, respectively, for ¹¹C-methionine PET. The authors speculated that FDG might reflect the biologic activity of the disease more accurately than bone scan or methionine PET.

Response to Therapy and Prognostic Value

Treatment Monitoring

Most prostate cancers are dependent on androgen for growth and metastasis. Therefore, androgen ablation is one of the main treatment modalities in patients who do not qualify for radical treatment with curative intent and also for many patients with recurrent or metastatic disease. In selected cases, chemotherapy is also used.^{133,134} The current means of assessing the response to hormonal and chemotherapy are imprecise and inadequate because changes in tumor size are often slow to occur and alterations in PSA levels do not always correlate with clinical outcome.^{135,136} For instance, androgen blockade causes a decline in PSA to undetectable levels, but this does not necessarily reflect an improved survival in these patients.¹³⁵ Also, bone lesions are notoriously difficult to quantitate on conventional imaging studies, and bone scan may actually get worse, even when tumor has responded ie, ("flare" phenomenon).^{137,138}

Experimental and clinical studies (Figs 2 and 3) suggested that PET can monitor the course of prostate cancer and its response to therapy.^{24,33,70,139,140} Using a human prostate cancer xenograft model, Agus and coworkers²⁴ studied serial changes in prostate cancer metabolism with ³H DOG or FDG-PET. At 48 h after androgen withdrawal, glucose accumulation in the tumor was decreased to 62% of baseline level and decreased further to 32% of baseline after 10 days. Changes in tumor metabolism preceded changes in tumor volume and PSA. The decline in tumor glucose uptake also was associated with a decrease in the proportion of tumor cells in the active cell cycle. Reintroduction of androgen caused a return of glucose uptake to near baseline levels. Similar data were reported by Oyama and coworkers¹⁴⁰ using a tumor-bearing mouse model and micro PET imaging. Treatment with diethylstilbestrol, simulating androgen withdrawal therapy, caused a decrease in FDG uptake in the prostate at 3 weeks. No such change was noted in control animals or those treated with dihydrotestosterone. These experimental studies and preliminary data in patients suggested that FDG-PET could be used for treatment monitoring in prostate cancer patients. In a small series of 10 patients, Oyama and coworkers¹³⁹ used FDG for monitoring the response to androgen ablation therapy. PET was performed before and then again between 1 and 5 months after initiation of hormonal therapy. All patients showed a decrease in

PSA levels as well as FDG SUV in the prostate gland and at metastatic sites. PSA levels declined by 70% to 99% compared with baseline and the SUV decreased by 12% to 77% compared with baseline. Of note, there was no correlation between these two parameters. Although these findings suggested that glucose use in human prostate cancer is suppressed by androgen ablation, it remains to be seen if and how the data can be used to guide patient management. In a mouse model, the proliferation marker F-18 FLT also appeared to be suitable for monitoring the response of to androgen withdrawal therapy.¹⁴¹

Using F-18 choline as a PET tracer, DeGrado and coworkers⁷⁰ describe the response to androgen withdrawal therapy in a patient with metastatic prostate cancer. Although the lesion was still visualized on the follow-up scan, the intensity of choline uptake had decreased significantly (approximately 60% decline in SUV as compared with baseline).

As stated above, FDG-PET detects fewer osseous lesions than either bone scan or CT.^{30,112} However, these two imaging modalities only reflect abnormal osteoblast activity or structural alterations in the bone, which do not necessarily indicate the presence of viable tumor cells. Abnormalities on bone scan can persist for many years, although no viable tumor can be found on biopsy. As mentioned above, an increase in tracer uptake in the bone scan after therapy can reflect treatment-induced changes in blood flow and osteoblast activity rather than an increase in tumor burden ("flare phenomenon"). In patients that show a flare phenomenon on bone scan, FDG-PET may reflect more accurately the response to therapy.¹⁴²

Prognostic Value

For a number of malignancies, the intensity of tracer uptake can serve as an independent indicator of the patient's prognosis both in the primary setting as well as for recurrent disease.¹⁴³⁻¹⁴⁵ Limited evidence suggests that this also may apply in patients with prostate cancer¹⁴⁶: among surgically treated patients, those with low FDG uptake in the primary tumor (SUV <4) appeared to have better relapse-free survival. However, the same authors also reported²⁶ that the probability for a positive PET scan in patients with newly diagnosed prostate cancer increases with advancing stage as well as increases in PSA levels, which are established prognostic factors.¹¹ Therefore, it remains to be seen whether PET provides truly independent prognostic information in prostate cancer.

The prognostic value of FDG-PET in patients with bone metastases was addressed in a study by Morris and coworkers.³³ Of a total of 137 of the lesions (in 17 patients), 71% were noted on both PET and bone scan, whereas 23% were only seen on bone scan and 6% only on PET. Of note, all but one of the lesions noted on bone scan alone remained stable, but al lesions detected only by FDG-PET showed further progression with positive bone scans developing at the site on follow-up. This suggested that FDG-PET might reflect more accurately the tumor biology and aggressiveness of the disease.

Conclusions

The usefulness of PET is strongly influenced by the clinical state and aggressiveness of the individual patient's tumor. This fact has been given insufficient weight in many early studies of the role of PET in prostate cancer, and clinical status is often incompletely reported. This makes interpretation of the findings of individual studies problematic. Nevertheless, it is clear that for many patients with primary prostate cancer, PET is not a useful test for initial detection. However, from a practical point of view, this may be less relevant. In most men now being diagnosed with prostate cancer, workup is initiated because of an incidentally detected elevated PSA level during routine physical examination. Further evaluation almost always includes consultation with an urologist, digital rectal examination, transrectal ultrasound and (TRUS-guided) biopsy of the prostate. Because this diagnostic paradigm is now widely accepted, few of the more recent imaging studies have attempted to diagnose prostate cancer or distinguish it from BPH.

With regard to staging, neither CT nor MRI, as currently practiced, reliably detect lymph node metastases from primary prostate carcinoma. A bone scan should only be ordered in selected patients, based on significant elevation (>20 ng/mL) of the PSA. PET with FDG is not helpful in detecting nodal metastases in the primary setting. ¹¹C-acetate or choline appear more promising for identifying metastatic disease, but their exact role in the management of patients with primary prostate cancer requires further investigation.

FDG-PET can identify recurrent disease, nodal, and osseous metastases in patients with PSA relapse. Lower thresholds for PSA have been identified, above which FDG is more likely to detect disease. Similar thresholds likely also exist for imaging with acetate or choline.^{38,67} Neither acetate nor choline is the "perfect" radiotracer, and local recurrence or small nodal metastases can be missed. Nevertheless, PET with choline or acetate generally shows more sites of disease and more intense uptake in these lesions than FDG. One study suggested that imaging with 2 tracers may be required in patients with PSA relapse, because local recurrence and lymph node metastases were detected better with acetate, but bone lesions better with FDG.³¹

Renal Cell Carcinoma (RCC)

RCC accounts for approximately 3% of all cancers in adults, and approximately 36,000 cases will be diagnosed in 2004 in the United States.¹ With the increased use of ultrasound and CT for the evaluation of abdominal diseased, the number of incidentally discovered RCCs has increased significantly.¹⁴⁷ Surgery is the only definite form of therapy in these patients. Curative resection is feasible for localized disease (including stages I, III, IIIa) and the prognosis after resection of the primary tumor is good.¹⁴⁷ However, the prognosis is bleak in patients with overt metastases at the time of diagnosis, with a median survival of 10 months.

CT is the standard imaging test for evaluation of patients with renal masses.¹⁴⁸ Helical CT may identify RCC with a sensitivity of 100% and specificity of 88% to 95%.^{149,150} The reported sensitivity of CT for the detection of retroperitoneal lymph node metastases is as high as 95%,¹⁴⁸ but using a nodal size of 1 cm or greater as criterion, the rate of false-positive findings can range from 3% to 43%.¹⁵¹ Despite recent advances in CT technology, the sensitivity for the detection of pulmonary metastases from extra-thoracic primary tumors ranges from 75% to 95% but is lower (50-70%) for lesions smaller than 6 mm in size.^{152,153}

Detection of Primary Disease

Few studies have investigated the utility of PET in the assessment of renal masses and primary staging of RCC. In a pilot study in five patients with RCC, all primary tumor and metastases were visualized by FDG-PET.¹⁵⁴ This prompted further investigations in patients with primary RCC as well as those with suspected local recurrence or metastatic disease. In a study of 29 patients, PET was positive in 20 of 26 with confirmed disease, but the primary tumor was missed in 6 cases. An angiomyolipoma, a pericytoma, and a pheochromocytoma showed a false-positive PET result.¹⁵⁵ In a more recent study¹⁵⁶ a primary RCC was identified in 15 of 17 patients with suspicious renal masses. There were no false-positive results.

Figure 6 Staging of RCC. (A) Coronal FDG-PET images, coronal CT, and coronal PET/CT fusion images show abnormal FDG uptake in a right renal mass. (B) Transaxial PET, CT, and fusion images, as well as coronal PET-CT fusion image, show tumor extension into the right renal vein and inferior vena cava. (Color version of figure is available online.)

Overall, PET influenced treatment decisions in 6 of 17 patients (35%); 2 were found to have metastases by PET, whereas renal vein thrombus was excluded in 1, and 3 were considered eligible for nephron-sparing surgery. The overall accuracy was 94%, which was identical to CT in this study. However, this high sensitivity of PET could not be reproduced in other studies.^{157,158} In the largest study to date, Kang and coworkers¹⁵⁷ performed FDG-PET in 66 patients with RCC. Of the 17 individuals with known primary RCC or suspicious mass, 15 were found to have a primary renal cancer; only 9 of these tumors appeared hypermetabolic on FDG-PET and were thus correctly classified as cancer. The PET sensitivity and specificity for the detection of primary RCC were 60% and 100% (CT: 92% and 100%). An image example is shown in Figure 6.

Recurrent and Metastatic Disease

Metastatic disease is a strong predictor of poor survival in patients with RCC.¹⁵⁹ Patients with advanced metastatic disease have a 0% to 2% 5-year survival rate,¹⁶⁰ whereas solitary metastases can be resected surgically in selected patients, with a 5-year survival rate of approximately 30%.¹⁶¹ Early detection and management of metastases has the potential to improve prognosis and quality of life. Currently CT, sometimes supplemented by a bone scan if indicated, is the most commonly used imaging test for follow-up of patients with RCC. Although FDG-PET did not appear to contribute much to the initial staging of RCC, the detection of local recurrence or metastases should not be affected by some of the FDG-inherent limitations in imaging the urinary tract.^{156,157,162-165}

The aforementioned study by Ramdave et al¹⁵⁶ included eight patients with suspected local recurrence or metastatic disease. PET was true positive in seven patients and true negative in one, yielding a diagnostic accuracy of 100% (CT: 88%). Of eight patients in whom CT suggested potentially resectable metastatic disease, PET revealed widespread metastases in four. In one patient, PET accurately distinguished between postradiation changes and local recurrence. The findings lead to a change in treatment in four of eight patients (50%) by avoiding or altering planned surgical procedures.

Safaei and coworkers¹⁶⁴ performed PET in 36 patients with advanced renal cell cancer who were referred for restaging. 85% of confirmed lesions were assessed accurately (sensitivity 88%, specificity 75%). They concluded that PET could be useful in characterizing anatomic lesions of unknown significance.

Majhail and coworkers¹⁶⁵ studied 24 patients with RCC and suspected recurrence at distant sites. Of the 33 sites of histologically proven metastatic sites, 21 (64%) were identified by PET. Sensitivity and specificity were 64% and 100%. These findings were independent of initial Fuhrman grade, prior immuno- or chemotherapy, or the site of distant metastases. However, the average size of metastatic lesions correctly identified by PET was larger than that for falsenegative findings (2.2 cm versus 1.0 cm; P < 0.01). In no case did FDG-PET identify distant metastases that had not been visualized by CT or MRI.

In the larger study by Kang and coworkers,¹⁵⁷ a total of 172 soft tissue and bone lesions were confirmed as metastatic RCC either by subsequent imaging studies or histopathology, and 115 of these (67%) were identified by PET. Specifically PET detected 89 of 139 soft tissue metastases (64%) and 26 of 33 bone metastases (78%). Lung metastases were detected with a sensitivity of 75% and specificity of 97%. As expected, CT was more sensitive than PET in detecting lung metastases (91%). In addition, the combination of CT and bone scan showed higher sensitivity for detecting osseous metastases (94%). For retroperitoneal nodal metastases, PET was 75% sensitive and 100% specific (CT: 93% and 98%). Multiple

lesions within a single patient often exhibited differing levels of FDG uptake and some were undetectable: In 44% of studies PET detected all metastatic lesions, in another 44% only some lesions, and in 12% PET failed to detect any metastasis. Overall, the specificity of PET was generally higher than that of any other test or a combination of CT and bone scan (for bone lesions). In 39 scans (in 32 pats) PET failed to detect RCC lesions identified by conventional imaging.

Conclusion

CT, not PET, is the method of choice for the detection and staging of primary RCC. FDG-PET has a limited sensitivity for evaluating metastatic RCC, in particular for small metastatic lesions. Although a negative study cannot rule out metastatic disease with sufficient accuracy, a positive PET scan should be considered strongly suspicious for local recurrence or metastasis, because of the high specificity and PPV of this test. However, because of the limited anatomic information, PET cannot replace the need for CT in the follow-up of RCC patients. A combined test (CT and PET) may be necessary if important management decisions were to be based on the test result. This would take advantage of the high sensitivity of CT and high specificity of PET in patients with metastatic RCC. PET can also serve as a "problem-solving" modality in cases with equivocal CT or bone scan findings and may prove useful in monitoring treatment response as more effective treatments become available.

Bladder Cancer

Bladder cancer is the fourth most common malignancy in men in the United States, and approximately 60,000 new cases are expected to occur in 2004.1 Most of the newly diagnosed tumors are low grade and noninvasive. They recur frequently but rarely progress to muscle invasive or metastatic disease. It is unlikely that PET imaging could contribute to the management of these tumors. In contrast, high-grade or invasive bladder cancer is characterized by progressive local invasion, extension to adjacent organs, and the development of regional and distant metastases. Radical cystectomy with pelvic lymphadenectomy is the standard of treatment for patients with invasive disease that is confined to the pelvis. The effectiveness of local therapy depends largely on the extent of primary tumor invasion and the presence of pelvic lymph node metastases: Organconfined bladder cancer can be treated by surgery alone and may be curable in more than 70% of patients,166-168 but patients with regional nodal metastases show a propensity for disease recurrence and distant disease and, as a group, show a 5-year survival of only 20% to 25% patients.¹⁶⁶⁻¹⁶⁹ Accurate staging of bladder cancer is therefore important to select the appropriate treatment strategy. Advances in surgical techniques for cystectomy and pelvic reconstruction have made it possible to tailor surgery to the specific needs of patients. Preoperative knowledge of local tumor extension would help in selecting appropriate patients for bladder sparing surgery, nerve or vaginal sparing procedures or pelvic exenteration. Historically, the accuracy of CT for the staging of bladder cancer has been as low as 50% as compared with approximately 75% with MRI.¹⁷⁰⁻¹⁷³ The introduction of multi-detector row CT, new MR techniques and MR contrast agents could potentially improve the staging accuracy. Nevertheless, anatomic imaging techniques have method-inherent limitations for the assessment of lymph node metastases as well as for the detection of local recurrence.

Scant work has been done with PET in bladder cancer.^{111,155,174} Renal excretion of FDG and streak artifacts from excreted tracer in the urinary bladder led many investigators to conclude that PET would be of limited value in bladder cancer. Although efforts have

Figure 7 Bladder cancer imaging with FDG. (A) Transaxial FDG-PET image shows excreted tracer in the urinary bladder. (B) The corresponding CT image shows thickening of the bladder wall and a 1.7×1.3 cm left perivesical lymph node, likely metastatic. On PET, however, the tumor cannot be identified because of accumulation of excreted tracer in the bladder. FDG is not a suitable tracer for the staging of bladder cancer.

been made to reduce the amount of excreted FDG in the bladder (forced diuresis, bladder catheter with continuous irrigation), the results have largely been disappointing. Pooling of excreted tracer in the ureters and variable bowl activity presented further challenges (Fig 7). One small study reported a sensitivity and specificity of 67% and 85% in patients with carcinoma of the bladder neck, which was better than CT-MRI.¹⁵⁵ However, because of the above limitations the use of FDG-PET for staging of bladder cancer has not found acceptance in clinical practice. In contrast, based on our experience and sporadic case reports,¹⁷⁵ PET with FDG can be a useful test for the detection of recurrent tumor in the pelvis, differentiation between local recurrent disease versus. postsurgical or postirradiation fibrosis or necrosis and for the detection of distant metastases. The use of combined PET-CT imaging is expected to reduce the number of false-positive findings in the lower abdomen and pelvis, which should increase the accuracy of the test. 176,177 Nevertheless, there is a need to study the efficacy of other PET tracers, without or only limited renal excretion, in bladder cancer. ¹¹C methionine and choline have been proposed for this purpose. With methionine, tracer uptake in the primary tumor was related to tumor grade.178 However, only 78% of all bladder cancers could be visualized, and PET did not improve the local staging of the disease. de Jong and coworkers performed PET with ¹¹C-choline in 18 patients before cystectomy (but after transurethral resection or biopsy) and in 5 volunteers.174 Normal bladder tissue showed little tracer uptake and there was only minimal urinary activity. The primary tumor was visualized in 10 patients with residual invasive disease in the cystectomy specimen (mean SUV, 4.7 ± 3.6 , range, 1.5-13.0). In another seven patients no residual tumor was found at the time of cystectomy. Premalignant lesions (CIS, dysplasia) were present in three of these but were missed by PET. In the remaining patient PET

was true negative. One patient showed unexpected abundant urinary activity that interfered with tumor detection, and one false positive finding was related to inflammatory changes from an indwelling bladder catheter.

Conclusion

Because of its renal excretion, FDG is not a suitable tracer for detecting a tumor in the bladder wall. Its accuracy of FDG-PET for finding lymph node metastases is rather low and the method has not found acceptance for the presurgical staging of bladder cancer. However, recurrent disease in the pelvis can be identified with FDG. For proper interpretation of these studies the reader needs to be familiar with various techniques of bladder reconstruction. The role of ¹¹C-acetate and choline in bladder cancer is under investigation.

References

- 1. Jemal A, Tiwari RC, Murray T, et al: Cancer statistics, 2004. CA Cancer J Clin 54:8-29, 2004
- Craft N, Chhor C, Tran C, et al: Evidence for clonal outgrowth of androgen-independent prostate cancer cells from androgen-dependent tumors through a two-step process. Cancer Res 59:5030-5036, 1999
- 3. Chen CD, Welsbie DS, Tran C, et al: Molecular determinants of resistance to antiandrogen therapy. Nat Med 10:33-39, 2004
- Scher HI, Heller G: Clinical states in prostate cancer: toward a dynamic model of disease progression. Urology 55:323-327, 2000
- Partin AW, Kattan MW, Subong EN, et al: Combination of prostatespecific antigen, clinical stage, and Gleason score to predict pathological stage of localized prostate cancer. A multi-institutional update. JAMA 277:1445-1451, 1997
- Blute ML, Bergstralh EJ, Partin AW, et al: Validation of Partin tables for predicting pathological stage of clinically localized prostate cancer. J Urol 164:1591-1595, 2000
- Graefen M, Karakiewicz PI, Cagiannos I, et al: A validation of two preoperative nomograms predicting recurrence following radical prostatectomy in a cohort of European men. Urol Oncol 7:141-146, 2002
- Gleason D: Histological grading and clinical staging of prostatic carcinoma, in Tannenbaum T (eds): Urologic Pathology: The Prostate. Philadelphia, PA, Lea & Febiger, 1977, pp 171-197
- Kattan MW, Wheeler TM, Scardino PT: Postoperative nomogram for disease recurrence after radical prostatectomy for prostate cancer. J Clin Oncol 17:1499-1507, 1999
- D'Amico AV, Whittington R, Schnall M, et al: The impact of the inclusion of endorectal coil magnetic resonance imaging in a multivariate analysis to predict clinically unsuspected extraprostatic cancer. Cancer 75:2368-2372, 1995
- Kattan MW, Eastham JA, Stapleton AM, et al: A preoperative nomogram for disease recurrence following radical prostatectomy for prostate cancer. J Natl Cancer Inst 90:766-771, 1998
- Rifkin MD, Zerhouni EA, Gatsonis CA, et al: Comparison of magnetic resonance imaging and ultrasonography in staging early prostate cancer. Results of a multi-institutional cooperative trial. N Engl J Med 323:621-626, 1990
- Smith JA Jr, Scardino PT, Resnick MI, et al: Transrectal ultrasound versus digital rectal examination for the staging of carcinoma of the prostate: results of a prospective, multi-institutional trial. J Urol 157: 902-906, 1997
- Hricak H, Dooms GC, Jeffrey RB, et al: Prostatic carcinoma: staging by clinical assessment, CT, and MR imaging. Radiology 162:331-336, 1987
- Yu KK, Hricak H: Imaging prostate cancer. Radiol Clin North Am 38:59-85, 2000
- Yu KK, Hricak H, Alagappan R, et al: Detection of extracapsular extension of prostate carcinoma with endorectal and phased-array coil MR imaging: multivariate feature analysis. Radiology 202:697-702, 1997

- Bartolozzi C, Menchi I, Lencioni R, et al: Local staging of prostate carcinoma with endorectal coil MRI: correlation with whole-mount radical prostatectomy specimens. Eur Radiol 6:339-345, 1996
- Tempany CM, Zhou X, Zerhouni EA, et al: Staging of prostate cancer: results of Radiology Diagnostic Oncology Group project comparison of three MR imaging techniques. Radiology 192:47-54, 1994
- Kurhanewicz J, Vigneron DB, Nelson SJ: Three-dimensional magnetic resonance spectroscopic imaging of brain and prostate cancer. Neoplasia 2:166-189, 2000
- Yu KK, Scheidler J, Hricak H, et al: Prostate cancer: prediction of extracapsular extension with endorectal MR imaging and three-dimensional proton MR spectroscopic imaging. Radiology 213: 481-488, 1999
- 21. Warburg O: Metabolism of Tumors. New York, NY, Richard R. Smith, 1931
- Singh G, Lakkis CL, Laucirica R, et al: Regulation of prostate cancer cell division by glucose. J Cell Physiol 180:431-438, 1999
- Rossi F, Grzeskowiak M, Della Bianca V, et al: De novo synthesis of diacylglycerol from glucose. A new pathway of signal transduction in human neutrophils stimulated during phagocytosis of beta-glucan particles. J Biol Chem 266:8034-8038, 1991
- 24. Agus DB, Golde DW, Sgouros G, et al: Positron emission tomography of a human prostate cancer xenograft: association of changes in deoxyglucose accumulation with other measures of outcome following androgen withdrawal. Cancer Res 58:3009-3014, 1998
- 25. Seltzer MA, Barbaric Z, Belldegrun A, et al: Comparison of helical computerized tomography, positron emission tomography and monoclonal antibody scans for evaluation of lymph node metastases in patients with prostate specific antigen relapse after treatment for localized prostate cancer. J Urol 162:1322-1328, 1999
- Oyama N, Akino H, Kanamaru H, et al: 11C-acetate PET imaging of prostate cancer. J Nucl Med 43:181-186, 2002
- Herrmann K, Schöder H, Eberhard S, et al: FDG PET for the detection of recurrent/metastatic prostate carcinoma in patients with rising PSA after radical prostatectomy. J Nucl Med 45:359, 2004 (abstr)
- Hofer C, Laubenbacher C, Block T, et al: Fluorine-18-fluorodeoxyglucose positron emission tomography is useless for the detection of local recurrence after radical prostatectomy. Eur Urol 36:31-35, 1999
- Effert PJ, Bares R, Handt S, et al: Metabolic imaging of untreated prostate cancer by positron emission tomography with 18fluorinelabeled deoxyglucose. J Urol 155:994-998, 1996
- Shreve PD, Grossman HB, Gross MD, et al: Metastatic prostate cancer: initial findings of PET with 2-deoxy-2-[F-18]fluoro-D-glucose. Radiology 199:751-756, 1996
- Fricke E, Machtens S, Hofmann M, et al: Positron emission tomography with (11)C-acetate and (18)F-FDG in prostate cancer patients. Eur J Nucl Med Mol Imaging 30:607-611, 2003
- Larson SM, Morris M, Gunther I, et al: Tumor localization of 16beta-(18)F-fluoro-5alpha-dihydrotestosterone versus (18)F-FDG in patients with progressive, metastatic prostate cancer. J Nucl Med 45: 366-373, 2004
- Morris MJ, Akhurst T, Osman I, et al: Fluorinated deoxyglucose positron emission tomography imaging in progressive metastatic prostate cancer. Urology 59:913-918, 2002
- Nunez R, Macapinlac HA, Yeung HW, et al: Combined 18F-FDG and 11C-methionine PET scans in patients with newly progressive metastatic prostate cancer. J Nucl Med 43:46-55, 2002
- Turlakow A, Larson SM, Coakley F, et al: Local detection of prostate cancer by positron emission tomography with 2-fluorodeoxyglucose: comparison of filtered back projection and iterative reconstruction with segmented attenuation correction. Q J Nucl Med 45:235-244, 2001
- 36. Shreve PD, Gross MD: Imaging of the pancreas and related diseases with PET carbon-11-acetate. J Nucl Med 38:1305-1310, 1997
- 37. Shreve P, Chiao PC, Humes HD, et al: Carbon-11-acetate PET imaging in renal disease. J Nucl Med 36:1595-1601, 1995
- Oyama N, Miller TR, Dehdashti F, et al: 11C-Acetate PET Imaging of Prostate Cancer: Detection of Recurrent Disease at PSA Relapse. J Nucl Med 44:549-555, 2003

- Kotzerke J, Volkmer BG, Neumaier B, et al: Carbon-11 acetate positron emission tomography can detect local recurrence of prostate cancer. Eur J Nucl Med Mol Imaging 29:1380-1384, 2002
- Ponde D, Oyama N, Dence C, et al: 18F fluoroacetate, an analogue on 11C acetate for tumor imaging. J Nucl Med 44:296, 2003 (abstr)
- Matthies A, Ezziddin S, Ulrich EM, et al: Imaging of prostate cancer metastases with (18)F-fluoroacetate using PET/CT. Eur J Nucl Med Mol Imaging 31:797, 2004
- Yoshimoto M, Waki A, Yonekura Y, et al: Characterization of acetate metabolism in tumor cells in relation to cell proliferation: acetate metabolism in tumor cells. Nucl Med Biol 28:117-122, 2001
- 43. Swinnen JV, Van Veldhoven PP, Timmermans L, et al: Fatty acid synthase drives the synthesis of phospholipids partitioning into detergent-resistant membrane microdomains. Biochem Biophys Res Commun 302:898-903, 2003
- 44. Armbrecht JJ, Buxton DB, Schelbert HR: Validation of [1-11C]acetate as a tracer for noninvasive assessment of oxidative metabolism with positron emission tomography in normal, ischemic, postischemic, and hyperemic canine myocardium. Circulation 81:1594-1605, 1990
- 45. Armbrecht JJ, Buxton DB, Brunken RC, et al: Regional myocardial oxygen consumption determined noninvasively in humans with [1-11C]acetate and dynamic positron tomography. Circulation 80: 863-872, 1989
- Buxton DB, Nienaber CA, Luxen A, et al: Noninvasive quantitation of regional myocardial oxygen consumption in vivo with [1-11C]acetate and dynamic positron emission tomography. Circulation 79: 134-142, 1989
- Costello LC, Franklin RB: The intermediary metabolism of the prostate: a key to understanding the pathogenesis and progression of prostate malignancy. Oncology 59:269-282, 2000
- Costello LC, Liu Y, Franklin RB, et al: Zinc inhibition of mitochondrial aconitase and its importance in citrate metabolism of prostate epithelial cells. J Biol Chem 272:28875-28881, 1997
- Swinnen JV, Verhoeven G: Androgens and the control of lipid metabolism in human prostate cancer cells. J Steroid Biochem Mol Biol 65:191-198, 1998
- Swinnen JV, Roskams T, Joniau S, et al: Overexpression of fatty acid synthase is an early and common event in the development of prostate cancer. Int J Cancer 98:19-22, 2002
- 51. Simons K, Toomre D: Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31-39, 2000
- 52. Rouquette-Jazdanian AK, Pelassy C, Breittmayer JP, et al: Metabolic labeling of membrane microdomains/rafts in Jurkat cells indicates the presence of glycerophospholipids implicated in signal transduction by the CD3 T-cell receptor. Biochem J 363:645-655, 2002
- 53. Kato T, Tsukamoto E, Kuge Y, et al: Accumulation of [(11)C]acetate in normal prostate and benign prostatic hyperplasia: comparison with prostate cancer. Eur J Nucl Med Mol Imaging 29:1492-1495, 2002
- 54. Zeisel SH, Blusztajn JK: Choline and human nutrition. Annu Rev Nutr 14:269-296, 1994
- Ratnam S, Kent C: Early increase in choline kinase activity upon induction of the H-ras oncogene in mouse fibroblast cell lines. Arch Biochem Biophys 323:313-322, 1995
- Ackerstaff E, Pflug BR, Nelson JB, et al: Detection of increased choline compounds with proton nuclear magnetic resonance spectroscopy subsequent to malignant transformation of human prostatic epithelial cells. Cancer Res 61:3599-3603, 2001
- 57. Katz-Brull R, Degani H: Kinetics of choline transport and phosphorylation in human breast cancer cells; NMR application of the zero trans method. Anticancer Res 16:1375-1380, 1996
- 58. Hara T, Kosaka N, Shinoura N, et al: PET imaging of brain tumor with [methyl-11C]choline. J Nucl Med 38:842-847, 1997
- 59. Hara T, Kosaka N, Kishi H: PET imaging of prostate cancer using carbon-11-choline. J Nucl Med 39:990-995, 1998
- Hara T, Inagaki K, Kosaka N, et al: Sensitive detection of mediastinal lymph node metastasis of lung cancer with 11C-choline PET. J Nucl Med 41:1507-1513, 2000
- 61. Kobori O, Kirihara Y, Kosaka N, et al: Positron emission tomography of esophageal carcinoma using (11)C-choline and (18)F-fluorodeoxy-

glucose: a novel method of preoperative lymph node staging. Cancer 86:1638-1648, 1999

- 62. Price DT, Coleman RE, Liao RP, et al: Comparison of [18 F]fluorocholine and [18 F]fluorodeoxyglucose for positron emission tomography of androgen dependent and androgen independent prostate cancer. J Urol 168:273-280, 2002
- Picchio M, Messa C, Landoni C, et al: Value of [11C]choline-positron emission tomography for re-staging prostate cancer: a comparison with [18F]fluorodeoxyglucose-positron emission tomography. J Urol 169:1337-1340, 2003
- Kotzerke J, Prang J, Neumaier B, et al: Experience with carbon-11 choline positron emission tomography in prostate carcinoma. Eur J Nucl Med 27:1415-1419, 2000
- de Jong IJ, Pruim J, Elsinga PH, et al: Visualization of prostate cancer with 11C-choline positron emission tomography. Eur Urol 42:18-23, 2002
- de Jong IJ, Pruim J, Elsinga PH, et al: Preoperative staging of pelvic lymph nodes in prostate cancer by (11)C-choline PET. J Nucl Med 44:331-335, 2003
- de Jong IJ, Pruim J, Elsinga PH, et al: 11C-choline positron emission tomography for the evaluation after treatment of localized prostate cancer. Eur Urol 44:32-38, 2003; discussion 38-39
- Roivainen A, Forsback S, Gronroos T, et al: Blood metabolism of [methyl-11C]choline; implications for in vivo imaging with positron emission tomography. Eur J Nucl Med 27:25-32, 2000
- Hara T, Kosaka N, Kishi H: Development of (18)F-fluoroethylcholine for cancer imaging with PET: synthesis, biochemistry, and prostate cancer imaging. J Nucl Med 43:187-199, 2002
- DeGrado TR, Coleman RE, Wang S, et al: Synthesis and evaluation of 18F-labeled choline as an oncologic tracer for positron emission tomography: initial findings in prostate cancer. Cancer Res 61:110-117, 2001
- DeGrado TR, Baldwin SW, Wang S, et al: Synthesis and evaluation of (18)F-labeled choline analogs as oncologic PET tracers. J Nucl Med 42:1805-1814, 2001
- DeGrado TR, Reiman RE, Price DT, et al: Pharmacokinetics and radiation dosimetry of 18F-fluorocholine. J Nucl Med 43:92-96, 2002
- Sutinen E, Nurmi M, Roivainen A, et al: Kinetics of [(11)C]choline uptake in prostate cancer: a PET study [correction for stydy]. Eur J Nucl Med Mol Imaging 31:317-324, 2004
- 74. Wyss MT, Weber B, Honer M, et al: 18F-choline in experimental soft tissue infection assessed with autoradiography and high-resolution PET. Eur J Nucl Med Mol Imaging 31:312-316, 2004
- Miyazawa H, Arai T, Iio M, et al: PET imaging of non-small-cell lung carcinoma with carbon-11-methionine: relationship between radioactivity uptake and flow-cytometric parameters. J Nucl Med 34:1886-1891, 1993
- Lindholm P, Leskinen S, Lapela M: Carbon-11-methionine uptake in squamous cell head and neck cancer. J Nucl Med 39:1393-1397, 1998
- Lindholm P, Leskinen S, Nagren K, et al: Carbon-11-methionine PET imaging of malignant melanoma. J Nucl Med 36:1806-1810, 1995
- 78. Ogawa T, Shishido F, Kanno I, et al: Cerebral glioma: Evaluation with methionine PET. Radiology 186:45-53, 1993
- Schober O, Duben C, Meyer G, et al: Nonselective transport of [11Cmethyl]-L- and D-methionine into a malignant glioma. Eur J Nucl Med 13:103-105, 1987
- Hatazawa J, Ishiwata K, Itoh M, et al: Quantitative evaluation of L-[methyl]-11C methionine uptake in tumor using positron emission tomography. J Nucl Med 30:1809-1813, 1989
- Kubota R, Kubota K, Yamada S, et al: Methionine uptake by tumor tissue: A microautoradiographic comparison with FDG. J Nucl Med 36:484-492, 1995
- Nilsson S, Kalkner K, Ginman C, et al: C-11 methionine positron emission tomography in the management of prostatic carcinoma. Antibody Immunconj Radiopharm 8:23, 1995
- Macapinlac HA, Humm JL, Akhurst T, et al: Differential metabolism and pharmacokinetics of L-[1-(11)C]-methionine and 2-[(18)F]

fluoro-2-deoxy-D-glucose (FDG) in androgen independent prostate cancer. Clin Positron Imaging 2:173-181, 1999

- Craft N, Sawyers CL: Mechanistic concepts in androgen-dependence of prostate cancer. Cancer Metastasis Rev 17:421-427, 1998
- Bonasera TA, O'Neil JP, Xu M, et al: Preclinical evaluation of fluorine-18-labeled androgen receptor ligands in baboons. J Nucl Med 37: 1009-1015, 1996
- Chandler JD, Williams ED, Slavin JL, et al: Expression and localization of GLUT1 and GLUT12 in prostate carcinoma. Cancer 97:2035-2042, 2003
- Liu JJ, Zafar MB, Lai YH, et al: Fluorodeoxyglucose positron emission tomography studies in diagnosis and staging of clinically organ-confined prostate cancer. Urology 57:108-111, 2001
- Smith JA Jr, Seaman JP, Gleidman JB, et al: Pelvic lymph node metastasis from prostatic cancer: influence of tumor grade and stage in 452 consecutive patients. J Urol 130:290-292, 1983
- Bundrick WS, Culkin DJ, Mata JA, et al: Evaluation of the current incidence of nodal metastasis from prostate cancer. J Surg Oncol 52: 269-271, 1993
- Danella JF, deKernion JB, Smith RB, et al: The contemporary incidence of lymph node metastases in prostate cancer: implications for laparoscopic lymph node dissection. J Urol 149:1488-1491, 1993
- 91. Eastham J, Scardino P: Radical Prostatectomy, in Campbell's Urology. Philadelphia, PA, Saunders, 1998, pp 2547-2561
- Ohori M, Wheeler TM, Dunn JK, et al: The pathological features and prognosis of prostate cancer detectable with current diagnostic tests. J Urol 152:1714-1720, 1994
- Bader P, Burkhard FC, Markwalder R, et al: Is a limited lymph node dissection an adequate staging procedure for prostate cancer? J Urol 168:514-518, 2002; discussion 518
- Heidenreich A, Varga Z, Von Knobloch R: Extended pelvic lymphadenectomy in patients undergoing radical prostatectomy: high incidence of lymph node metastasis. J Urol 167:1681-1686, 2002
- Edelstein RA, Zietman AL, de las Morenas A, et al: Implications of prostate micrometastases in pelvic lymph nodes: An archival tissue study. Urology 47:370-375, 1996
- 96. Cheng L, Zincke H, Blute ML, et al: Risk of prostate carcinoma death in patients with lymph node metastasis. Cancer 91:66-73, 2001
- 97. Zincke H, Lau W, Bergstralh E, et al: Role of early adjuvant hormonal therapy after radical prostatectomy for prostate cancer. J Urol 166: 2208-2215, 2001
- Graefen M, Karakiewicz PI, Cagiannos I, et al: Validation study of the accuracy of a postoperative nomogram for recurrence after radical prostatectomy for localized prostate cancer. J Clin Oncol 20:951-956, 2002
- Cheng L, Bergstralh EJ, Cheville JC, et al: Cancer volume of lymph node metastasis predicts progression in prostate cancer. Am J Surg Pathol 22:1491-1500, 1998
- Steinberg GD, Epstein JI, Piantadosi S, et al: Management of stage D1 adenocarcinoma of the prostate: the Johns Hopkins experience 1974 to 1987. J Urol 144:1425-1432, 1990
- Seay TM, Blute ML, Zincke H: Long-term outcome in patients with pTxN+ adenocarcinoma of prostate treated with radical prostatectomy and early androgen ablation. J Urol 159:357-364, 1998
- 102. Oyen R, van Poppel F, van de Voorde W, et al: Lymph node staging of localized prostatic carcinoma with CT and CT-guided fine-needle aspiration biopsy: Prospective study of 285 patients. Radiology 190: 315-322, 1994
- 103. Wolf JS Jr, Cher M, Dall'era M, et al: The use and accuracy of crosssectional imaging and fine needle aspiration cytology for detection of pelvic lymph node metastases before radical prostatectomy. J Urol 153:993-999, 1995
- Tiguert R, Gheiler EL, Tefilli MV, et al: Lymph node size does not correlate with the presence of prostate cancer metastasis. Urology 53:367-371, 1999
- 105. Flanigan RC, McKay TC, Olson M, et al: Limited efficacy of preoperative computed tomographic scanning for the evaluation of lymph node metastasis in patients before radical prostatectomy. Urology 48: 428-432, 1996

- Harisinghani MG, Barentsz J, Hahn PF, et al: Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N Engl J Med 348:2491-2499, 2003
- Takashima H, Egawa M, Imao T, et al: Validity of sentinel lymph node concept for patients with prostate cancer. J Urol 171:2268-2271, 2004
- Wawroschek F, Vogt H, Wengenmair H, et al: Prostate lymphoscintigraphy and radio-guided surgery for sentinel lymph node identification in prostate cancer. Technique and results of the first 350 cases. Urol Int 70:303-310, 2003
- 109. Chybowski FM, Keller JJ, Bergstralh EJ, et al: Predicting radionuclide bone scan findings in patients with newly diagnosed, untreated prostate cancer: prostate specific antigen is superior to all other clinical parameters. J Urol 145:313-318, 1991
- Lee CT, Oesterling JE: Using prostate-specific antigen to eliminate the staging radionuclide bone scan. Urol Clin North Am 24:389-394, 1997
- 111. Heicappell R, Muller-Mattheis V, Reinhardt M, et al: Staging of pelvic lymph nodes in neoplasms of the bladder and prostate by positron emission tomography with 2-[(18)F]-2-deoxy-D-glucose. Eur Urol 36:582-587, 1999
- Yeh SD, Imbriaco M, Larson SM, et al: Detection of bony metastases of androgen-independent prostate cancer by PET-FDG. Nucl Med Biol 23:693-697, 1996
- 113. Even-Sapir E, Metser U, Flusser G, et al: Assessment of malignant skeletal disease: initial experience with 18F-fluoride PET/CT and comparison between 18F-fluoride PET and 18F-fluoride PET/CT. J Nucl Med 45:272-278, 2004
- Leventis AK, Shariat SF, Slawin KM: Local recurrence after radical prostatectomy: correlation of US features with prostatic fossa biopsy findings. Radiology 219:432-439, 2001
- 115. Fowler JE Jr, Brooks J, Pandey P, et al: Variable histology of anastomotic biopsies with detectable prostate specific antigen after radical prostatectomy. J Urol 153:1011-1014, 1995
- 116. Connolly JA, Shinohara K, Presti JC Jr, et al: Local recurrence after radical prostatectomy: characteristics in size, location, and relationship to prostate-specific antigen and surgical margins. Urology 47: 225-231, 1996
- 117. Albertsen PC, Hanley JA, Harlan LC, et al: The positive yield of imaging studies in the evaluation of men with newly diagnosed prostate cancer: a population based analysis. J Urol 163:1138-1143, 2000
- Johnstone P, GJ T, Riffenburgh RH: Yield of imaging and scintigraphy assessing biochemical failure in prostate cancer patients. Urol Oncol 3:108-112, 1997
- Kramer S, Gorich J, Gottfried HW, et al: Sensitivity of computed tomography in detecting local recurrence of prostatic carcinoma following radical prostatectomy. Br J Radiol 70:995-999, 1997
- 120. Cox JD, Gallagher MJ, Hammond EH, et al: Consensus statements on radiation therapy of prostate cancer: guidelines for prostate re-biopsy after radiation and for radiation therapy with rising prostate-specific antigen levels after radical prostatectomy. American Society for Therapeutic Radiology and Oncology Consensus Panel. J Clin Oncol 17: 1155, 1999
- Turner JW, Hawes DR, Williams RD: Magnetic resonance imaging for detection of prostate cancer metastatic to bone. J Urol 149:1482-1484, 1993
- 122. Freedman GM, Negendank WG, Hudes GR, et al: Preliminary results of a bone marrow magnetic resonance imaging protocol for patients with high-risk prostate cancer. Urology 54:118-123, 1999
- Sella T, Schwartz LH, Swindle PW, et al: Suspected local recurrence after radical prostatectomy: endorectal coil MR imaging. Radiology 231:379-385, 2004
- Silverman JM, Krebs TL: MR imaging evaluation with a transrectal surface coil of local recurrence of prostatic cancer in men who have undergone radical prostatectomy. Am J Roentgenol 168:379-385, 1997
- Ornstein DK, Colberg JW, Virgo KS, et al: Evaluation and management of men whose radical prostatectomies failed: results of an international survey. Urology 52:1047-1054, 1998

- Cher ML, Bianco FJ Jr.: Lam JS, et al: Limited role of radionuclide bone scintigraphy in patients with prostate specific antigen elevations after radical prostatectomy. J Urol 160:1387-1391, 1998
- 127. Kane CJ, Amling CL, Johnstone PA, et al: Limited value of bone scintigraphy and computed tomography in assessing biochemical failure after radical prostatectomy. Urology 61:607-611, 2003
- 128. Sabbatini P, Larson SM, Kremer A, et al: Prognostic significance of extent of disease in bone in patients with androgen-independent prostate cancer. J Clin Oncol 17:948-957, 1999
- 129. Noguchi M, Kikuchi H, Ishibashi M, et al: Percentage of the positive area of bone metastasis is an independent predictor of disease death in advanced prostate cancer. Br J Cancer 88:195-201, 2003
- 130. Rigaud J, Tiguert R, Le Normand L, et al: Prognostic value of bone scan in patients with metastatic prostate cancer treated initially with androgen deprivation therapy. J Urol 168:1423-1426, 2002
- Antoch G, Vogt FM, Freudenberg LS, et al: Whole-body dual-modality PET/CT and whole-body MRI for tumor staging in oncology. JAMA 290:3199-3206, 2003
- 132. Panel ASfTRaOC: Consensus Statements on Radiation Therapy of Prostate Cancer: Guidelines for Prostate Re-Biopsy After Radiation and for Radiation Therapy With Rising Prostate-Specific Antigen Levels After Radical Prostatectomy. J Clin Oncol 17:1155-1163, 1999
- 133. Petrylak DP: Chemotherapy for advanced hormone refractory prostate cancer. Urology 54:30-35, 1999
- Khan MA, Carducci MA, Partin AW: The evolving role of docetaxel in the management of androgen independent prostate cancer. J Urol 170:1709-1716, 2003
- 135. Eisenberger MA, Blumenstein BA, Crawford ED, et al: Bilateral orchiectomy with or without flutamide for metastatic prostate cancer. N Engl J Med 339:1036-1042, 1998
- 136. Seckin B, Anthony CT, Murphy B, et al: Can prostate-specific antigen be used as a valid end point to determine the efficacy of chemotherapy for advanced prostate cancer? World J Urol 14:S26-S29, 1996 (suppl 1)
- 137. Schneider JA, Divgi CR, Scott AM, et al: Flare on bone scintigraphy following Taxol chemotherapy for metastatic breast cancer. J Nucl Med 35:1748-1752, 1994
- McNeil BJ: Value of bone scanning in neoplastic disease. Semin Nucl Med 14:277-286, 1984
- Oyama N, Akino H, Suzuki Y, et al: FDG PET for evaluating the change of glucose metabolism in prostate cancer after androgen ablation. Nucl Med Commun 22:963-969, 2001
- Oyama N, Kim J, Jones LA, et al: MicroPET assessment of androgenic control of glucose and acetate uptake in the rat prostate and a prostate cancer tumor model. Nucl Med Biol 29:783-790, 2002
- Oyama N, Ponde DE, Dence C, et al: Monitoring of therapy in androgen-dependent prostate tumor model by measuring tumor proliferation. J Nucl Med 45:519-525, 2004
- 142. Shimizu N, Masuda H, Yamanaka H, et al: Fluorodeoxyglucose positron emission tomography scan of prostate cancer bone metastases with flare reaction after endocrine therapy. J Urol 161:608-609, 1999
- 143. Wong RJ, Lin DT, Schoder H, et al: Diagnostic and prognostic value of [(18)F]fluorodeoxyglucose positron emission tomography for recurrent head and neck squamous cell carcinoma. J Clin Oncol 20:4199-4208, 2002
- 144. Vansteenkiste JF, Stroobants SG, Dupont PJ, et al: Prognostic importance of the standardized uptake value on (18)F-fluoro-2-deoxy-glucose-positron emission tomography scan in non-small-cell lung cancer: An analysis of 125 cases. Leuven Lung Cancer Group. J Clin Oncol 17:3201-3206, 1999
- 145. Eary JF, O'Sullivan F, Powitan Y, et al: Sarcoma tumor FDG uptake measured by PET and patient outcome: a retrospective analysis. Eur J Nucl Med Mol Imaging 29:1149-1154, 2002
- 146. Oyama N, Akino H, Suzuki Y, et al: Prognostic value of 2-deoxy-2-[F-18]fluoro-D-glucose positron emission tomography imaging for patients with prostate cancer. Mol Imaging Biol 4:99-104, 2002
- 147. Motzer RJ, Bander NH, Nanus DM: Renal-cell carcinoma. N Engl J Med 335:865-875, 1996

- Hilton S: Imaging of renal cell carcinoma. Semin Oncol 27:150-159, 2000
- Schreyer HH, Uggowitzer MM, Ruppert-Kohlmayr A: Helical CT of the urinary organs. Eur Radiol 12:575-591, 2002
- 150. Kopka L, Fischer U, Zoeller G, et al: Dual-phase helical CT of the kidney: Value of the corticomedullary and nephrographic phase for evaluation of renal lesions and preoperative staging of renal cell carcinoma. AJR Am J Roentgenol 169:1573-1578, 1997
- Zagoria RJ, Bechtold RE, Dyer RB: Staging of renal adenocarcinoma: role of various imaging procedures. Am J Roentgenol 164:363-370, 1995
- 152. Margaritora S, Porziella V, D'Andrilli A, et al: Pulmonary metastases: can accurate radiological evaluation avoid thoracotomic approach? Eur J Cardiothorac Surg 21:1111-1114, 2002
- Diederich S, Semik M, Lentschig MG, et al: Helical CT of pulmonary nodules in patients with extrathoracic malignancy: CT-surgical correlation. Am J Roentgenol 172:353-360, 1999
- 154. Wahl RL, Harney J, Hutchins G, et al: Imaging of renal cancer using positron emission tomography with 2-deoxy-2-(18F)-fluoro-D-glucose: pilot animal and human studies. J Urol 146:1470-1474, 1991
- Bachor R, Kotzerke J, Reske SN, et al: [Lymph node staging of bladder neck carcinoma with positron emission tomography]. Urologe A 38: 46-50, 1999
- 156. Ramdave S, Thomas GW, Berlangieri SU, et al: Clinical role of F-18 fluorodeoxyglucose positron emission tomography for detection and management of renal cell carcinoma. J Urol 166:825-830, 2001
- 157. Kang DE, White RL Jr, Zuger JH, et al: Clinical use of fluorodeoxyglucose F 18 positron emission tomography for detection of renal cell carcinoma. J Urol 171:1806-1809, 2004
- 158. Miyakita H, Tokunaga M, Onda H, et al: Significance of 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) for detection of renal cell carcinoma and immunohistochemical glucose transporter 1 (GLUT-1) expression in the cancer. Int J Urol 9:15-18, 2002
- 159. Leibovich BC, Blute ML, Cheville JC, et al: Prediction of progression after radical nephrectomy for patients with clear cell renal cell carcinoma: a stratification tool for prospective clinical trials. Cancer 97: 1663-1671, 2003
- Ficarra V, Righetti R, Pilloni S, et al: Prognostic factors in patients with renal cell carcinoma: retrospective analysis of 675 cases. Eur Urol 41:190-198, 2002
- 161. Kavolius JP, Mastorakos DP, Pavlovich C, et al: Resection of metastatic renal cell carcinoma. J Clin Oncol 16:2261-2266, 1998
- Raj GV, Partin AW, Polascik TJ: Clinical utility of indium 111-capromab pendetide immunoscintigraphy in the detection of early, recurrent prostate carcinoma after radical prostatectomy. Cancer 94: 987-996, 2002
- 163. Jadvar H, Kherbache HM, Pinski JK, et al: Diagnostic role of [F-18]-FDG positron emission tomography in restaging renal cell carcinoma. Clin Nephrol 60:395-400, 2003
- 164. Safaei A, Figlin R, Hoh CK, et al: The usefulness of F-18 deoxyglucose whole-body positron emission tomography (PET) for re-staging of renal cell cancer. Clin Nephrol 57:56-62, 2002

- 165. Majhail NS, Urbain JL, Albani JM, et al: F-18 fluorodeoxyglucose positron emission tomography in the evaluation of distant metastases from renal cell carcinoma. J Clin Oncol 21:3995-4000, 2003
- 166. Dalbagni G, Genega E, Hashibe M, et al: Cystectomy for bladder cancer: a contemporary series. J Urol 165:1111-1116, 2001
- 167. Ghoneim MA, el-Mekresh MM, el-Baz MA, et al: Radical cystectomy for carcinoma of the bladder: Critical evaluation of the results in 1,026 cases. J Urol 158:393-399, 1997
- Stein JP, Lieskovsky G, Cote R, et al: Radical cystectomy in the treatment of invasive bladder cancer: long-term results in 1,054 patients. J Clin Oncol 19:666-675, 2001
- Frank I, Cheville JC, Blute ML, et al: Transitional cell carcinoma of the urinary bladder with regional lymph node involvement treated by cystectomy: Clinicopathologic features associated with outcome. Cancer 97:2425-2431, 2003
- Paik ML, Scolieri MJ, Brown SL, et al: Limitations of computerized tomography in staging invasive bladder cancer before radical cystectomy. J Urol 163:1693-1696, 2000
- 171. Yaman O, Baltaci S, Arikan N, et al: Staging with computed tomography, transrectal ultrasonography and transurethral resection of bladder tumour: Comparison with final pathological stage in invasive bladder carcinoma. Br J Urol 78:197-200, 1996
- 172. Jager GJ, Barentsz JO, Oosterhof GO, et al: Pelvic adenopathy in prostatic and urinary bladder carcinoma: MR imaging with a threedimensional TI-weighted magnetization-prepared-rapid gradientecho sequence. AJR Am J Roentgenol 167:1503-1507, 1996
- 173. Kim B, Semelka RC, Ascher SM, et al: Bladder tumor staging: comparison of contrast-enhanced CT, T1- and T2-weighted MR imaging, dynamic gadolinium-enhanced imaging, and late gadolinium-enhanced imaging. Radiology 193:239-245, 1994
- 174. de Jong IJ, Pruim J, Elsinga PH, et al: Visualisation of bladder cancer using (11)C-choline PET: first clinical experience. Eur J Nucl Med Mol Imaging 29:1283-1288, 2002
- 175. Kosuda S, Kison PV, Greenough R, et al: Preliminary assessment of fluorine-18 fluorodeoxyglucose positron emission tomography in patients with bladder cancer. Eur J Nucl Med 24:615-620, 1997
- Schoder H, Erdi YE, Larson SM, et al: PET/CT: A new imaging technology in nuclear medicine. Eur J Nucl Med Mol Imaging 30:1419-1437, 2003
- 177. Bar-Shalom R, Yefremov N, Guralnik L, et al: Clinical performance of PET/CT in evaluation of cancer: additional value for diagnostic imaging and patient management. J Nucl Med 44:1200-1209, 2003
- Ahlstrom H, Malmstrom PU, Letocha H, et al: Positron emission tomography in the diagnosis and staging of urinary bladder cancer. Acta Radiol 37:180-185, 1996
- 179. Deloar HM, Fujiwara T, Nakamura T, et al: Estimation of internal absorbed dose of L-[methyl-11C]methionine using whole-body positron emission tomography. Eur J Nucl Med 25:629-633, 1998
- Seltzer MA, Jahan SA, Sparks R, et al: Radiation dose estimates in humans for (11)C-acetate whole-body PET. J Nucl Med 45:1233-1236, 2004