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Neurochemical Imaging of Dementias
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eurochemical imaging is one of the most established

molecular” imaging techniques. There have been tre-

endous efforts expended to develop radioligands spe-

ific to each neurochemical system. Investigational ap-

lications of neurochemical imaging in dementing

isorders are extensive. Cholinergic, dopaminergic, and

erotonergic systems, as well as benzodiazepine recep-

ors, opioid receptors, and glutamatergic receptors have
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0 Seminars in N
een imaged in Alzheimer disease and other dementing

isorders. These investigations have provided impor-

ant insights into disease processes in living human

atients. The clinical diagnostic use of neurochemical

maging for dementing disorders is currently limited,

ut this technique is used to help develop therapeutic

rugs at multiple levels.

2004 Elsevier Inc. All rights reserved.
EMENTING DISORDERS affect more than
4% of the elderly population older than 65

ears.1 Among dementing illnesses, Alzheimer
isease (AD) is reported to be the most common
orm in the United States as well as worldwide, and
ts prevalence increases with age.1,2 With the
urrent trend towards increasing longevity, the
revalence of dementia, particularly AD, will be-
ome even higher during the next few decades.3,4

ementing illness imposes significant burdens on
ur society, health care, and economy.5 The study
f dementing illness ranges from molecular mech-
nisms to socioeconomic analysis.

NEUROCHEMICAL IMAGING

The investigation of dementing disorders using
adionuclides dates back to early cerebral blood
ow and oxygen metabolic studies,6,7 but subse-
uent developments of single-photon emission to-
ography (SPECT) and positron emission tomog-

aphy (PET) generated a surge of research directed
t brain imaging. In the late 1970s, Sokoloff and
olleagues developed the radiolabeled glucose an-
logue, [C-14]deoxyglucose, to measure regional
euronal activity in the living brain.8 However,
nlike glucose, DG-6-P cannot be converted to
ructose-6-phosphate and accumulates in the brain
or a duration that is long enough for imaging. This
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ethod was quickly translated to a [F-18]labeled
racer, [F-18]-2-fluoro-2-deoxy-D-glucose (FDG),9

nd [C-11]labeled tracer, 2-deoxy-D[1-C-11]glu-
ose10 for human brain imaging using PET. Initial
pplications of FDG-PET to dementing disorders
ere extensive.11-14 A major finding from these

nitial studies was a regional heterogeneity in the
mpairment of energy metabolism (ie, accentuated
ypometabolism in the parietotemporal and frontal
ssociation cortices) in contrast to relative preser-
ation of primary cortices and subcortical struc-
ures. FDG-PET is an example of the oldest “mo-
ecular” imaging of the brain, which still serves as
n important in vivo imaging technique for the
nvestigation of brain disorders. The diagnostic
pplications of FDG-PET to dementing disorders
lso have been debated recently.

In 1983, following FDG development, 2 labora-
ories reported novel imaging techniques for the
opamine system, C-11 labeled methylspiperone15

nd F-18 labeled L-dopa.16 One year before these
ET approaches, radioiodine I-123 labeled ligand
uinuclidinyl benzilate, [I-123]-OH-QNB, was
ested for in vivo muscarinic cholinergic receptor
maging using SPECT,17 and differential uptake by
he cerebral cortex and subcortical structures was
eported.18 These early studies ignited efforts of
adiochemistry development for neurochemical
maging, with neurodegenerative disorders as one
f the major targets. There have been many radio-
racers developed to date for the investigations of
ementing disorders. These developments include
adiotracers to image cholinergic, dopaminergic,
erotonergic, and glutamatergic systems, and cen-
ral and peripheral benzodiazepine receptors.

Neurochemical imaging, one of the most estab-
ished fields of “molecular” imaging, is still evolv-
ng in parallel to advancing knowledge of neuro-
hemistry and molecular genetics of the brain and
rain disorders. Figure 1 illustrates many potential

argets for in vivo imaging of dementing disor-

uclear Medicine, Vol XXXIV, No 1 (January), 2004: pp 70-82
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71NEUROCHEMICAL IMAGING OF DEMENTIAS
ers. These targets include enzymes involved in
eurotransmitter synthesis, vesicular transporters
ocated on synaptic vesicles, presynaptic receptors,
ostsynaptic receptors, enzymes degrading neuro-
ransmitters, presynaptic transporters and reuptake
ites, and glial receptors. Pathologic deposits spe-
ific to certain dementing disorders, such as �-
myloid in AD, can be imaged as well. There are
ecent efforts to develop in vivo amyloid imaging
robes for the investigation of AD and related
isorders.19-21

Owing to the quantitative nature of PET mea-
urements and SPECT, if conducted appropriately,
uantitative in vivo neurochemical assays are pos-
ible by imaging. However, in comparison to in
itro receptor assays that had been used to study
ostmortem human brain specimens and animal
esearch, in vivo imaging imposes several limita-
ions and requires certain considerations. Unlike in
itro binding studies, radiotracers that can be used
or PET and SPECT have to cross the blood-brain
arrier (BBB) following intravenous injection.
BB permeability can be influenced by several

actors, including the ligand’s ionizable groups and
ipophilicity.22,23 The regional specificity of ligand

Fig 1. A schematic diagram of neurochemical imaging

argets, including enzyme synthesizing a neurotransmitter

A). (B) Vesicular transporter on the presynaptic vesicle. (C)

resynaptic receptor. (D) Postsynaptic receptor. (E) Enzyme

egrading a neurotransmitter in the synaptic cleft. (F) Presyn-

ptic transporter and reuptake site. (G) Glial receptor. (H)

athologic deposit specific to diseases. In addition to these

argets, other neuronal elements, such as ion channel, mito-

hondrion electron transport system, secondary messenger

ystem can be potential targets for in vivo imaging.
inding to receptor types and subtypes also needs i
o be considered carefully because it is typically
ifficult to apply unlabeled displacing ligands as
re used for in vitro studies. Ligands can be
etabolized within the brain and within other

rgans. Metabolized ligands within other organs
ay cross BBB, and may give confounding signals

n PET and SPECT. Radiolabeled ligands need to
ave a high enough specific activity to give signals
or imaging without saturating available receptors
r inducing physiologic effects.
With the in vivo imaging approach, nonspecific

inding and free ligands cannot be minimized by
igorous washing of the specimen as for in vitro
ssays. Thus, tracer kinetic analysis becomes im-
ortant to model the behavior of the ligand in the
rain. It is important to estimate specific binding
eparated from nonspecific binding and free com-
onents using imaging data obtained from PET and
PECT, and is often combined with blood sam-
ling. However, even the most sophisticated tracer
inetic modeling may not be able to overcome a
undamental limitation of a ligand, such as limited
BB permeability relative to high affinity of the

igand to the receptor system or presence of sig-
ificant radiolabeled metabolites within the brain.
he accuracy of PET and SPECT measurements of
eurochemical changes relies on multiple factors,
ncluding quantitative accuracy of PET and
PECT instrumentation, nature of radiotracer, im-
ging protocol, metabolite analysis, tracer kinetic
nalysis, and image analysis. For these reasons, it
s important for investigators to validate new ra-
iotracers rigorously before clinical applications. It
s equally important for readers to understand that
ublished data may have limited accuracy regard-
ng in vivo imaging assays and, therefore, may
ffect interpretation of the results.

CHOLINERGIC IMAGING

AD, first described by Dr. Alzheimer in 1906,24

s reported to be the most common form of
ementia and affects more than half of dementia
atients.1,25,26 Imaging of dementia dates back to
he late 1960s before the emergence of cross-
ectional imaging techniques.6,27,28 Because Par-
inson disease (PD) was attributed to degeneration
f dopamine neurons in the nigrostriatal pathway,
nvestigators attempted to link a particular neuro-
hemical system to cognitive impairment seen in
D. “Cholinergic Hypothesis” of AD, established
n late 1970s, was based on observations, including
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72 MINOSHIMA ET AL
emory loss induced by cholinergic blockade in
ormal human subjects and major deficits in cor-
ical cholinergic markers in AD.29-31 There have
een efforts to characterize cholinergic degenera-
ion in AD and drug developments to improve
holinergic transmissions.

Imaging investigations of the cholinergic system
n AD were performed not only using neurorecep-
or and/or transmitter ligands but also by FDG-
ET and perfusion SPECT. Cholinergic neurons
re located in the basal forebrain, nucleus basalis
f Meynert and send cholinergic projections to the
ntire cerebral cortex. An electrocoagulation lesion
n the nucleus basalis of Meynert in primates
roduced profound metabolic reductions in fronto-
emporal association cortices that were somewhat
imilar to those observed in AD.32,33 However, the
lockade of cholinergic transmission by an amnes-
ic dose of scopolamine resulted in increased glu-
ose metabolism in contrast to metabolic reduc-
ions commonly seen in AD.34 Central cholinergic
timulation by physostigmine produced differential
esponses in regional cerebral blood flow measured
y perfusion SPECT in patients with AD in com-
arison to normal controls.35 Perfusion changes by
holinergic stimulation were compared with meta-
olic changes by PET in normal subjects and
atients with AD.36 This study showed the differ-
ntial effects of physostigmine on cerebral blood
ow and metabolic activity, indicating vascular
nd metabolic responses, complicating interpreta-
ion of imaging data with cholinergic drug inter-
entions. A single dose of acetylcholinesterase
AChE) inhibitor, velnacrine maleate, resulted in
ncreased perfusion in the superior frontal associ-
tion cortex, particularly in patients with more
evere AD.37 These investigations provided func-
ional links between cholinergic modulation, and
euronal activity and cerebral blood flow.

The imaging of muscarinic acetylcholine recep-
or in AD was first achieved using SPECT and the
I-123]labeled radiotracer, quinuclidinyl benzilate
QNB).17 A subsequent study involving patients
ith AD showed impairment of muscarinic recep-

or binding.38 SPECT with a high-affinity musca-
inic receptor antagonist, 3-quinuclidinyl-4-iodo-
enzilate, showed focal abnormalities in frontal
nd posterior temporal cortices in AD, in contrast
o patients with Pick disease who showed frontal
nd anterior temporal deficits.39 In comparison to

DG-PET, QNB SPECT showed higher deficits u
han metabolic abnormalities in AD.40 Chronic
holinergic blockage by low-dose scopolamine
dministration resulted in increased muscarinic
eceptor binding on QNB SPECT in AD, in com-
arison to decreased binding observed in normal
ontrols, indicating differential modulatory mech-
nisms in AD.41 However, QNB uptake in the
rain showed on SPECT also may be affected by
ifferential distributions of muscarinic receptor
ubtypes.42,43 It was also reported that brain QNB
ptake was limited by ligand delivery (ie, regional
erebral blood flow and BBB transport).44

A subtype, nonselective muscarinic acetylcho-
ine receptor ligand, [C-11]N-methyl-4-piperidyl
enzilate , was developed for PET and applied in
D.45 In part due to the complexity of tracer
inetic modeling to separate ligand delivery versus
pecific receptor binding, this method resulted in a
imited sensitivity and did not show significant
lterations of muscarinic acetylcholine receptor
ensity in AD. There are continuing efforts to
evelop subtype specific muscarinic acetylcholine
eceptors targeting AD.46 The development of
ubtype specific ligands is critical for a better
nderstanding of muscarinic receptor alterations in
D because postmortem studies showed differen-

ial preservation and loss of muscarinic receptor
ubtypes (ie, relative preservation of M1 in con-
rast with consistent loss of M2 receptors).

There have been attempts to image nicotinic
cetylcholine receptors in AD using in vivo imag-
ng techniques, but radioligands suitable for nico-
inic receptors are limited to date. A series of PET
tudies using [C-11]nicotine was reported and
howed decreased nicotinic receptor density in
D.47-51 The [C-11]nicotine PET also showed

estoration of nicotinic receptors following treat-
ents with cholinesterase inhibitor and nerve

rowth factor.48,50,52,53 However, tracer kinetics of
C-11]nicotine may not be optimally suited for
ET due to the influence of regional cerebral blood
ow. Correction for blood flow using [C-11]buta-
ol PET was proposed,51 but this limits the general
pplications of the technique. There are continuing
fforts to develop further nicotinic acetylcholine
eceptor ligands for better in vivo imaging charac-
eristics and subtype specificity.54

A traditional presynaptic marker of cholinergic
eurons, choline acetyltransferase (CAT), has not
een imaged successfully in vivo. However, vesic-

lar acetylcholine transporters (VAChT) that are
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73NEUROCHEMICAL IMAGING OF DEMENTIAS
xpressed on presynaptic vesicles of cholinergic
eurons were imaged using an iodinated tracer, (-)-
-[I-123]iodobenzovesamicol (IBVM) and SPECT.55

his tracer was used as a marker for cholinergic
resynaptic terminal integrity. Because of good
orrelation between k3 estimates with blood sam-
ling and static images of IBVM at 22 hours after
njection, the protocol of IBVM SPECT could be
implified to static imaging at a few times without
ynamic SPECT or blood sampling. The loss of
holinergic presynaptic terminals was estimated to
e 3% to 4% per decade with normal aging, but
pproximately 30% loss in the entire cerebral
ortex of patients with AD whose onset age was
efore 65 years.56 In contrast, cholinergic presyn-
ptic terminal loss was much milder and restricted
o the hippocampus and temporal lobe in patients
ith an onset age after 65 years. The loss of

holinergic presynaptic terminals detected by in
ivo findings was not as marked as had been
uggested by CAT measurements of postmortem
pecimens, but possible discordance between CAT
nd VAChT has been discussed previously.57 Nev-
rtheless, imaging of VAChT using SPECT
howed quantitatively the loss of presynaptic cho-
inergic terminals in aging and AD in living human
ubjects.

Another traditional cholinergic enzyme, AChE,

Fig 2. Neurochemical changes seen in Alzheimer disease (

bserved in a group of patients with AD in comparison with a

olor) indicate higher reductions of neurochemical indices. E

lucose positron emission tomography (FDG-PET) shows seve

ut sparing the primary sensorimotor cortex. In compar

-)-5-[I-123]iodobenzovesamicol (IBVM) single-photon emissi

easured by N-[C-11]methylpiperidyl propionate PET show m

he primary sensorimotor cortex. In all 3 indices, the cereb

easured quantitatively by magnetic resonance imaging (MRI

hanges in AD, and the pattern of regional atrophy is simil

ifferential pathologic mechanisms of cortical atrophy and

oworkers provide more information regarding each imaging
s used not only as a marker for cholinergic s
eurons, but has been a target for drug treatments
s well. The first generation of cholinesterase
nhibitors, tacrine or tetrahydroaminoacridine
THA), is approved for the symptomatic treatment
f AD. This development was followed by done-
ezil (Aricept, Eisai, Inc., Teaneck, NJ) and other
ompounds that became clinically available in the
nited States. Two research groups developed

C-11]labeled acetylcholine analogues to image an
nzymatic activity of cholinesterase using PET,
amely N-[C-11]methylpiperidyl acetate58,59 and
-[C-11]methylpiperidyl propionate.60 The initial

tudy in patients with AD showed a 30% to 40%
oss of AChE activity in the cerebral cortex, most
ccentuated in the temporoparietal cortices.61 A
attern of AChE loss measured by PET in AD was
imilar to that in presynaptic VAChT loss mea-
ured by SPECT, but the pattern of these changes
as different from glucose hypometabolism mea-

ured by FDG-PET (Fig 2).62

Discordance between AChE reductions versus
hanges in glucose metabolism as well as cerebral
lood flow also was confirmed.65 These findings
ispute early primate studies indicating a possible
ole of cholinergic degeneration to account for
ypometabolism seen in association cortices.32,33

gain, the loss of AChE during normal aging was
nly modest.62,66 Further investigations revealed

e images show Z statistical maps of neurochemical changes

f age-similar normal controls. Higher Z values (yellow-to-red

etabolism (CMRglc) measured by [F-18]-2-fluoro-2-deoxy-D-

ctions in the parietotemporal and frontal association cortices

esicular acetylcholine transporters (VAChT) measured by

ography (SPECT) and acetylcholinesterase (AChE) activity

use reductions in the cerebral cortex without clear sparing of

misphere is relatively preserved. Regional cortical atrophy

hy) shows milder changes in comparison with neurochemical

hanges in CMRglc, but not in VAChT and AChE, indicating

ergic neurodegeneration. Kuhl56,62 and Minoshima63,64 and

and method.
AD). Th

group o

nergy m

re redu

ison, v

on tom

ore diff

ellar he

) (atrop

ar to c

cholin
ignificant reductions of AChE in the neocortex,
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74 MINOSHIMA ET AL
ippocampus, and amygdala in the patients with
arly onset AD but only in the temporoparietal
ortex and amygdala in the patients with late onset
D.67 The findings were similar to the patterns of

holinergic terminal loss shown by SPECT.56 The
ET method to quantify AChE activity was sim-
lified without arterial blood sampling,68,69 permit-
ing more widespread applications.

AChE imaging is an example of how in vivo
ET helps not only gain insight into disease
echanisms but also to validate the effects of drug

reatments. Donepezil treatment of 5 or 10 mg per
ay for at least 5 weeks resulted in AChE inhibi-
ion of only 27%, in comparison with AChE
nhibition of 52% induced by physostigmine in
ormal controls.70 Rivastigmine and donepezil
chieved a similar degree of AChE inhibition in
atients with AD, and the inhibition was most
rominent in the frontal lobe 37% to 39% in
omparison with 28% in the temporal lobe.

Applications of cholinergic imaging have been
ocused primarily on AD. However, there are
everal reports of cholinergic impairment in other
ementing disorders. Dementia with Lewy bodies
DLB), the second most common cause of neuro-
egenerative dementia, was reported to show more
evere cholinergic degeneration than pure AD,71

nd there were clinical indications that AChE
nhibitor treatments may have a greater effect in
atients with DLB. In vivo PET reported low
ChE activity in patients with DLB in comparison
ith those with AD.65 Many patients with an

ntemortem diagnosis of PD with dementia show
ortical Lewy bodies. Patients with PD with de-
entia showed extensive cortical cholinergic ter-
inal loss that was similar to AD.56

DOPAMINERGIC IMAGING

Dopamine imaging was the first neurochemical
ET procedure reported in the literature,15,16 and
xtensive investigations have been conducted for
opaminergic targets, including dopaminergic pre-
ynaptic enzyme, receptors (D1, D2, and other
ubtypes), and presynaptic transporters (dopamine
nd monoamine). Dopamine imaging was applied
nitially to PD without dementia,72-75 and con-
rmed the nigrostriatal degeneration and dopamine
eficits described previously by postmortem inves-
igations.

Early studies of dopamine imaging in dementia

nd AD include D2 receptor PET with [C-11]raclo- a
ride76 and D2 receptor SPECT with [I-123]labeled
-Iodo-6-methoxybenzamide (IBZM).77 Patients
ith dementia with the amyotrophic lateral sclero-

is-parkinsonism-dementia complex of Guam were
xamined using [F-18]fluorodopa PET.78 A subse-
uent study using [F-18]fluorodopa found that the
ini-mental State Examination score and age pre-

icted dopamine deficits in AD, indicating im-
aired dopamine metabolism as dementia became
rogressively more severe.79

Neurochemical correlates of extrapyramidal
ymptoms frequently observed in AD are not
nderstood fully. A postmortem investigation sug-
ested a correlation between neurofibrillary tangle
ensity in the substantia nigra and extrapyramidal
igns in AD.80 This question became a focus of
ET and SPECT investigations. A study using
F-18]fluorodopa PET indicated no significant re-
uction in [F-18]fluorodopa uptake in the caudate
r putamen of rigid or nonrigid patients with AD
ersus normal controls. In contrast, there were
evere reductions in PD, indicating differential
nderlying mechanisms of extrapyramidal symp-
oms in AD and PD.81 The [I-123]IBZM SPECT
howed modest striatal D2 receptor reductions of
pproximately 15% in AD without overt extrapy-
amidal signs in comparison to controls. This result
uggested a decline of postsynaptic striatal dopa-
ine receptors as a part of AD pathophysiology

hat is different from prevalent presynaptic nigro-
triatal degeneration.82 In contrast, subsequent
opamine transporter imaging using a cocaine
nalogue, 2-�-carbomethoxy-3-�-(4-[F-18]fluoro-
henyl)tropane (�-CFT), showed more severe re-
uctions in the putamen or caudate in patients with
D with extrapyramidal symptoms.83

A further PET investigation using a dopamine
1 receptor antagonist, [C-11]NNC 756 and a D2

ntagonist, [C-11]raclopride showed 14% reduc-
ions in D1 receptors in AD but no significant
eduction in D2 receptors.84 However, D1 or D2
eceptor changes did not correlate with Mini-
ental State Examination scores or motor Unified
D Rating Scale scores. These imaging investiga-

ions indicate differential alterations of dopaminer-
ic markers in AD and PD, but the exact neuro-
hemical basis for extrapyramidal signs in AD
equires further investigation.

Dopamine imaging in dementia received much
ttention in the investigation of DLB. Lewy bodies

re intracytoplasmic eosinophilic neuronal inclu-
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75NEUROCHEMICAL IMAGING OF DEMENTIAS
ions initially found in pigmented neurons of the
rain stem in PD.85,86 In 1961, association of
iffuse cortical Lewy bodies and dementia was
bserved.87 Subsequently, an autopsy case of pre-
enile dementia in which Lewy bodies were found
ot only in the brain stem, but, also, similar
nclusion bodies in the cerebral cortex were re-
orted.88 Cortical and brain stem Lewy bodies
ere also found to coexist with senile plaques.89

espite early nosologic controversy, DLB is rec-
gnized as the second most common form of
eurodegenerative dementia, and has been found to
ave substantial pathologic and clinical overlap
ith AD.90,91

In vivo neurochemical imaging depicted dopa-
inergic abnormalities in living patients with
LB. Decreased striatal dopamine transporters in
LB was detected using iodine-123 2 �-carboxy-
ethoxy-3 �-[4-iodophenyl]tropane ([I-123]�-
IT) SPECT.92 The caudate/putamen ratio of
ostsynaptic dopamine D2 neuroreceptor density
easured by IBZM SPECT was significantly

ower in probable DLB as compared with probable
D and normal controls.93 Decreased binding of
opaminergic presynaptic marker 2-�-carbome-
hoxy-3-�-(4-iodophenyl)-N-(3-fluoropropyl)nor-
ropane (FP-CIT) was also shown by SPECT in a
ase of autopsy proven DLB.94 PET using
F-18]fluorodopa also showed decreased uptake in
he putamen in DLB that distinguished DLB from
D, with a sensitivity of 86% and specificity of
00%.95 Decreased [F-18]fluorodopa uptake in the
utamen measured by PET was also confirmed in
n autopsy proven case of pure DLB.96 When
ompared with PD, a more symmetric and severe
oss of dopamine transporters was found in DLB.97

P-CIT SPECT showed significantly lower dopa-
ine transporter density in PD and DLB, as

ompared with AD and normal controls in the
audate and putamen, indicating a possible differ-
ntial diagnosis of DLB from AD by CIT
PECT.98 However, further investigations are nec-
ssary to determine if dopamine imaging can
istinguish reliably patients with AD with extrapy-
amidal signs versus DLB, which is often a clinical
uestion.
The dopamine imaging has been applied to other

ypes of dementing disorders. The [F-18]fluoro-
opa PET showed reduced striatal uptake in pa-
ients with progressive supranuclear palsy. How-

ver, a patient with short duration of the disease A
howed only minor changes, indicating that early
arkinsonian signs and supranuclear palsy might
elate to dysfunction distal to nigrostriatal neu-
ons.99 IBZM SPECT of D2 dopamine receptors
ndicated decreased radiotracer uptake in the fron-
al cortex in frontotemporal lobe dementia (FTD)
n comparison with AD.100 The [C-11]CFT PET
howed the same degree of loss of nigrostriatal
eurons projecting to the caudate and putamen in
atients with FTD, and the degree of the loss
orrelated with the severity of extrapyramidal
igns.101 The [F-18]fluorodopa and [C-11]raclo-
ride PET showed a loss of nigrostriatal neurons
ssociated with the loss of D2-receptor bearing
triatal neurons.102 PET of D1 and D2 receptors
nd dopamine transporters, as well as volumes of
he caudate and putamen explained much of vari-
nce in cognitive levels in Huntington disease,
ndicating Huntington disease as frontostriatal de-
entia.103 Dopaminergic imaging of dementing

isorders can increase our understanding of the
euronal correlates of cognitive as well as motor
mpairments in various dementing disorders.

BENZODIASEPINE RECEPTOR IMAGING

There are 2 classes of benzodiazepine receptors:
1) central and (2) peripheral types. The central
enzodiazepine receptor is part of the major inhib-
tory neurotransmitter system, GABAA (gamma-
mino butyric acid) receptor complex, consisting
f the �–aminobutyric acid receptor, benzodiaz-
pine receptor, barbiturate site, steroid site, picro-
oxin site, and chloride channel. This receptor-
hannel complex is allosterically modulated by
enzodiazepines and barbiturates. PET with a
adiolabeled benzodiazepine antagonist, [C-11]-
umazenil, showed relatively preserved benzo-
iazepine binding sites in AD.104 In contrast,
everal SPECT with [I-123]labeled iomazenil con-
istently showed decreased cortical binding in
D.105-108 One study using [C-11]flumazenil PET

nd [I-123]iomazenil SPECT indicated relative
reservation of both indices in AD in comparison
o the degree of cerebral blood flow reduction.109 It
s not certain if the discrepancy between the PET
nd SPECT of benzodiazepine receptors is due to a
ifference in kinetics and affinity of the 2 tracers.
owever, observed reductions in benzodiazepine

eceptors were relatively mild in comparison to the
evere metabolic reductions commonly seen in

D. Modest reductions of the benzodiazepine
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nd/or GABAA receptor complex seen by imaging
re consistent with results from postmortem inves-
igations.110,111

In contrast to central benzodiazepine receptors,
eripheral benzodiazepine receptors are expressed
n cells of mononuclear phagocyte lineage. Only a
mall number of peripheral benzodiazepine recep-
ors are expressed in normal brain parenchyma.
his receptor can be expressed on activated micro-
lia in the brain. Observations of postmortem
pecimens indicated the presence of immune re-
ponses in AD brains.112 The involvement of a
omplement pathway and microglial activation
as speculated to be one of the possible mecha-
isms of neuronal death in AD.113,114 An initial
ET study using [C-11]labeled PK11195 (1-[2-
hlorophenyl]-N-methyl-N-[1-methylpropyl]-3-
soquinoline carboxamide), a specific ligand that
inds to peripheral benzodiazepine receptors,
howed no detectable alteration in patients with
ild-to-moderate AD.115 However, a subsequent

tudy using the enantiomer, (R)-PK11195, showed
ignificantly increased binding in the entorhinal
ortex, temporoparietal cortices, and posterior cin-
ulate cortex in patients with mild and early AD.116

his tracer provides an exciting opportunity for
nvestigators to examine immune responses in
eurodegenerative diseases and possible responses
o anti-inflammatory drug treatments of dementias.

ther Neurochemical Imaging
f Dementia

Serotonergic cells in the brain stem are lost in
D. This postmortem evidence was confirmed by

F-18]setoperone PET of serotonergic 5-HT2 re-
eptors in AD.117 The study showed a significant
oss of 5-HT2 receptors in the cerebral cortex,
articularly in the frontal and temporal cortices.
ET of 5-HT2 receptors using [F-18]altanserin
howed a significant loss of binding in AD in
omparison to late-life depression118 and possi-
le correlation with behavioral aspects of the
isease.119 SPECT, using a selective 5-HT(2A)
eceptor antagonist [I-123]-5-I-R91150, showed
ecreased binding in the frontal, cingulate, senso-
imotor, parietal inferior, and occipital regions,
ostly consistent with previous PET findings.
A limited study of opioid receptor PET using a

- and �-opiate receptor antagonist 6-deoxy-6-�-
F-18]fluoronaltrexone (cyclofoxy [CF]) showed

lobal reduction of receptor binding in AD, with a f
attern different from regional cerebral blood flow
hanges.120 There appeared to be gender differ-
nces in the severity of CF binding in AD.121

owever, it is not understood how these changes in
pioid receptors correlate with cognitive behav-
oral changes seen in AD.

Because of the cholinergic hypothesis of AD,
eurochemical imaging has focused on the cholin-
rgic system. However, accumulating evidence
rom postmortem and in vivo imaging indicates
hat AD affects multiple neurochemical systems at
ifferent brain structures. A recent postmortem
nvestigation revealed only mild cholinergic defi-
its in early AD, challenging the cholinergic hy-
othesis.122 Excitotoxic lesioning of the basal fore-
rain cholinergic structures in baboons resulted in
nly marginal changes in glucose metabolism in
he neocortex, where patients with AD typically
howed significant hypometabolism.123 In contrast,
eurotoxic lesions in the entorhinal cortex in ba-
oons produced hypometabolism in the tem-
oroparietal regions similar to AD.124 However, in
uman patients with AD, neither the loss of ento-
hinal efferents nor cholinergic deficit explains all
he metabolic features seen in very early AD.63

hese observations indicate that neurochemical
ystems other than the cholinergic system are
ikely affected significantly in AD. Major cortical
eurons degenerating in AD are large, excitatory
yramidal neurons that use glutamate as a neuro-
ransmitter.

The loss of cortical glutamatergic neurons is a
ajor pathologic process of AD, and dysfunction

n glutamatergic neurons in relation to excitotoxic
euronal death has been implicated. Severe cortical
ypometabolism in AD seen on FDG-PET proba-
ly reflects the loss of cortico-cortical neurons.
maging of the glutamatergic system and excita-
ory glutamate N-methyl-D-aspartate (NMDA) re-
eptor was attempted but with no success to date.
he use of magnetic resonance spectroscopy to
easure glutamate in AD brains failed to show any

ifference from normal controls,125 probably in
art due to a difficulty in separating metabolic and
ransmitter pools of glutamate. An NMDA antag-
nist, MK-801, was labeled with [I-123] for
PECT and applied to patients with AD, but no
onvincing findings were obtained in AD due to
he limited kinetic property of this tracer.126 The
maging of the glutamatergic system requires a

urther effort of research and development.
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iagnostic Use

The neurochemical imaging of dementing disor-
ers not only confirms previous postmortem anal-
ses that are often performed on tissues obtained
rom end-stage disease, but also permits investiga-
ion of very early changes in living subjects and
ongitudinal serial examinations owing to the non-
nvasive nature of imaging technology. Despite
ertain technical limitations, findings from in vivo
maging data contribute significantly to our under-
tanding of regional neurodegenerative processes
nd neurochemical correlates of clinical symp-
oms. There also has been an expectation that
eurochemical imaging could be used as a diag-
ostic aid for certain brain disorders. It is interest-
ng to note that an article in Seminars in Nuclear

edicine published a decade ago predicted the use
f PET and SPECT in the day-to-day practice.127

PECT dopamine imaging may be the closest
olecular imaging for the diagnostic use of PD,

ut other neurochemical imaging techniques for
ementing disorders are currently far from use in
he average day-to-day clinical practice. One of
ajor reasons for this delay is due to a limited

adiotracer supply for neurochemical imaging in
he clinical setting. However, the development of
ommercial suppliers of neurochemical tracers has
een hampered by the realization through past
nvestigations that there is no single neurochemical
gent that can diagnose accurately and differen-
ially dementing disorders in an early stage when
ymptomatic drug treatments are often most effec-
ive. In fact, the oldest and most prevalent “molec-
lar imaging” of the brain, FDG-PET, can detect a
ery early stage of AD before a point when a
linical diagnosis can be made and does allow
ertain differential diagnoses among dementing
isorders.128-132

The lack of fundamental treatments of AD is
lso a factor that currently attenuates enthusiasm to
evelop expensive imaging diagnostic techniques.
lthough the efficacy and safety of neurochemical

igands could be established, approval for reim-
ursement as a valid routine diagnostic test is a
ifferent hurdle. At the time of this writing, the
ost extensively published PET method in demen-

ia, FDG-PET, has not been approved as an effec-
ive and reimbursable test for dementia work-up.
ne of the major factors to determine the efficacy
f the clinical test is the body of published evi-

ence. According to the guideline established by f
he Medicare Advisory Committee, 2 criteria need
o be met in the diagnostic test evaluation: (1)
dequacy of evidence–enough scientific evidence
o draw conclusions about the effectiveness of the
ntervention in the routine clinical use in the
opulation of Medicare beneficiaries; and (2) size
f health effect–evidence from well designed stud-
es must establish how the effectiveness of the new
ntervention compares with the effectiveness of
stablished services and medical items. Despite the
areful establishment of neurochemical imaging
echniques and extensive scientific use in the in-
estigation of dementing disorders, it is clear that
he evidence to justify the use of neurochemical
maging as a diagnostic aid for dementia is se-
erely limited. Unless investigators or industries
ake a substantial effort to establish such evi-

ence, the day-to-day use of neurochemical imag-
ng may not become a reality. However, the situ-
tion may change if effective but expensive or
igh-risk treatments that exert therapeutic effects
hrough specific neurochemistry are developed in
he future. An example of this possibility is amy-
oid imaging for anti-amyloid treatments, such as
n amyloid vaccination and secretase inhibi-
ors.133,134

NEUROCHEMICAL IMAGING AND DRUG
DEVELOPMENTS

In vivo PET and SPECT can help drug devel-
pment for dementia at multiple levels. First,
maging can assess pharmacokinetics and dynam-
cs of the drug in the human as well as animal
rains. Imaging also can establish a relationship
etween the behavioral and biological effects of
rugs. As indicated in cholinergic imaging, neuro-
hemical imaging can evaluate therapeutic changes
n brain functions and help optimize a therapeutic
ose. There are many studies using neurochemical
maging as one of the outcome markers of drug
ffects in dementia treatments.53,70,135,136 Also, im-
ging can help identify patients with very early
tage of the disease for clinical trials.137 Finally, it
s often overlooked that in vivo imaging is one of
he few methods that can elucidate the pathophys-
ology of dementing disorders in living subjects.
indings from living patients give us many impor-

ant clues as to the mechanisms of disease pro-
esses, which ultimately lead to potential targets

or drug developments.
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78 MINOSHIMA ET AL
SUMMARY

As summarized previously, neurochemical im-
ging has been used extensively for the investiga-
ion of dementing disorders during the last 2
ecades. In vivo imaging research unveils bio-
hemical alterations of the brain in living subjects.
he techniques not only permit the investigations
f pathophysiology and disease mechanisms of
ementing disorders but also help evaluate the
ffects of treatment drugs and promote future drug
evelopments. Dementing disorders are human
iseases, and in vivo imaging is one of the few
ethods that allows us to observe disease in vivo
nd to permit translation of advancements between m
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