Neurochemical Imaging of Dementias
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Neurochemical imaging is one of the most established
“molecular” imaging techniques. There have been tre-
mendous efforts expended to develop radioligands spe-
cific to each neurochemical system. Investigational ap-
plications of neurochemical imaging in dementing
disorders are extensive. Cholinergic, dopaminergic, and
serotonergic systems, as well as benzodiazepine recep-
tors, opioid receptors, and glutamatergic receptors have

EMENTING DISORDERS affect more than

4% of the elderly population older than 65
years® Among dementing illnesses, Alzheimer
disease (AD) is reported to be the most common
formin the United States aswell asworldwide, and
its prevalence increases with age.l2 With the
current trend towards increasing longevity, the
prevalence of dementia, particularly AD, will be-
come even higher during the next few decades.34
Dementing illness imposes significant burdens on
our society, health care, and economy.5 The study
of dementing illness ranges from molecular mech-
anisms to socioeconomic analysis.

NEUROCHEMICAL IMAGING

The investigation of dementing disorders using
radionuclides dates back to early cerebral blood
flow and oxygen metabolic studies,®? but subse-
guent developments of single-photon emission to-
mography (SPECT) and positron emission tomog-
raphy (PET) generated a surge of research directed
at brain imaging. In the late 1970s, Sokoloff and
colleagues developed the radiolabeled glucose an-
alogue, [C-14]deoxyglucose, to measure regional
neuronal activity in the living brain.® However,
unlike glucose, DG-6-P cannot be converted to
fructose-6-phosphate and accumulates in the brain
for aduration that islong enough for imaging. This
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been imaged in Alzheimer disease and other dementing
disorders. These investigations have provided impor-
tant insights into disease processes in living human
patients. The clinical diagnostic use of neurochemical
imaging for dementing disorders is currently limited,
but this technique is used to help develop therapeutic
drugs at multiple levels.

© 2004 Elsevier Inc. All rights reserved.

method was quickly trandlated to a [F-18]labeled
tracer, [F-18]-2-fluoro-2-deoxy-p-glucose (FDG),°
and [C-11]labeled tracer, 2-deoxy-D[1-C-11]glu-
coselo for human brain imaging using PET. Initial
applications of FDG-PET to dementing disorders
were extensive.l14 A major finding from these
initial studies was a regiona heterogeneity in the
impairment of energy metabolism (ie, accentuated
hypometabolism in the parietotemporal and frontal
association cortices) in contrast to relative preser-
vation of primary cortices and subcortical struc-
tures. FDG-PET is an example of the oldest “mo-
lecular” imaging of the brain, which still serves as
an important in vivo imaging technique for the
investigation of brain disorders. The diagnostic
applications of FDG-PET to dementing disorders
also have been debated recently.

In 1983, following FDG development, 2 labora-
tories reported novel imaging techniques for the
dopamine system, C-11 labeled methylspiperonets
and F-18 labeled L-dopa.16 One year before these
PET approaches, radioiodine 1-123 labeled ligand
quinuclidinyl benzilate, [I-123]-OH-QNB, was
tested for in vivo muscarinic cholinergic receptor
imaging using SPECT 7 and differential uptake by
the cerebral cortex and subcortical structures was
reported.18 These early studies ignited efforts of
radiochemistry development for neurochemical
imaging, with neurodegenerative disorders as one
of the mgjor targets. There have been many radio-
tracers developed to date for the investigations of
dementing disorders. These developments include
radiotracers to image cholinergic, dopaminergic,
serotonergic, and glutamatergic systems, and cen-
tral and peripheral benzodiazepine receptors.

Neurochemical imaging, one of the most estab-
lished fields of “molecular” imaging, is still evolv-
ing in parallel to advancing knowledge of neuro-
chemistry and molecular genetics of the brain and
brain disorders. Figure 1 illustrates many potential
targets for in vivo imaging of dementing disor-
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Fig 1. A schematic diagram of neurochemical imaging
targets, including enzyme synthesizing a neurotransmitter
(A). (B) Vesicular transporter on the presynaptic vesicle. (C)
Presynaptic receptor. (D) Postsynaptic receptor. (E) Enzyme
degrading a neurotransmitter in the synaptic cleft. (F) Presyn-
aptic transporter and reuptake site. (G) Glial receptor. (H)
Pathologic deposit specific to diseases. In addition to these
targets, other neuronal elements, such as ion channel, mito-
chondrion electron transport system, secondary messenger
system can be potential targets for in vivo imaging.

ders. These targets include enzymes involved in
neurotransmitter synthesis, vesicular transporters
located on synaptic vesicles, presynaptic receptors,
postsynaptic receptors, enzymes degrading neuro-
transmitters, presynaptic transporters and reuptake
sites, and glial receptors. Pathologic deposits spe-
cific to certain dementing disorders, such as B-
amyloid in AD, can be imaged as well. There are
recent efforts to develop in vivo amyloid imaging
probes for the investigation of AD and related
disorders.19-21

Owing to the quantitative nature of PET mea-
surements and SPECT, if conducted appropriately,
quantitative in vivo neurochemical assays are pos-
sible by imaging. However, in comparison to in
vitro receptor assays that had been used to study
postmortem human brain specimens and animal
research, in vivo imaging imposes severa limita-
tions and requires certain considerations. Unlikein
vitro binding studies, radiotracers that can be used
for PET and SPECT have to cross the blood-brain
barrier (BBB) following intravenous injection.
BBB permeability can be influenced by severa
factors, including the ligand’ sionizable groups and
lipophilicity.2223 The regional specificity of ligand
binding to receptor types and subtypes also needs
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to be considered carefully because it is typicaly
difficult to apply unlabeled displacing ligands as
are used for in vitro studies. Ligands can be
metabolized within the brain and within other
organs. Metabolized ligands within other organs
may cross BBB, and may give confounding signals
on PET and SPECT. Radiolabeled ligands need to
have a high enough specific activity to give signals
for imaging without saturating available receptors
or inducing physiologic effects.

With the in vivo imaging approach, nonspecific
binding and free ligands cannot be minimized by
rigorous washing of the specimen as for in vitro
assays. Thus, tracer kinetic analysis becomes im-
portant to model the behavior of the ligand in the
brain. It is important to estimate specific binding
separated from nonspecific binding and free com-
ponents using imaging data obtained from PET and
SPECT, and is often combined with blood sam-
pling. However, even the most sophisticated tracer
kinetic modeling may not be able to overcome a
fundamental limitation of aligand, such as limited
BBB permeability relative to high affinity of the
ligand to the receptor system or presence of sig-
nificant radiolabeled metabolites within the brain.
The accuracy of PET and SPECT measurements of
neurochemical changes relies on multiple factors,
including quantitative accuracy of PET and
SPECT instrumentation, nature of radiotracer, im-
aging protocol, metabolite analysis, tracer kinetic
analysis, and image analysis. For these reasons, it
is important for investigators to validate new ra-
diotracersrigorously before clinical applications. It
is equally important for readers to understand that
published data may have limited accuracy regard-
ing in vivo imaging assays and, therefore, may
affect interpretation of the results.

CHOLINERGIC IMAGING

AD, first described by Dr. Alzheimer in 1906,24
is reported to be the most common form of
dementia and affects more than half of dementia
patients.1:2526 |maging of dementia dates back to
the late 1960s before the emergence of cross-
sectional imaging techniques.627.28 Because Par-
kinson disease (PD) was attributed to degeneration
of dopamine neurons in the nigrostriatal pathway,
investigators attempted to link a particular neuro-
chemical system to cognitive impairment seen in
AD. “Cholinergic Hypothesis’ of AD, established
in late 1970s, was based on observations, including
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memory loss induced by cholinergic blockade in
normal human subjects and major deficits in cor-
tica cholinergic markers in AD.2%-31 There have
been efforts to characterize cholinergic degenera-
tion in AD and drug developments to improve
cholinergic transmissions.

Imaging investigations of the cholinergic system
in AD were performed not only using neurorecep-
tor and/or transmitter ligands but also by FDG-
PET and perfusion SPECT. Cholinergic neurons
are located in the basal forebrain, nucleus basalis
of Meynert and send cholinergic projections to the
entire cerebral cortex. An electrocoagulation lesion
in the nucleus basalis of Meynert in primates
produced profound metabolic reductions in fronto-
temporal association cortices that were somewhat
similar to those observed in AD.3233 However, the
blockade of cholinergic transmission by an amnes-
tic dose of scopolamine resulted in increased glu-
cose metabolism in contrast to metabolic reduc-
tions commonly seen in AD.34 Central cholinergic
stimulation by physostigmine produced differential
responsesin regional cerebral blood flow measured
by perfusion SPECT in patients with AD in com-
parison to normal controls.35 Perfusion changes by
cholinergic stimulation were compared with meta-
bolic changes by PET in norma subjects and
patients with AD.3¢ This study showed the differ-
ential effects of physostigmine on cerebral blood
flow and metabolic activity, indicating vascular
and metabolic responses, complicating interpreta-
tion of imaging data with cholinergic drug inter-
ventions. A single dose of acetylcholinesterase
(AChE) inhibitor, velnacrine maleate, resulted in
increased perfusion in the superior frontal associ-
ation cortex, particularly in patients with more
severe AD.37 These investigations provided func-
tional links between cholinergic modulation, and
neuronal activity and cerebral blood flow.

The imaging of muscarinic acetylcholine recep-
tor in AD was first achieved using SPECT and the
[1-123]labeled radiotracer, quinuclidinyl benzilate
(QNB).17 A subsequent study involving patients
with AD showed impairment of muscarinic recep-
tor binding.3® SPECT with a high-affinity musca-
rinic receptor antagonist, 3-quinuclidinyl-4-iodo-
benzilate, showed focal abnormalities in frontal
and posterior temporal corticesin AD, in contrast
to patients with Pick disease who showed frontal
and anterior temporal deficits.2® In comparison to
FDG-PET, QNB SPECT showed higher deficits
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than metabolic abnormalities in AD.#0 Chronic
cholinergic blockage by low-dose scopolamine
administration resulted in increased muscarinic
receptor binding on QNB SPECT in AD, in com-
parison to decreased binding observed in normal
controls, indicating differential modulatory mech-
anisms in AD.#t However, QNB uptake in the
brain showed on SPECT aso may be affected by
differentia distributions of muscarinic receptor
subtypes.4243 |t was aso reported that brain QNB
uptake was limited by ligand delivery (ie, regional
cerebral blood flow and BBB transport).*4

A subtype, nonselective muscarinic acetylcho-
line receptor ligand, [C-11]N-methyl-4-piperidyl
benzilate , was developed for PET and applied in
AD.% In part due to the complexity of tracer
kinetic modeling to separate ligand delivery versus
specific receptor binding, this method resulted in a
limited sensitivity and did not show significant
alterations of muscarinic acetylcholine receptor
density in AD. There are continuing efforts to
develop subtype specific muscarinic acetylcholine
receptors targeting AD.#6 The development of
subtype specific ligands is critical for a better
understanding of muscarinic receptor aterationsin
AD because postmortem studies showed differen-
tial preservation and loss of muscarinic receptor
subtypes (ie, relative preservation of M1 in con-
trast with consistent loss of M2 receptors).

There have been attempts to image nicotinic
acetylcholine receptors in AD using in vivo imag-
ing techniques, but radioligands suitable for nico-
tinic receptors are limited to date. A series of PET
studies using [C-11]nicotine was reported and
showed decreased nicotinic receptor density in
AD.47-51 The [C-11]nicotine PET aso showed
restoration of nicotinic receptors following treat-
ments with cholinesterase inhibitor and nerve
growth factor.48.505253 However, tracer Kinetics of
[C-11]nicotine may not be optimally suited for
PET due to the influence of regional cerebral blood
flow. Correction for blood flow using [C-11]buta-
nol PET was proposed,! but this limits the general
applications of the technique. There are continuing
efforts to develop further nicotinic acetylcholine
receptor ligands for better in vivo imaging charac-
teristics and subtype specificity.>*

A traditional presynaptic marker of cholinergic
neurons, choline acetyltransferase (CAT), has not
been imaged successfully in vivo. However, vesic-
ular acetylcholine transporters (VAChHT) that are
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Fig 2. Neurochemical changes seen in Alzheimer disease (AD). The images show Z statistical maps of neurochemical changes
observed in a group of patients with AD in comparison with a group of age-similar normal controls. Higher Z values (yellow-to-red
color) indicate higher reductions of neurochemical indices. Energy metabolism (CMRglc) measured by [F-18]-2-fluoro-2-deoxy-p-
glucose positron emission tomography (FDG-PET) shows severe reductions in the parietotemporal and frontal association cortices
but sparing the primary sensorimotor cortex. In comparison, vesicular acetylcholine transporters (VAChT) measured by
(-)-5-[1-123]iodobenzovesamicol (IBVM) single-photon emission tomography (SPECT) and acetylcholinesterase (AChE) activity
measured by N-[C-11]methylpiperidyl propionate PET show more diffuse reductions in the cerebral cortex without clear sparing of
the primary sensorimotor cortex. In all 3 indices, the cerebellar hemisphere is relatively preserved. Regional cortical atrophy
measured quantitatively by magnetic resonance imaging (MRI) (atrophy) shows milder changes in comparison with neurochemical
changes in AD, and the pattern of regional atrophy is similar to changes in CMRglc, but not in VAChT and AChE, indicating
differential pathologic mechanisms of cortical atrophy and cholinergic neurodegeneration. Kuhl5662 and Minoshima®3.¢4 and

coworkers provide more information regarding each imaging study and method.

expressed on presynaptic vesicles of cholinergic
neurons were imaged using an iodinated tracer, (-)-
5-[1-123]iodobenzovesamicol (IBVM) and SPECT .55
This tracer was used as a marker for cholinergic
presynaptic terminal integrity. Because of good
correlation between k3 estimates with blood sam-
pling and static images of IBVM at 22 hours after
injection, the protocol of IBVM SPECT could be
simplified to static imaging at a few times without
dynamic SPECT or blood sampling. The loss of
cholinergic presynaptic terminals was estimated to
be 3% to 4% per decade with normal aging, but
approximately 30% loss in the entire cerebral
cortex of patients with AD whose onset age was
before 65 years.>¢ In contrast, cholinergic presyn-
aptic terminal loss was much milder and restricted
to the hippocampus and temporal lobe in patients
with an onset age after 65 years. The loss of
cholinergic presynaptic terminals detected by in
vivo findings was not as marked as had been
suggested by CAT measurements of postmortem
specimens, but possible discordance between CAT
and VAChT has been discussed previously.5” Nev-
ertheless, imaging of VAChT using SPECT
showed quantitatively the loss of presynaptic cho-
linergic terminalsin aging and AD in living human
subjects.

Another traditional cholinergic enzyme, AChE,
is used not only as a marker for cholinergic

neurons, but has been a target for drug treatments
as well. The first generation of cholinesterase
inhibitors, tacrine or tetrahydroaminoacridine
(THA), is approved for the symptomatic treatment
of AD. This development was followed by done-
pezil (Aricept, Eisai, Inc., Teaneck, NJ) and other
compounds that became clinically available in the
United States. Two research groups developed
[C-11]labeled acetylcholine analogues to image an
enzymatic activity of cholinesterase using PET,
namely N-[C-11]methylpiperidyl acetate>85° and
N-[C-11]methylpiperidyl propionate.’© The initial
study in patients with AD showed a 30% to 40%
loss of AChE activity in the cerebral cortex, most
accentuated in the temporoparietal cortices.st A
pattern of AChE loss measured by PET in AD was
similar to that in presynaptic VAChT loss mea-
sured by SPECT, but the pattern of these changes
was different from glucose hypometabolism mea-
sured by FDG-PET (Fig 2).62

Discordance between AChE reductions versus
changes in glucose metabolism as well as cerebral
blood flow also was confirmed.> These findings
dispute early primate studies indicating a possible
role of cholinergic degeneration to account for
hypometabolism seen in association cortices.32:33
Again, the loss of AChE during normal aging was
only modest.6266 Further investigations revealed
significant reductions of AChE in the neocortex,
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hippocampus, and amygdala in the patients with
early onset AD but only in the temporoparietal
cortex and amygdala in the patients with late onset
AD.%7 The findings were similar to the patterns of
cholinergic terminal loss shown by SPECT.5¢ The
PET method to quantify AChE activity was sim-
plified without arterial blood sampling,®8.° permit-
ting more widespread applications.

AChE imaging is an example of how in vivo
PET helps not only gain insight into disease
mechanisms but also to validate the effects of drug
treatments. Donepezil treatment of 5 or 10 mg per
day for at least 5 weeks resulted in AChE inhibi-
tion of only 27%, in comparison with AChE
inhibition of 52% induced by physostigmine in
normal controls.”® Rivastigmine and donepezil
achieved a similar degree of AChE inhibition in
patients with AD, and the inhibition was most
prominent in the frontal lobe 37% to 39% in
comparison with 28% in the temporal 1obe.

Applications of cholinergic imaging have been
focused primarily on AD. However, there are
several reports of cholinergic impairment in other
dementing disorders. Dementia with Lewy bodies
(DLB), the second most common cause of neuro-
degenerative dementia, was reported to show more
severe cholinergic degeneration than pure AD,”t
and there were clinical indications that AChE
inhibitor treatments may have a greater effect in
patients with DLB. In vivo PET reported low
AChE activity in patients with DLB in comparison
with those with AD.55 Many patients with an
antemortem diagnosis of PD with dementia show
cortical Lewy bodies. Patients with PD with de-
mentia showed extensive cortical cholinergic ter-
minal loss that was similar to AD.56

DOPAMINERGIC IMAGING

Dopamine imaging was the first neurochemical
PET procedure reported in the literature, 516 and
extensive investigations have been conducted for
dopaminergic targets, including dopaminergic pre-
synaptic enzyme, receptors (D1, D2, and other
subtypes), and presynaptic transporters (dopamine
and monoamine). Dopamine imaging was applied
initially to PD without dementia,’27> and con-
firmed the nigrostriatal degeneration and dopamine
deficits described previously by postmortem inves-
tigations.

Early studies of dopamine imaging in dementia
and AD include D2 receptor PET with [C-11]raclo-
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pride’® and D2 receptor SPECT with [1-123]labeled
3-lodo-6-methoxybenzamide (IBZM).77 Patients
with dementia with the amyotrophic lateral sclero-
sis-parkinsonism-dementia complex of Guam were
examined using [F-18]fluorodopa PET.”8 A subse-
guent study using [F-18]fluorodopa found that the
Mini-mental State Examination score and age pre-
dicted dopamine deficits in AD, indicating im-
paired dopamine metabolism as dementia became
progressively more severe.”

Neurochemical correlates of extrapyramidal
symptoms frequently observed in AD are not
understood fully. A postmortem investigation sug-
gested a correlation between neurofibrillary tangle
density in the substantia nigra and extrapyramidal
signs in AD.& This question became a focus of
PET and SPECT investigations. A study using
[F-18]fluorodopa PET indicated no significant re-
duction in [F-18]fluorodopa uptake in the caudate
or putamen of rigid or nonrigid patients with AD
versus normal controls. In contrast, there were
severe reductions in PD, indicating differential
underlying mechanisms of extrapyramidal symp-
toms in AD and PD.8 The [I-123]IBZM SPECT
showed modest striatal D2 receptor reductions of
approximately 15% in AD without overt extrapy-
ramidal signsin comparison to controls. This result
suggested a decline of postsynaptic striatal dopa-
mine receptors as a part of AD pathophysiology
that is different from prevalent presynaptic nigro-
striatal degeneration.®2 In contrast, subsequent
dopamine transporter imaging using a cocaine
analogue, 2-B-carbomethoxy-3-B-(4-[F-18]fluoro-
phenyl)tropane (B-CFT), showed more severe re-
ductions in the putamen or caudate in patients with
AD with extrapyramidal symptoms.s3

A further PET investigation using a dopamine
D1 receptor antagonist, [C-11]JNNC 756 and a D2
antagonist, [C-11]raclopride showed 14% reduc-
tions in D1 receptors in AD but no significant
reduction in D2 receptors.84 However, D1 or D2
receptor changes did not correlate with Mini-
mental State Examination scores or motor Unified
PD Rating Scale scores. These imaging investiga-
tionsindicate differentia alterations of dopaminer-
gic markers in AD and PD, but the exact neuro-
chemical basis for extrapyramidal signs in AD
requires further investigation.

Dopamine imaging in dementia received much
attention in the investigation of DLB. Lewy bodies
are intracytoplasmic eosinophilic neuronal inclu-
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sions initially found in pigmented neurons of the
brain stem in PD.8586 |n 1961, association of
diffuse cortical Lewy bodies and dementia was
observed.8” Subsequently, an autopsy case of pre-
senile dementia in which Lewy bodies were found
not only in the brain stem, but, also, similar
inclusion bodies in the cerebral cortex were re-
ported.88 Cortical and brain stem Lewy bodies
were also found to coexist with senile plagues.8®
Despite early nosologic controversy, DLB is rec-
ognized as the second most common form of
neurodegenerative dementia, and has been found to
have substantial pathologic and clinical overlap
with AD.0.91

In vivo neurochemical imaging depicted dopa-
minergic abnormalities in living patients with
DLB. Decreased striatal dopamine transporters in
DLB was detected using iodine-123 2 B-carboxy-
methoxy-3 B-[4-iodophenyl]tropane ([1-123]B-
CIT) SPECT.92 The caudate/putamen ratio of
postsynaptic dopamine D2 neuroreceptor density
measured by IBZM SPECT was significantly
lower in probable DLB as compared with probable
AD and norma controls.?® Decreased binding of
dopaminergic presynaptic marker 2-B-carbome-
thoxy-3- 8- (4-iodophenyl)-N-(3-fluoropropyl)nor-
tropane (FP-CIT) was also shown by SPECT in a
case of autopsy proven DLB.°4 PET using
[F-18]fluorodopa also showed decreased uptake in
the putamen in DLB that distinguished DLB from
AD, with a sensitivity of 86% and specificity of
100%.95 Decreased [F-18]fluorodopa uptake in the
putamen measured by PET was also confirmed in
an autopsy proven case of pure DLB.?% When
compared with PD, a more symmetric and severe
loss of dopamine transporters was found in DLB.97
FP-CIT SPECT showed significantly lower dopa-
mine transporter density in PD and DLB, as
compared with AD and normal controls in the
caudate and putamen, indicating a possible differ-
ential diagnosis of DLB from AD by CIT
SPECT.®8 However, further investigations are nec-
essary to determine if dopamine imaging can
distinguish reliably patients with AD with extrapy-
ramidal signsversus DLB, which is often aclinical
question.

The dopamine imaging has been applied to other
types of dementing disorders. The [F-18]fluoro-
dopa PET showed reduced striatal uptake in pa-
tients with progressive supranuclear palsy. How-
ever, a patient with short duration of the disease
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showed only minor changes, indicating that early
parkinsonian signs and supranuclear palsy might
relate to dysfunction distal to nigrostriatal neu-
rons.*®® IBZM SPECT of D2 dopamine receptors
indicated decreased radiotracer uptake in the fron-
tal cortex in frontotempora lobe dementia (FTD)
in comparison with AD.2© The [C-11]CFT PET
showed the same degree of loss of nigrostriatal
neurons projecting to the caudate and putamen in
patients with FTD, and the degree of the loss
correlated with the severity of extrapyramidal
signs.1°1 The [F-18]fluorodopa and [C-11]raclo-
pride PET showed a loss of nigrostriatal neurons
associated with the loss of D2-receptor bearing
striatal neurons.192 PET of D1 and D2 receptors
and dopamine transporters, as well as volumes of
the caudate and putamen explained much of vari-
ance in cognitive levels in Huntington disease,
indicating Huntington disease as frontostriatal de-
mentia.1® Dopaminergic imaging of dementing
disorders can increase our understanding of the
neuronal correlates of cognitive as well as motor
impairments in various dementing disorders.

BENZODIASEPINE RECEPTOR IMAGING

There are 2 classes of benzodiazepine receptors:
(1) central and (2) peripheral types. The central
benzodiazepine receptor is part of the major inhib-
itory neurotransmitter system, GABAA (gamma-
amino butyric acid) receptor complex, consisting
of the y—aminobutyric acid receptor, benzodiaz-
epine receptor, barbiturate site, steroid site, picro-
toxin site, and chloride channel. This receptor-
channel complex is alosterically modulated by
benzodiazepines and barbiturates. PET with a
radiolabeled benzodiazepine antagonist, [C-11]-
flumazenil, showed relatively preserved benzo-
diazepine binding sites in AD.1%4 In contrast,
several SPECT with [I-123]labeled iomazenil con-
sistently showed decreased cortical binding in
AD.105-108 One study using [C-11]flumazenil PET
and [I-123]iomazenil SPECT indicated relative
preservation of both indices in AD in comparison
to the degree of cerebral blood flow reduction.109 It
is not certain if the discrepancy between the PET
and SPECT of benzodiazepine receptorsisdueto a
difference in kinetics and affinity of the 2 tracers.
However, observed reductions in benzodiazepine
receptors were relatively mild in comparison to the
severe metabolic reductions commonly seen in
AD. Modest reductions of the benzodiazepine
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and/or GABAA receptor complex seen by imaging
are consistent with results from postmortem inves-
tigations, 110111

In contrast to central benzodiazepine receptors,
peripheral benzodiazepine receptors are expressed
on cells of mononuclear phagocyte lineage. Only a
small number of peripheral benzodiazepine recep-
tors are expressed in norma brain parenchyma.
This receptor can be expressed on activated micro-
glia in the brain. Observations of postmortem
specimens indicated the presence of immune re-
sponses in AD brains.*'2 The involvement of a
complement pathway and microglial activation
was speculated to be one of the possible mecha-
nisms of neuronal death in AD.113114 An initial
PET study using [C-11]labeled PK11195 (1-[2-
chlorophenyl]-N-methyl-N-[ 1-methyl propyl]-3-
isoquinoline carboxamide), a specific ligand that
binds to peripheral benzodiazepine receptors,
showed no detectable alteration in patients with
mild-to-moderate AD.115 However, a subsegquent
study using the enantiomer, (R)-PK 11195, showed
significantly increased binding in the entorhinal
cortex, temporoparietal cortices, and posterior cin-
gulate cortex in patients with mild and early AD.116
This tracer provides an exciting opportunity for
investigators to examine immune responses in
neurodegenerative diseases and possible responses
to anti-inflammatory drug treatments of dementias.

Other Neurochemical Imaging
of Dementia

Serotonergic cells in the brain stem are lost in
AD. This postmortem evidence was confirmed by
[F-18]setoperone PET of serotonergic 5-HT2 re-
ceptors in AD.117 The study showed a significant
loss of 5-HT2 receptors in the cerebra cortex,
particularly in the frontal and temporal cortices.
PET of 5-HT2 receptors using [F-18]atanserin
showed a significant loss of binding in AD in
comparison to late-life depressiont’® and possi-
ble correlation with behavioral aspects of the
disease.’1® SPECT, using a selective 5-HT(2A)
receptor antagonist [I-123]-5-1-R91150, showed
decreased binding in the frontal, cingulate, senso-
rimotor, parietal inferior, and occipital regions,
mostly consistent with previous PET findings.

A limited study of opioid receptor PET using a
- and k-opiate receptor antagonist 6-deoxy-6-3-
[F-18]fluoronaltrexone (cyclofoxy [CF]) showed
global reduction of receptor binding in AD, with a
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pattern different from regional cerebral blood flow
changes.12® There appeared to be gender differ-
ences in the severity of CF binding in AD.*2t
However, it is not understood how these changesin
opioid receptors correlate with cognitive behav-
ioral changes seen in AD.

Because of the cholinergic hypothesis of AD,
neurochemical imaging has focused on the cholin-
ergic system. However, accumulating evidence
from postmortem and in vivo imaging indicates
that AD affects multiple neurochemical systems at
different brain structures. A recent postmortem
investigation revealed only mild cholinergic defi-
cits in early AD, chalenging the cholinergic hy-
pothesis.*22 Excitotoxic lesioning of the basal fore-
brain cholinergic structures in baboons resulted in
only margina changes in glucose metabolism in
the neocortex, where patients with AD typically
showed significant hypometabolism.123 In contrast,
neurotoxic lesions in the entorhina cortex in ba-
boons produced hypometabolism in the tem-
poroparietal regions similar to AD.124 However, in
human patients with AD, neither the loss of ento-
rhinal efferents nor cholinergic deficit explains al
the metabolic features seen in very early AD.53
These observations indicate that neurochemical
systems other than the cholinergic system are
likely affected significantly in AD. Mgjor cortical
neurons degenerating in AD are large, excitatory
pyramidal neurons that use glutamate as a neuro-
transmitter.

The loss of cortical glutamatergic neurons is a
major pathologic process of AD, and dysfunction
in glutamatergic neurons in relation to excitotoxic
neuronal death has been implicated. Severe cortical
hypometabolism in AD seen on FDG-PET proba-
bly reflects the loss of cortico-cortical neurons.
Imaging of the glutamatergic system and excita-
tory glutamate N-methyl-D-aspartate (NMDA) re-
ceptor was attempted but with no success to date.
The use of magnetic resonance spectroscopy to
measure glutamate in AD brainsfailed to show any
difference from normal controls,2> probably in
part due to a difficulty in separating metabolic and
transmitter pools of glutamate. An NMDA antag-
onist, MK-801, was labeled with [I-123] for
SPECT and applied to patients with AD, but no
convincing findings were obtained in AD due to
the limited kinetic property of this tracer.226 The
imaging of the glutamatergic system requires a
further effort of research and devel opment.
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Diagnostic Use

The neurochemical imaging of dementing disor-
ders not only confirms previous postmortem anal-
yses that are often performed on tissues obtained
from end-stage disease, but also permits investiga-
tion of very early changes in living subjects and
longitudinal serial examinations owing to the non-
invasive nature of imaging technology. Despite
certain technical limitations, findings from in vivo
imaging data contribute significantly to our under-
standing of regional neurodegenerative processes
and neurochemical correlates of clinical symp-
toms. There aso has been an expectation that
neurochemical imaging could be used as a diag-
nostic aid for certain brain disorders. It is interest-
ing to note that an article in Seminars in Nuclear
Medicine published a decade ago predicted the use
of PET and SPECT in the day-to-day practice.12?
SPECT dopamine imaging may be the closest
molecular imaging for the diagnostic use of PD,
but other neurochemical imaging techniques for
dementing disorders are currently far from use in
the average day-to-day clinical practice. One of
major reasons for this delay is due to a limited
radiotracer supply for neurochemical imaging in
the clinical setting. However, the development of
commercia suppliers of neurochemical tracers has
been hampered by the realization through past
investigations that there is no single neurochemical
agent that can diagnose accurately and differen-
tially dementing disorders in an early stage when
symptomatic drug treatments are often most effec-
tive. In fact, the oldest and most prevalent “molec-
ular imaging” of the brain, FDG-PET, can detect a
very early stage of AD before a point when a
clinical diagnosis can be made and does alow
certain differential diagnoses among dementing
disorders.128-132

The lack of fundamental treatments of AD is
also afactor that currently attenuates enthusiasm to
develop expensive imaging diagnostic techniques.
Although the efficacy and safety of neurochemical
ligands could be established, approval for reim-
bursement as a valid routine diagnostic test is a
different hurdle. At the time of this writing, the
most extensively published PET method in demen-
tia, FDG-PET, has not been approved as an effec-
tive and reimbursable test for dementia work-up.
One of the major factors to determine the efficacy
of the clinical test is the body of published evi-
dence. According to the guideline established by
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the Medicare Advisory Committee, 2 criteria need
to be met in the diagnostic test evaluation: (1)
adequacy of evidence—enough scientific evidence
to draw conclusions about the effectiveness of the
intervention in the routine clinica use in the
population of Medicare beneficiaries; and (2) size
of health effect—evidence from well designed stud-
ies must establish how the effectiveness of the new
intervention compares with the effectiveness of
established services and medical items. Despite the
careful establishment of neurochemical imaging
techniques and extensive scientific use in the in-
vestigation of dementing disorders, it is clear that
the evidence to justify the use of neurochemical
imaging as a diagnostic aid for dementia is se-
verely limited. Unless investigators or industries
make a substantial effort to establish such evi-
dence, the day-to-day use of neurochemical imag-
ing may not become a reality. However, the situ-
ation may change if effective but expensive or
high-risk treatments that exert therapeutic effects
through specific neurochemistry are developed in
the future. An example of this possibility is amy-
loid imaging for anti-amyloid treatments, such as

an amyloid vaccination and secretase inhibi-
tors. 133,134

NEUROCHEMICAL IMAGING AND DRUG
DEVELOPMENTS

In vivo PET and SPECT can help drug devel-
opment for dementia at multiple levels. First,
imaging can assess pharmacokinetics and dynam-
ics of the drug in the human as well as animal
brains. Imaging also can establish a relationship
between the behavioral and biological effects of
drugs. Asindicated in cholinergic imaging, neuro-
chemical imaging can evaluate therapeutic changes
in brain functions and help optimize a therapeutic
dose. There are many studies using neurochemical
imaging as one of the outcome markers of drug
effectsin dementia treatments.53.70135.136 A|sp, im-
aging can help identify patients with very early
stage of the disease for clinical trials.237 Findly, it
is often overlooked that in vivo imaging is one of
the few methods that can elucidate the pathophys-
iology of dementing disorders in living subjects.
Findings from living patients give us many impor-
tant clues as to the mechanisms of disease pro-
cesses, which ultimately lead to potential targets
for drug developments.
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SUMMARY

As summarized previously, neurochemical im-
aging has been used extensively for the investiga-
tion of dementing disorders during the last 2
decades. In vivo imaging research unveils bio-
chemical alterations of the brain in living subjects.
The techniques not only permit the investigations
of pathophysiology and disease mechanisms of
dementing disorders but also help evauate the
effects of treatment drugs and promote future drug
developments. Dementing disorders are human
diseases, and in vivo imaging is one of the few
methods that allows us to observe disease in vivo
and to permit translation of advancements between
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clinical and basic research findings. Although
the diagnostic use of neurochemical imaging is
currently limited, continuing efforts to develop
more fundamental treatments of neurodegeneration
based on a better understanding of molecular
genetic mechanisms of diseaseswill lead to amore
specific target identification for imaging. Neuro-
chemical imaging will probably play a major role
for such advanced treatments by permitting patient
selection, prediction for treatment response, and
evaluation for treatment responses. Radiotracer
developments and widespread distribution will
continue to be key factors in such future develop-
ments of neurochemical imaging.
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