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Implications of PET Based Molecular Imaging on the Current
and Future Practice of Medicine
Abass Alavi, Justin W. Kung, and Hongming Zhuang
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he last quarter century has witnessed the introduction

f a variety of powerful techniques that have allowed

isualization of organ structure and function with ex-

uisite detail. This in turn has brought about a true

evolution in the day-to-day practice of medicine. Struc-

ural imaging with x-ray computerized tomography and

agnetic resonance imaging has added tremendously

o many areas of medicine, including preoperative eval-

ation of patients. Many surgical procedures have been

eplaced by minimally invasive techniques, which have

ecome a reality only because of the availability of

odern imaging modalities. However, despite such ac-

omplishments, structural imaging is quite insensitive

or detecting early disease in which there often are no

ross structural alterations in organ anatomy. There-

ore, these modalities should be complemented by

ethodologies that can detect abnormalities at the

olecular and cellular levels. The introduction of [18F]-
ruc-
ing
og-
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6 Seminars in N
uorodeoxyglucose positron emission tomography

FDG-PET) in 1976 as a molecular imaging technique

learly has shown the power of this approach for treat-

ng a multitude of serious disorders. The impact of

DG-PET has been particularly impressive in patients

ith cancer diagnosis, for whom it has become impor-

ant in staging, monitoring response to treatment, and

etecting recurrence. In this review, we emphasize the

ole of FDG-PET in the assessment of central nervous

ystem maladies, malignant neoplastic processes, infec-

ious and inflammatory diseases, and cardiovascular

isorders. New radiotracers are being developed and

romise to expand further the list of indications for PET.

hese include novel tracers for cancer diagnosis and

reatment capable of detecting hypoxia and angiogene-

is. Prospects for developing new tracers for imaging

ther organ diseases also appear very promising.

2004 Elsevier Inc. All rights reserved.
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HE INTRODUCTION by Röntgen of the
x-ray as a means to visualize anatomic st

ures in a living body was one of the most strik
iscoveries in medicine. The role of x-ray radi
aphy in the day-to-day practice of medicine w
urther enhanced when computerized tomogra
CT) was used to generate images as tomogra
lices, which substantially improved the sensiti
nd specificity of the technique.1-3 The addition o
agnetic resonance imaging (MRI) has adde
ajor dimension to the investigation of soft tiss
bnormalities that are associated with a multit
f organ disorders.4-7 The impact of this techno
gy was further recognized this year by the No
rize committee. Despite the exquisite resolu
f CT and MRI, which allows visualization
ormal and diseased tissues with great detail, m
isorders may go undetected for an extended
iod, and some may never manifest as detec
bnormalities using these modalities. This m
hortcoming of gross structural imaging techniq

From the Division of Nuclear Medicine, Department of
adiology, Hospital of the University of Pennsylvania, Phila-
elphia, PA.
Address reprint requests to Abass Alavi, MD, Division of

uclear Medicine, Department of Radiology, Hospital of the
niversity of Pennsylvania, 110 Donner Bldg., 3400 Spruce St.,
hiladelphia, PA 19104.
© 2004 Elsevier Inc. All rights reserved.
0001-2998/04/3401-0007$30.00/0
s due to the initiation of the disease process a
olecular and cellular levels. Thus, early stage
isease may not be detected if there are no a
iated structural abnormalities present. Only as
isease progresses and gross structural abnor

ies become evident can anatomic imaging te
iques be successful. Obviously, some disor
ay never manifest as structural abnormal

hroughout the course of the disease. Therefor
he time that certain pathologies are detected
hese techniques, they may be in advanced s
nd cannot be treated optimally with therape

nterventions.
In addition, the assessment of response to

reatments may not be feasible for a period of ti
hich further complicates the appropriate tre
ent strategies for these patients. This is par

arly important when therapeutic regimens
ssociated with significant side effects and
elivered periodically over an extended period
uch circumstances, not only will there be
enefit from the continued administration of

reatment, but there may be side effects that c
ender a patient ineligible for other therapeu
ptions. Therefore, imaging techniques that al

he assessment of disease activity accurate
xamination are necessary for the optimal tr
ent of patients. Functional imaging techniq

an complement the structural modalities and o
ome some of the deficiencies enumerated p
usly.

In general, functional imaging is based on the

uclear Medicine, Vol XXXIV, No 1 (January), 2004: pp 56-69
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57IMPLICATIONS OF PET BASED MOLECULAR IMAGING
se of 1 or more of the following 3 approaches (1)
maging of physiologic processes, such as blood
ow to an organ or diseased tissue; (2) visualizing
ngoing biochemical and metabolic activities of
ormal and abnormal tissues; and (3) using estab-
ished pharmacologic methods to assess disease
rocesses and develop new drugs. Most early
echniques in nuclear medicine were designed to
imic physiologic processes, which allowed for

he successful treatment of a multitude of diseases.
espite their superior sensitivity over structural

maging modalities in assessing disease activity,
hey lacked the required specificity and precision
hat can be achieved by techniques based on
iochemical and pharmacologic principles.
Biochemical disorders are initiated at the molec-

lar and organelle levels, and may remain localized
t their origin for an extended period. Therefore,
arly dysfunction in the metabolic and biochemical
athways may not immediately translate into phys-
ologic abnormalities such as disrupted blood flow
o the diseased tissue. Thus, reliance on changes in
hysiologic processes may result in overlooking
arly disease activity, changes that may follow
herapeutic intervention, and detection of recur-
ence despite original response. In addition to
onventional nuclear medicine techniques, certain
adiologic approaches, such as contrast enhanced
T and MRI, rely on physiologic parameters in the

nterpretation of either organ function or patho-
ogic states. For the reasons described previously,
adiologic techniques that provide functional infor-
ation also are insensitive and nonspecific in

ssessing disease activity. Therefore, the informa-
ion provided by physiologic or structural tech-
iques should be combined with molecular imag-
ng methodologies for the effective treatment of
atients with serious disorders.
During the last 2 decades, imaging at the mo-

ecular and cellular levels has proven to be ex-
remely sensitive, and quite specific in assessing a
ariety of diseases and disorders.8 Molecular im-
ging in a broad sense implies visualizing disease
rocesses using either biochemical or pharmaco-
ogic tools, regardless of the type of approach used.
his would indicate that nuclear medicine method-
logies that are based on the assessment of non-
hysiologic functions and that use tracer kinetics
an be categorized as molecular probes for the
urposes of molecular imaging.

It is our belief that conventional planar imaging p
ith single gamma emitting radionuclides will be
sed less frequently in the day-to-day practice of
edicine by the end of this decade. Similarly, the

ole of single photon emission computed tomogra-
hy (SPECT) as a powerful molecular imaging
echnique is also questionable at this time. This
rediction is based on considering several short-
omings that are associated with this approach.
reparation of biologically important radiopharma-
euticals with single emitting radionuclides has
roven to be a difficult task compared with those
ynthesized using positron emitting elements. In
ddition, conventional and SPECT images have
imited spatial resolution. High-resolution images
f small objects can be achieved using pinhole
ollimation. However, this limits its use to small
rgans or animals. Screening the whole body for
ancer and other disorders also is impractical with
he current SPECT machines. Finally, quantitative
easurements with SPECT are inaccurate, which

urther diminishes enthusiasm for this modality for
outine use in clinical practice and in research
pplications.

Functional MRI is primarily intended for the
ssessment of physiologic phenomena, such as
hanges in cerebral blood flow and perfusion to an
rgan or diseased tissue.9,10 As with other physio-
ogic imaging techniques, the sensitivity and spec-
ficity of this approach are limited. Therefore, the
erm molecular imaging may not be applicable to
unctional MRI as we have defined in this article.
uclear magnetic resonance spectroscopy is a
olecular probe but has not been adopted as an

ffective and important modality in the day-to-day
ractice of medicine. Therefore, its use has been
imited despite its widespread availability in every
enter with access to a modern MRI instrument.
ptical imaging is a very powerful molecular

maging probe.11 However, it does not lend itself
ell to examining biologic processes in human
eings. Traditionally, this approach has had phys-
cal limitations in visualizing deep structures. New
dvances may enhance its use for these purposes.12

owever, optical imaging is and will continue to
e used as an important molecular technique in
mall animal research projects.

Positron emission tomography (PET) as a
nique imaging technique has overcome many of
he shortcomings that are associated with the com-

eting modalities. The potential for labeling nu-
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58 ALAVI, KUNG, AND ZHUANG
erous, biologically important compounds with
ositron emitting radionuclides such as carbon 11
11C) and fluorine 18 (18F) is enormous. In addi-
ion, positron emitting metallic radionuclides, such
s technetium 94 (94Tc) and copper 64 (64Cu), are
eing used for diagnostic purposes that may ex-
and the domain of PET further as a substitute for
he functional studies currently provided by single
mitting radiotracers.13 Modern PET instruments
rovide outstanding images with superb spatial
esolution and have enhanced the role of this
echnique as an efficient modality for examining
he entire body in a reasonably short period.
mong functional imaging techniques, PET can
rovide the most accurate quantitative results, and
s a result will play a critical role in clinical and
esearch applications.

The introduction of fluorodeoxyglucose in 1976
as been an effective molecular probe in the
nvestigation of a variety of serious disorders.14

his radiotracer was used originally to determine
egional brain function in normal physiologic
tates and in neuropsychiatric disorders.15 How-
ver, over the last decade, we have noted an
xpansion of its applications to many other dis-
ases. The impact of [18F]-fluorodeoxyglucose
ositron emission tomography (FDG-PET) and
ertain other tracers on the treatment of a number
f disorders has been well established. However,
here are several novel radiopharmaceuticals that
ave the promise of being adopted for routine
pplication in the near future.

In this review, we provide our perspective on the
se of PET for molecular imaging, and describe
ow this modality has and will continue to have
mportant clinical applications. The impact of
DG-PET has been enormous and will be re-
iewed in depth. The use of other novel radionu-
lides that hold great promise of being routinely
dapted in the future will be addressed. Because
ur aim in preparing this review was to describe
olecular imaging techniques, which are well

stablished or have the potential to become clini-
ally relevant in the near future, we have intention-
lly omitted discussion of some very exciting areas
f research. These include imaging gene expres-
ion16 and using molecular targeting techniques to
evelop new drugs.17,18 Application of these meth-
dologies to the day-to-day practice of medicine is

peculative at this time. n
CENTRAL NERVOUS SYSTEM DISORDERS

pilepsy

The use of FDG-PET in localizing seizure foci
n the temporal lobe for surgical interventions is
ell established.19 It has been clearly shown that
DG-PET is quite sensitive in detecting such sites,
ith 85% to 90% accuracy using modern tech-
iques.19 Hypometabolism at the seizure focus is
oted when there is clinical evidence for epilepsy
hile anatomic images remain normal for an ex-

ended period.20-22 However, as more experience
as been gained with these imaging techniques, we
ave realized that longstanding seizure episodes
ventually lead to significant atrophy, which can be
etected by MRI.23,24 Therefore, combined MRI
nd FDG-PET may provide the best results for
ccurate localization of the epileptogenic foci. It is
ur hypothesis that longstanding metabolic and
olecular abnormalities eventually will result in

ignificant atrophy in most chronic disorders of the
rain. Nuclear magnetic resonance spectroscopy as

functional method for localization of seizure
isorders in temporal lobe epilepsy is experimental
t this time.25 Further work is required to deter-
ine its applicability to this setting.

lzheimer Disease and Related Disorders

Currently, several drugs are on the market for
he treatment of Alzheimer’s disease, which are
ntended to increase acetylcholine levels in the
rain.26-30 These drugs would be most efficacious
f prescribed early during the disease course. Thus,
etection of abnormalities soon after the onset of
isease is crucial. As with seizure disorders, early
lzheimer’s disease would be detectable only by
etabolic imaging techniques.31-35 FDG-PET may

ecome the critical test for selecting the appropri-
te patients for treatment when the disease process
s at the molecular level and before structural
lterations have taken place.19,36,37 However, sim-
lar to patients with seizure disorders, as the
isease progresses, metabolic changes may trans-
ate into significant cortical atrophy, which can be
etected by anatomic techniques like MRI. Obvi-
usly, therapeutic interventions with existing drugs
ay not be as effective when such structural

lterations have taken place in the brain.

ovement Disorders

Although research regarding the applications of

euroreceptor and/or neurotransmitter compounds
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59IMPLICATIONS OF PET BASED MOLECULAR IMAGING
o the central nervous system (CNS) has yielded
xtraordinary scientific results,38-40, such tech-
iques have remained mostly as research tools, and
heir clinical use remains unknown at this time.
mong the compounds that have been explored,

hose that visualize the dopaminergic system have
he highest potential for the assessment of move-
ent disorders and, therefore, have the promise of

ecoming useful in the daily practice of the neu-
ologic disciplines. In particular, Parkinson’s dis-
ase can be effectively diagnosed with radiophar-
aceuticals, such as fluorine-18-6-fluoro-L-dopa,

r radiotracers that bind to the dopamine trans-
orter sites and, therefore, allow assessment of the
ntegrity of the presynaptic dopaminergic neu-
ons.38-40 We expect that these agents, specifically
uorine-18-6-fluoro-L-dopa, will be extensively
sed in the early and accurate diagnosis of Parkin-
on’s disease. Some additional information can be
ained by using presynaptic radiotracers along
ith postsynaptic radiotracers, but the routine use
f the latter agents may not be justifiable at this
ime.

ther CNS Disorders

At this stage, the role of FDG-PET in other CNS
bnormalities is not as well characterized as in
eizure disorders or in Alzheimer’s disease. How-
ver, severe dysfunction in head injury,41,42 frontal
obe dementia,43,44 and Huntington disease 45-47

an be assessed with the FDG-PET technique with
igh accuracy.

MALIGNANT NEOPLASTIC DISEASE

Clearly, the introduction of molecular imaging
echniques has revolutionized the field of oncol-
gy, which in turn has substantially contributed to
he growth of the field of nuclear medicine.48 In
articular, FDG-PET has definitely become neces-
ary for the treatment of a variety of malignan-
ies.48-51 Although FDG-PET plays an important
ole in staging various malignancies, its role in the
iagnosis of cancer is limited at this time because
ost malignancies are diagnosed before FDG-PET

s considered. Exceptions to this include PET’s
ole in the diagnosis of cancer in patients with lung
odules.52-54 It also may play a role in the early
iagnosis of primary breast and colon cancers, and
as been used for these purposes.55,56 As whole
ody imaging for diagnosing cancer gains momen-

um, it is our belief that FDG-PET may have more r
otential than either whole body CT or MRI for
his purpose. The high contrast resolution provided
y this technique allows detection of lesions that
re not detectable by CT or other radiologic tech-
iques due to their small size or the lack of contrast
ompared with surrounding structures. Also, the
igh specificity of FDG-PET for cancer offers a
ajor advantage over structural imaging modali-

ies. This will have serious implications when
maging techniques are used for screening a large
opulation in which a test with a low false-positive
ate may prevent unnecessary invasive and nonin-
asive procedures. Currently, in patients with a
igh clinical suspicion of cancer of an unknown
rimary, PET is a study of choice for localizing the
bnormal site.57-61 Finally, PET will play an im-
ortant role in the evaluation of response to ther-
py and detection of recurrence following initial
esponse to treatment.

We believe that as FDG-PET becomes widely
vailable and can be performed at reduced costs, it
ay become important for the staging of a multi-

ude of malignancies. Its role in staging certain
ancers has lead to substantial changes in the
ost-effective treatment of a large number of pa-
ients. Staging primary lung cancer continues to be
n important indication for PET and has paved the
ay for the staging of other malignancies with this
odality. FDG-PET can accurately stage head and

eck tumors and, therefore, may be used routinely
n the future for the treatment of this disease.57,62,63

his approach also may be of value in the early
taging of colon cancer. The use of FDG-PET for
taging lymphoma has been well established, and
e project that this technique may completely

eplace CT and other structural imaging techniques
n the staging of this very common malignancy.
he sensitivity and specificity of FDG-PET is
ubstantially higher than that of the anatomic
maging techniques in patients with lymphoma.64

he accurate diagnosis of disease stage is of
tmost significance for the treatment strategies
sed in these patients. There are many effective
reatment regimens for this disease, but most carry
ignificant risk to the patient. Therefore, an imag-
ng technique that provides the most accurate
esults would contribute to the optimal treatment of
uch patients. We predict that FDG-PET may
ecome the test of choice in the staging, assess-
ent of response to treatment, and detection of
ecurrence in both Hodgkin and non-Hodgkin lym-
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60 ALAVI, KUNG, AND ZHUANG
homa. Based on the data that we are accumulating
n our center, the routine use of CT may be
edundant and at times may prove to be mislead-
ng.

FDG-PET has become an invaluable examina-
ion in the evaluation of patients with suspected
ecurrent colorectal cancer based on increased
umor marker levels in the blood, such as carcino-
mbryonic antigen and negative CT, and other
adiologic studies.65-69 Carcinoembryonic antigen
as a sensitivity of 59% and specificity of 84% for
etecting recurrence and, furthermore, cannot lo-
alize lesions.70 CT is conventionally used to
ocalize lesions but misses hepatic metastases in
pproximately 7% of patients.71 The yield from
DG-PET is quite impressive in this very difficult
linical setting, and, eventually, it may become the
est of choice when recurrent colon cancer is
uspected. Delayed imaging may improve the sen-
itivity of FDG-PET for detecting recurrence in
his and other malignancies.

FDG-PET may play an important role in the
onitoring of treatment response in hematologic

nd solid neoplasms. This is illustrated by its use in
valuation of treatment of lymphoma and gastro-
ntestinal stromal tumors. The best model is exem-
lified in patients with lymphoma in whom the
fficacy of treatment can be assessed accurately
ith PET and offers many advantages over
T.72-74 Detection of the effects of treatment with
T totally relies on changes in the size of the

ymph nodes, which is a slow process and may not
e conclusive in the early phases of favorable
esponse. Furthermore, CT is unable to distinguish
etween active disease and residual scar tissue
fter therapy.74 Because chemotherapeutic regi-
ens for lymphomas are administered periodically

ie, every 3 weeks) over several months and are
ssociated with significant morbidity and serious
ide effects, determining their efficacy is impera-
ive soon after this type of treatment is initiated.
he use of PET may overcome the shortcomings of
tructural techniques for assessing response to
reatment of this malignancy.

Monitoring response to treatment with PET is
ncreasingly being adopted for some solid tu-
ors.75-77 However, the paucity of effective treat-
ent for most solid tumors has resulted in limited

ata regarding the role of PET and other diagnostic
maging techniques for this purpose. However,

ecent investigations of the efficacy of imatinib b
esylate (Gleevec, Novartis Pharmaceuticals
orp., East Hanover, NJ) for the treatment of
dvanced gastrointestinal stromal tumors showed a
romising role for PET in the evaluation of this
pecific malignancy.77 All patients responding to
leevec had markedly decreased FDG uptake from
aseline as early as one day after therapy. All
atients with disease progression had increased
DG uptake showing that PET was a sensitive and
eliable indicator of response or resistance to
leevec. As new therapy for solid tumors are

valuated, PET may show its efficacy in evaluating
arly response.

Finally, the role of PET for detecting the recur-
ence of tumor following the initial response has
ecome the hallmark of this technique in almost
very malignancy. Structural changes following
urgery and/or radiation/chemotherapy render ra-
iologic techniques inconclusive in such settings.
DG-PET currently plays an important role in
atients with suspected recurrent brain tumors and
nconclusive, contrast enhanced MRI or CT exam-
nations. Because radiation induced necrosis and
ecurrent tumors appear enhanced on these scans,
etabolic imaging with FDG, which reflects dis-

ase activity at the cellular level, is invaluable in
his setting. Application of FDG-PET for detecting
ecurrent disease has added a major dimension to
he day-to-day practice of oncology that, due to its
ensitivity and noninvasiveness, may prove to be
n invaluable tool in following patients with can-
er.

INFECTIOUS AND INFLAMMATORY
PROCESSES

FDG has proven to be an excellent tracer to
etect inflammation in the setting of either infec-
ious or noninfectious processes.78 Based on labo-
atory, animal, and human studies, activated in-
ammatory cells appear to have increased rates of
lycolysis and, as such, accumulate this tracer with
igh concentration.79 Therefore, FDG-PET can be
ffectively used to detect sites of infection and
nflammation. Orthopedic infections, particularly
hose related to implanted prostheses 79-81 and
steomyelitis,82,83 can be detected successfully by
DG-PET, and appear to be the study of choice in
uch complicated and difficult clinical settings.
ncreasingly, this technique is being used for de-
ecting infection in soft tissues anywhere in the

ody, including the sources of fever of unknown
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61IMPLICATIONS OF PET BASED MOLECULAR IMAGING
rigin.84-86 The potential of FDG-PET for detect-
ng inflammatory processes in disorders such as
egional ileitis,87 sarcoidosis,88-91 rheumatologic
isease,92 and vasculitis93-95 and any other disor-
ers, is also vast. Detection of infection and in-
ammation may become the second most common
linical application of FDG-PET, furthering its role
s an indispensable clinical modality.

CARDIOVASCULAR DISORDERS

yocardial Viability

The use of FDG-PET to determine myocardial
iability remains a very important technique and is
onsidered the gold standard for this purpose.
owever, because of the extraordinary successes
f SPECT techniques in the investigation of coro-
ary artery disease, FDG-PET is infrequently used
or this purpose. This will remain the typical
attern of practice until “All PET” based nuclear
edicine becomes a reality during the next decade.
The use of nitrogen-13-ammonia as a viable

ption for evaluation of myocardial perfusion and
iability is questionable because of the short half-
ife of this radiotracer. However, the use of rubid-
um-82 (82Rb) generators as a source of radiotrac-
rs for blood flow imaging may result in the
outine use of PET for this purpose. The ability of
2Rb to detect changes in myocardial perfusion has
een evaluated and shows promise.96,97 Obviously,
he cost-effectiveness of using 82Rb generators as
he method of choice will heavily depend on the
umber of patients who are examined on a daily
asis.

therosclerosis

It is becoming increasingly apparent that FDG is
aken up in the atherosclerotic vessels.98 This
rocess is quite noticeable in the aorta in its
ntirety and other major arteries. There is evidence
hat the uptake is mainly located in the intima and
ikely represents high metabolic activity in macro-
hages, which are in abundance in the atheroscle-
otic plaques.99 It is also likely that the smooth
uscles in the arterial wall are visualized due to

igh glucose use by this tissue. We have speculated
hat uptake in the peripheral vessels, such as the
opliteal and the lower femoral arteries, is mostly
ocated in the smooth muscle rather than in the
ntima, while FDG is mainly localized in the
therosclerotic plaques in the aorta, and its tribu-

aries in the trunk, neck, and upper thighs. w
OSSEOUS DISORDERS

We expect that in the near future, conventional
one imaging with 99mtechnetium labeled methyl-
ne diphosphonate (or similar compounds) using
on-tomographic scanning techniques will be re-
laced with PET using [18F]-fluoride as the radio-
racer of choice for detecting osseous abnormali-
ies. The molecular basis for the uptake of fluoride
ies in its ability to incorporate into the hydroxy-
patite crystals laid in the osseous structures.
lthough their mechanisms of incorporation differ

t the molecular levels, the images generated from
oth types of radiotracers reveal very similar gross
istributions in physiologic and pathologic states.
oth techniques show increased incorporation of

he injected compound at the sites of new bone
ormation.100 This is commonly seen in active
enign and malignant disorders. Tomographic im-
ges provided by PET have substantially higher
esolution and, therefore, provide superior sensi-
ivity and specificity compared with conventional
lanar and even SPECT techniques.
The question remains whether in patients with

ancer, bone scanning with either [18F]-fluoride or
ingle emitting preparations can provide additional
nformation for the purposes of staging, determin-
ng response to treatment, and detecting recurrence
eyond that which can be discovered with FDG
nd other biologically important tracers. FDG and
ther relevant tracers directly target malignant
ells anywhere in the body, including the marrow
pace, and, therefore, are able to visualize disease
ctivity directly at all anatomic sites. However,
one imaging displays indirect evidence for the
resence of disease. It is still debatable whether
one imaging is sensitive enough to detect early
isease activity and is specific enough to determine
esponse to treatment. Some aggressive malignan-
ies such as lung cancers may not result in an
dequate degree of new bone formation to be
etectable by bone scanning. However, they can be
isualized directly by FDG-PET in the marrow
pace. Furthermore, reactive new bone formation
ay remain active for an extended period despite

esponse to treatment. This may result in the
istreatment of patients because of assumed dis-

ase activity. Validation of the role of bone imag-
ng as an addition to FDG-PET examination in the
ssessment of patients with suspected malignancy

ill require further investigation. It may be reason-
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62 ALAVI, KUNG, AND ZHUANG
ble to propose the sequential use of FDG and
8F-fluoride (ie, fluoride followed by FDG) as a
eans for a complete appraisal of the disease

rocess until further data become available for
efining the role of bone imaging in patients with
ancer. It is our belief that a relatively slow
isappearance of reactive bone formation despite
esponse to treatment may make bone imaging of
imited value for following the course of metastatic
one marrow disease.

PROSPECTS FOR NEW TRACERS

ell Proliferation Agents

Because there is upregulation of thymidine
ransport into malignant cells due to accelerated
eoxyribonucleic acid synthesis, either 11C101,102

r 18F-labeled 103-105 thymidine radiotracers can be
sed to determine cellular proliferation. Several of
hese compounds have been synthesized, but only
�-deoxy-3�-[18F]-fluorothymidine (FLT) appears
ost promising for this purpose.106 Theoretically,
LT has the potential to be used as a specific agent
or assessing disease activity in various stages of
ifferent malignancies. Particularly, FLT appears
o be of high value for determining response to
herapy because cytotoxic chemotherapeutic
gents affect cell division earlier and more prom-
nently than glucose metabolism. Therefore, FLT
ay prove to be superior to FDG for assessing

esponse to treatment. Also, following favorable
reatment response, an inflammatory reaction may
onfound the use of FDG but will not affect the use
f FLT in this setting.

umor Hypoxia

Hypoxia in tumor tissue appears to be an impor-
ant prognostic indicator of response to either
hemotherapy or radiation therapy. Therefore, de-
ection of hypoxia in advance of such interventions
s of utmost importance in optimizing the use and
utcome of different therapeutic modalities. This
ssessment is of value before, during, and follow-
ng treatment. Several compounds have been syn-
hesized for these purposes. These compounds
iffuse into normally oxygenated and hypoxic cells
ut are retained substantially in higher concentra-
ions in the latter tissues, which can be detected by
xternal imaging techniques. A number of reports
ave appeared describing the use of the following

18
ompounds in animal and human studies: [ F]- c
uoromisonidazole (FMISO),107,108 Cu-60 di-
cetyl-bis(N4-methylthiosemicarbazone) (60Cu-
TSM),109 2-(2-nitroimidazol-1[H]-yl)-N-(3-

18F]fluoropropyl)acetamide ([18F]-EF1),110 and
2-(2-nitro-1[ H]-imidazol-1-yl)-N-(2,2,3,3,3-penta-
uoropropyl)-acetamide] ([18F]-EF5).111 FMISO, an
nalogue of 2-nitroimidazole, appears suboptimal for
ssessing hypoxia because its uptake is low in hy-
oxic cells, and it also clears slowly from the normal
issues.108 In contrast, Cu-ATSM appears to over-
ome these difficulties and may prove to be an
ffective agent for this purpose.109 Finally, the [18F]-
F compounds have performed well in animal stud-

es and may also prove to be effective for noninvasive
maging of tumor hypoxia.110 These preparations
ave been introduced by investigators at the Univer-
ity of Pennsylvania and will be tested in human
alignancies in the near future. Because detection of

ypoxia appears to be of high importance for the
reatment of patients with cancer, the use and devel-
pment of hypoxic agents may expand in the coming
ears. In fact, hypoxia agents may become the next
eneration of compounds that will be used in the
reatment of patients with certain malignancies.

Along these lines, we must point out that detec-
ion of cell death (apoptosis) by imaging is an area
f interest for assessing malignant and benign
isorders.112 The use of 99mTc-labeled annexin V
as lead the way for this purpose. This agent binds
o phosphatidylserine, which is externalized in the
ell membrane following apoptosis. Because apo-
tosis mediates tumor cell and angiogenic vascular
ndothelial cell regression, annexin V imaging
ay provide insight into therapeutic response to

ancer therapy. Labeling annexin V with 18F may
urther increase the use of this promising method.
maging of angiogenesis, a common phenomenon
oted in cancer and most malignant processes, may
lso provide important information. One promising
pproach involves the assessment of the integrins,
family of heterodimeric endothelial cell mem-

rane proteins, which are receptors for extracellu-
ar matrix proteins containing the amino acid
equence arginine, glycine, and aspartate (RGD).
ne integrin, �V�3, is expressed at high levels in

umor capillaries and some tumor cells.113,114 Pep-
ides containing the RGD sequence with affinity to

V�3 have been designed and radiolabeled with
8F.115,116 These tracers may find a role in the

linical treatment of patients with cancer.
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63IMPLICATIONS OF PET BASED MOLECULAR IMAGING
ntibodies and Peptides (Tumor
eceptors and Antigens)

The use of antibodies as diagnostic agents has
roven of limited value because of the clearance
rom the circulation and low concentration at
ntended targets. Therefore, the potential for using
ntibodies as diagnostic agents is very limited at
his time despite the theoretically high specificity
hat may be achieved with these compounds. How-
ver, some therapeutic successes achieved with
ither 131I or 90Y-labeled anti-CD-20 and CD-22
ntibodies against B cell non-Hodgkin lymphomas
ave revitalized interest in this approach over the
ast decade.117,118 The demonstration of antibody
argeting to the diseased tissue is important for
redicting outcome from these treatments. We
xpect that future diagnostic agents proposed for
retreatment targeting purposes will be synthe-
ized using positron emitting radionuclides such as
24I (as a surrogate for 131I) and 86Y (as a surrogate
or 90Y) for optimal visualization of the targeting
ites. Using positron emitting labeled antibodies
ill significantly improve our ability to select
atients who are optimal candidates for treatments
ith �-emitting antibodies or peptides labeled with

herapeutic radionuclides. Comparison between
mages acquired with more specific tracers, such as
DG, that reveal disease activity without regard to
specific antigen in the cells and scans which are

enerated with radiolabeled antibody for diagnos-
ic purposes, may identify patients who are appro-
riate candidates for treatment with radiolabeled
herapeutic antibodies.

Similarly, peptides such as octreotide labeled
ith positron emitting radionuclides will be pref-

rably used for imaging neuroendocrine tumors
nd other malignancies. These include 64Cu-la-
eled octreotide and 68Ga-labeled octreotide ana-
ogues.119,120 Both have been shown to provide
ubstantially superior image quality compared with
ither planar or SPECT images with indium-111
abeled compounds.119-121

abeled Amino Acids

Much experience has been gained in using
ositron labeled amino acids for assessing disease
ctivity in brain tumors. The uptake of such tracers
s very minimal in the normal brain structure.122

his allows for a clear separation of the sites of
ctive disease from the surrounding background.

herefore, malignant tumors can be distinctly vi- m
ualized with high contrast. L-[methyl-11C]-methi-
nine has been studied extensively and has shown
xcellent sensitivity in patients with high-grade
umors.121 However, it is our belief that FDG still
s the agent of choice in such settings if the images
enerated are interpreted carefully. We must em-
hasize that FDG-PET is requested only after
natomic studies have revealed abnormal findings
uggestive of active disease (mostly as a suspected
ecurrent process). FDG-PET images must be care-
ully compared with these scans to define the true
ocation of the FDG uptake in the normal and
bnormal tissues. This process allows determina-
ion of whether the contrast enhancement identified
ased on radiologic criteria represents either radi-
tion necrosis or recurrent tumors. By following
his scheme, we have been able to guide the
eferring physician in selecting the optimal option
or treating these very difficult cases.

The 11C or 18F amino acids, such as choline,
ppear to be of value for assessing slow growing
umors like prostate cancer.123-125 Although nega-
ive FDG-PET in these cancers may purely reflect
he slow growing nature of the malignancy and,
herefore, forecast favorable prognosis, labeled
mino acids may allow optimal staging because of
heir higher sensitivity in these settings. More data
ill be needed to justify the use of these tracers in

ssessing the extent and the presence of malig-
ancy in patients with prostate cancer. 11C labeled
cetate also appears to be of value for examining
atients with prostate cancer.126,127 However, the
0-minute half-life of this preparation may limit its
ractical application in centers that are not within
he proximity of the preparation site. In our opin-
on, the routine use of amino acids, which may
ose certain logistical issues in most centers, may
ot be justified until more data is accumulated to
rove the superiority of these compounds over
DG.

abeled Hormones

The use of labeled hormones, such as 18F-
abeled estrogen analogues, for assessing breast
ancer response to hormone therapy with tamox-
fen has been studied128,129 but is experimental at
his time, and further work is required to determine
he efficacy of this approach. Similar statements
an be made regarding the efficacy of 18F-labeled
ale hormone imaging for the assessment of hor-

130
one therapy in prostate cancer.
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64 ALAVI, KUNG, AND ZHUANG
SPECIFICITY OF FDG

Among the large number of positron imaging
adiopharmaceuticals that have been synthesized to
ate, FDG stands out as the most effective prepa-
ation for research and clinical applications. This
reparation will remain the agent of choice for
any years to come. More than 95% of PET

rocedures performed around the world use FDG
s the imaging agent. The list of potential applica-
ions for FDG is large and is growing. In addition
o its clearly proven efficacy for the assessment of
NS diseases, malignant disorders, and myocar-
ial viability, FDG is increasingly being used for
he detection of infection and inflammation in a
ariety of clinical settings. As previously noted,
DG may play a role in the detection of a number
f inflammatory and infectious processes.79-81,87-95

here is also evidence that thrombosis and athero-
clerosis are associated with increased glucose use,
hich can be detected with FDG-PET.98,131,132

inally, there is a potential for using FDG-PET for
he assessment of muscle spasm and motility dis-
rders. This application could also prove of ex-
raordinary importance in voluntary and smooth
uscle related disorders.
Clearly, the rapidly expanding list of indications

or the use of FDG-PET highlights its nonspecific-
ty. This issue becomes a particularly serious
hallenge when this modality is used for diagnos-
ng cancer. Because inflammation is a common
henomenon and often can be visualized with
DG-PET, theoretically, a distinction between
ancer and inflammatory processes can be a diffi-
ult task. We and other groups have made an
ttempt to improve the specificity of this tracer by
maging the sites of abnormality at dual times
ollowing its administration.62,133,134 While uptake
f FDG continues to increase at malignant sites for
everal hours, as can be shown by an incremental
ncrease of the standardized uptake values (SUV),
nflammatory lesions peak at approximately 60

inutes, and their SUV either stabilize or decline
hereafter. This difference in the behavior of FDG
n malignant versus inflammatory cells can be
xplained best by the varying levels of enzymes
hat degrade deoxyglucose-6-phosphate in the re-
pective cells. Glucose-6-phophatase dephospho-
ylates intracellular FDG-6-phosphate, allowing it
o leave the cell. It has been shown that most tumor
ells have low levels of this enzyme, while its

135-137
xpression is high in the mononuclear cells. o
or this reason, imaging at 2 time points after
dministration of FDG may prove to be important
n differentiating between these 2 common disor-
ers. Further refinement of this approach may
esult in improvement in its efficacy, particularly in
atients with known or suspected malignancy.
ecent unpublished work performed by our group
as shown that delayed imaging up to several
ours in the evaluation of patients with nonsmall
ell lung cancer improves the sensitivity of the
echnique. This finding will have important impli-
ations for both the diagnosis and staging of this
nd possibly other malignancies.

ROLE OF PET-CT CO-REGISTRATION

Integrated PET and x-ray CT units are manufac-
ured by all major vendors in the field and are
urrently being refined further.138,139 However,
heir efficacy in the routine day-to-day practice of
uclear medicine needs to be validated before they
an be adopted and used by the medical commu-
ity on a large scale as advocated by the industry
nd some PET-CT proponents. It is quite attractive
o be able to show the accurate anatomic location
f the normal and pathologic sites visualized by
ET tracers by adopting a system that provides this
dditional piece of information. This clearly is of
nterest and may facilitate interpretation of certain
ET studies.140-142 A recent study showed that
o-registered images by integrated PET-CT re-
ulted in higher diagnostic accuracy in the staging
f nonsmall cell lung cancer than that achievable
y visual alignment alone.142 This study highlights
he potential for these integrated units when
dopted in the appropriate settings. However, we
elieve that PET-CT units may not be incorporated
n day-to-day practice for practical reasons. We
ill discuss 2 major factors that form the basis for

his speculation.
The interpretation of the majority of FDG-PET

erformed for clinical purposes may not substan-
ially be influenced by performing sequential PET
nd CT. Whole-body PET is most commonly used
or the evaluation of lymphomas and lung nodules
66-70% of test cases in some centers). This
attern of practice may continue in the foreseeable
uture. In most circumstances, determining the
ere presence or absence of disease allows the

eferring physician to make a treatment decision.
herefore, although lesion by lesion co-registration

ffers more information, it may not alter the
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65IMPLICATIONS OF PET BASED MOLECULAR IMAGING
reatment plan. This is illustrated in the treatment of
ymphoma where the precise anatomic localization of
he structures involved may not contribute to or alter
he treatment of these patients. Likewise, in patients
ith well defined nodules shown on chest x-ray or
T, co-registration of findings between CT and PET
ill not substantially influence the outcome.
Incorporation of integrated PET-CT units also
ay be difficult because the space requirements for

hese instruments are significant. Installing several
f these units in an active nuclear medicine service
ould be a major challenge to the existing facilities.
f the routine use of PET-CT units can be validated
nd justified, modern nuclear medicine facilities
ill have to be designed with serious consideration
iven to this shift in resource allocation.
Considering that the majority of nuclear medi-

ine procedures in the coming decade will be
erformed by PET rather than by conventional
lanar and/or SPECT techniques, it is highly un-
ikely that PET-CT instruments could be adopted
s the sole modality for this purpose. It is our belief
hat stand-alone PET instruments may provide the
est option for performing the majority of the
urrent procedures. This will include examining a
airly large number of disorders (in addition to
ymphoma and lung nodules) in which exact ana-
omic localization of the abnormality (abnormali-
ies) may not be essential for the appropriate
reatment of patients. Therefore, the routine use of
ntegrated PET-CT may not be practical in day-to-
ay practice when the issues enumerated previ-
usly are taken into consideration.
Finally, by using the existing and readily avail-

ble software, it is quite feasible to co-register PET
nd CT images that have been acquired indepen-
ently by free-standing machines. Justification for
his approach can be further strengthened by con-
idering the basic differences that exist between
he time needed to acquire PET and CT images.

hile CT images are acquired over a very short

eriod with minimal patient motion (breath hold- c
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