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Imaging and Therapy of Tumors Induced to Express
Somatostatin Receptor by Gene Transfer Using Radiolabeled

Peptides and Single Chain Antibody Constructs
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he fields of radioimmunodetection and radioimmuno-

herapy began with an initial paradigm that a targeting

olecule (eg, antibody) carrying a radioisotope had the

otential of selectively imaging and delivering a thera-

eutic dose of radiation to tumor sites. A second para-

igm was developed in which injection of the targeting

olecule was separated from injection of a short-lived

adioisotope-labeled ligand (so-called “pretargeting

trategy”). This strategy has improved radioisotope de-

ivery to tumors in animal models, enhanced radioim-

une imaging in man, and therapeutic trials are in an

arly phase. We proposed a third paradigm to achieve

adioisotopic localization at tumor sites by inducing

umor cells to synthesize a membrane expressed recep-

or with a high affinity for infused radiolabeled ligands.

he use of gene transfer technology to induce expres-

ion of high affinity membrane receptors can enhance

he specificity of radioligand localization, while the use

f radioisotopes with the ability to deliver radiation

amage across several cell diameters will compensate

or less than perfect transduction efficiency. This ap-

roach was termed “Genetic Radioisotope Targeting
al
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2 Seminars in N
trategy.” Using this strategy, induction of high levels

f gastrin releasing peptide receptor or human soma-

ostatin receptor subtype 2 expression and selective

umor uptake of radiolabeled peptides was achieved.

he advantages of the genetic transduction approach

re (1) constitutive expression of a tumor-associated

ntigen/receptor is not required; (2) tumor cells are

ltered to express a new target receptor or increased

uantities of an existing receptor at levels that may

ignificantly improve tumor targeting of radiolabeled

igands compared with normal tissues; (3) gene transfer

an be achieved by intratumoral or regional injection of

ene vectors; (4) it is feasible to target adenovirus

ectors to receptors overexpressed on tumor cells by

odifying adenoviral tropism (binding) so that the virus

ill be targeted specifically to the desired tumor; and (5)

t is possible to coexpress the receptor gene and a

herapeutic gene, such as cytosine deaminase, for mo-

ecular prodrug therapy to produce an enhanced thera-

eutic effect.

2004 Elsevier Inc. All rights reserved.
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HE USE of radiolabeled monoclon
antibodies (mAb) to “target” radioactivi

o tumor sites is a promising strategy, as sho
n a number of animal models and in hum
rials.1-7 Radioimmunotherapy (RIT) is typ
ally administered systemically. However,
lso has been delivered intraperitoneally (
r intralesionally. Favorable results have b
bserved in the treatment of lymphomas,

umors confined within the peritoneal cav
ovarian), and in malignant gliomas throu
irect intratumoral injection.8-20 Another strat
gy has used radiolabeled peptides (eg,
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arget human somatostatin receptor subtyp
hSSTr2) positive tumor cells for imaging
atients.21-24 The peptides can be labeled w
adioisotopes for therapeutic applications, wh
ave been performed in preclinical animal m
ls and in patients with cancer.25-32 Despite the
uccess of these investigations, improved de
ry systems and/or targeting strategies
eeded for RIT to have an even greater effec

he treatment of cancer.

LIMITATIONS OF CURRENT TARGETED
RADIODETECTION AND RADIOTHERAPY

STRATEGIES

The success of radioimmunodetection (RID)
IT has been limited by the low percentage upt
f injected radioactivity in tumors due to low targ
ntigen expression and slow penetration of

arge (160 kDa) intact mAb, the normal tiss
ptake of the radiolabeled mAb, the bone mar

oxicity due to the long blood circulation time
he radiolabeled mAb in blood, radioresistance
he tumor, and the development of human a
ouse antibody responses.2,33 Strategies to ove
ome these limitations have included the use of

uclear Medicine, Vol XXXIV, No 1 (January), 2004: pp 32-46
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33IMAGING AND THERAPY OF TUMORS
Ab fragments, single chain antibodies (scFv) and
inibodies or diabodies,34-37 radiolabeled pep-

ides,21,22,25,27,38 locoregional administration of the
adiolabeled ligand,39-41 the use of cleavable che-
ating agents,42,43 biological response modifiers
uch as interferon or gene transfer methods to
pregulate tumor-associated antigen/receptor ex-
ression,44-51 irradiation of the tumor to increase
ascular permeability,2 the use of radiosensitizing
gents,52-54 and antiangiogenic therapy.55-57

trategies to Overcome Targeted
adiotherapy Limitations

There are several strategies designed to over-
ome the limitations of RID and RIT. Several
esirable features can be envisioned for optimum
eceptor-ligand systems for tumor detection and
herapy. Expression of an endogenous receptor
xclusively on malignant cells within the normal
issue parenchyma would provide a certain degree
f specificity and safety. If cross-reactivity of the
adioligand with corresponding human receptors is
nown, it would be most desirable if the human
eceptor-positive cells were expendable or were
solated from the treatment area. Thus, nontumor
ocalization of radioligand would not have signif-
cant deleterious clinical sequelae. Our group
howed that an adenoviral (Ad) vector encoding
he gene for carcinoembryonic antigen (CEA)
ould infect human glioma cells and induce the
xpression of CEA in vitro and in vivo, as evi-
enced by an increase in the binding and localiza-
ion of a radiolabeled anti-CEA antibody when
ompared with uninfected cells.48 Another desir-
ble feature of candidate ligand-receptor systems
ould be the potential for a high affinity ligand-

eceptor interaction. Our recent focus has been on
he development of recombinant vectors that trans-
er receptor-encoding genes with high binding
ffinities to radiolabeled peptides to tumor cells.
eceptors that we investigated for targeting with

adiolabeled peptides include hSSTr2 and the gas-
rin releasing peptide receptor (GRPr). Our group
as published on the use of Ad vectors encoding
he genes for hSSTr2,58-61 GRPr,49,50 and epider-
al growth factor receptor62,63 in the genetic ra-

ioisotope targeting approach. A potential advan-
age of genetic transduction of a receptor is that the
evel of expression may be higher than what are
enerally otherwise low tumor concentrations of

38
uch receptors. t
adiolabeled Peptides Targeting
omatostatin Receptors in Cancer
etection and Therapy

We identified one lead system that seemed to
ffer the desired features for use in the proposed
ontext. The target of most imaging and therapy
tudies with radiolabeled peptides has been the
SSTr2, which is expressed on a number of human
umors, including neuroendocrine, ovarian, renal,
reast, lung, and meningiomas.64-68 The somatosta-
in receptor group includes gene products encoded
y 5 separate somatostatin receptor genes.69 The
ubtype 2 exists in 2 forms due to alternate splicing
f hSSTr2 messenger ribonucleic acid, which pro-
uces 2 products. The subtype 2A receptor (herein
eferenced as hSSTr2) is slightly longer (369
mino acids), while the shorter subtype 2B differs
nly in regard to a truncation on the C-terminal tail
356 amino acids). The receptors have varying
issue levels in the brain, gastrointestinal tract,
ancreas, kidney, and spleen.70-72 It is for this
eason that it might be helpful to produce ligands
eactive with a mutated form of hSSTr2 to achieve
ore selective binding to transfected tumors with-

ut inducing toxicity to normal tissues that natu-
ally express hSSTr2. All 5 receptors show high
ffinity binding to natural somatostatin peptide,
ither somatostatin-14 or somatostatin-28. Oct-
eotide, P829, and P2045 are synthetic somatosta-
in analogues that preferentially bind with high
ffinity to somatostatin receptor subtypes 2, 3, and
of human, mouse, or rat origin.70-74 Somatostatin

nd its analogues effectively inhibit the prolifera-
ion of various types of cancer cells as a result of
inding to hSSTr2.75-77

Octreotide is an 8 amino-acid peptide that has a
igh affinity for hSSTr2 and is stable towards in
ivo degradation relative to the endogenous 14
mino-acid somatostatin-14 peptide. Octreotide
nd other somatostatin analogues have been mod-
fied with bifunctional chelating agents, for com-
lexing radioactive metals, and by changing the
mino acid sequence to increase their hSSTr2
inding affinity and optimize their normal organ
learance. Somatostatin analogues have been la-
eled with 111In, 90Y, 64Cu, and 188Re for thera-
eutic applications. Smith-Jones and coworkers
howed that a single 0.48 mCi IP injection of a
0Y-labeled somatostatin analogue in nude mice
earing subcutaneous (s.c.) AR42J rat pancreatic

umors resulted in a significant reduction in tumor
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34 DONALD J. BUCHSBAUM
rowth.78 Stolz and colleagues showed that a
ingle dose of 90Y-DOTA-D-Phe1-Tyr3-octreotide
90Y-SMT 487) led to reductions of 60% and 50%
f the initial tumor volume in nude mice bearing
R42J and NCI-H69 human small cell lung cancer

umors, respectively.79 Complete remissions were
bserved in rats bearing (s.c.) CA20948 rat pan-
reatic tumors when a single 2.0 mCi dose of
0Y-DOTA-Tyr3-octreotide was administered.27

he 90Y-DOTA-lanreotide that binds to hSSTr
roduced a therapeutic response in a patient with
etastatic gastrinoma.80 The 90Y-SMT 487 was

dministered to 20 patients with malignant tumors
17 carcinoids, 1 breast cancer, 1 medullary thy-
oid cancer, 1 meningioma) in a phase I trial.81

omplete and partial responses were obtained in
5% of patients along with 55% showing stable
isease lasting at least 3 months. The 90Y-SMT
87 has been tested in patients with neuroendo-
rine tumors.27,81,82

Zamora and coworkers labeled the somatostatin
nalogue RC-160 with 188Re and administered 7
oses of 0.2 mCi over a 14-day period intralesion-
lly to nude mice bearing PC-3 human prostate
ancer tumors.25 They reported that animals re-
eiving 188Re-RC-160 had 60% survival compared
ith no survivors when control animals were

njected with saline. Anderson and colleagues
howed tumor growth inhibition of s.c. CA20948
umors in Lewis rats using either single or multi-
le intravenous (IV) doses of 64Cu-TETA-oct-
eotide.26 Thus, several radiolabeled somatostatin
nalogues have shown potential as radiotherapeu-
ic agents in animal tumor models and in humans.
owever, in most of the published studies, there
as been limited tumor uptake and retention of the
adiolabeled peptides (peak uptake �10% injected
ose [ID]/g), presumably due to the rapid clearance
rom the blood. This has resulted in the use of
ather high quantities of radionuclides in preclini-
al studies with multiple administrations. More-
ver, large radionuclide doses (0.4 to 1 Ci) have
een administered to patients.83-87

umor Killing is Enhanced by Increasing
adiosensitivity Through Molecular
rodrug Therapy

The molecular prodrug gene therapy approach
nvolves insertion and expression of an enzyme in

target cell that converts a nontoxic prodrug to a
88,89
oxic drug. The enzyme cytosine deaminase t
CD) is a nonmammalian enzyme that normally
atalyzes the formation of uracil by the deamina-
ion of cytosine. When 5-fluorocytosine (5-FC) is
he substrate, this enzyme will produce 5-fluorou-
acil (5-FU), a potent cancer chemotherapeutic and
adiosensitizing agent.90 The genes for bacterial
nd yeast CD have been cloned.91-94 Because
ammalian cells do not normally express the CD

ene, 5-FC is nontoxic to these cells, even at high
oncentrations. The 5-FC has been used as an
ntifungal drug because of its relative nontoxicity
n humans. The CD gene has been used in gene
herapy strategies to mediate intracellular conver-
ion of 5-FC to 5-FU, and has been effective in
nimal tumor models.95,96 This therapeutic strategy
as the advantage of intracellular production of
igh concentrations of radiosensitizing drug as an
lternative to systemic administration, therefore
otentially limiting systemic toxicities.97 Direct
njection of 5-FU itself into a solid tumor would
ot be effective because it would be washed out
mmediately. Converted 5-FU passively diffuses
cross the cell membrane from CD-positive cells to
ontransduced cells.98,99 This bystander effect
ompensates for the inability of current vector
ystems to transduce all but a small fraction of
ells in a given tumor.89,100

Recent studies by our group and others involv-
ng combination of radiation therapy with molec-
lar prodrug therapy have shown that CD-based
rodrug therapy sensitizes tumor cells to radiation
n vitro and in vivo.101-103 Human colon and head
nd neck cancer cells that were stably transduced
o express the CD gene were radiosensitized by the
ddition of 5-FC in vitro and in vivo.93,94,104,105

he use of Ad vectors to encode CD and convert
-FC to 5-FU to achieve cell killing has been
eported by our group102,103,106,107 and oth-
rs.96,99,101,108 We initially used an Ad vector en-
oding CD under the control of the cytomegalovi-
us promoter (AdCMVCD) in combination with
-FC and radiation treatment to show enhanced
ytotoxicity against human colon, pancreatic, gli-
blastoma, and cholangiocarcinoma cells in vitro
nd in vivo.101-103,109 Recent results in a lung
ancer animal model are described later. The
esults of a CD/5-FC molecular prodrug therapy
hase I trial in patients with breast cancer have
een published.110 There was evidence of reduc-

ion of tumor volume in 4 of 12 patients.
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35IMAGING AND THERAPY OF TUMORS
hage Display Technology: In Vitro
eneration of Recombinant Antibodies

Within the last decade, a novel approach has
acilitated the in vitro production of recombinant
ntibodies directed against a variety of targets. The
ey technology in this approach is the surface
xpression of antigen-binding fragments of mAb
n filamentous bacteriophage (Phage Display).111

ecombinant antibodies can be expressed in Esch-
richia coli as a single polypeptide consisting of 2
ntigen binding domains, VH and VL, joined by a
exible peptide linker (termed scFv – single chain
ntibody variable fragment). The further develop-
ent of recombinant antibody technology has led

o creation of libraries of antibody genes obtained
rom immunized or nonimmunized donors. These
ntibody genes are expressed as scFvs on the
urface of bacteriophage. This phage display ap-
roach allows selection of clones with highly
pecific antigen binding out of a vast number of
rimary clones in the library. Using this principle,
xtremely large antibody gene libraries can be
creened.

Recombinant antibodies also can be isolated
rom hybridoma cell lines. The genetic information
or the recombinant antibody VH and VL structural
omains is amplified from hybridoma cells using
he polymerase chain reaction with antibody gene-
pecific primers. The necessity of creating phage
isplay libraries when recombinant mAb are gen-
rated from hybridomas is dictated by their se-
uence heterogeneity.112

umor Targeting With Radiolabeled
inibodies and Diabodies

The engineering of antibodies can be used to
roduce recombinant fragments with properties
ptimized for in vivo applications. Intact, murine
Ab are immunogenic in humans and display poor

harmacokinetics for RID. ScFvs (constructed
rom hybridoma cells or isolated via phage display,
s described previously) are themselves poor re-
gents for targeting radionuclides to tumors due to
heir small size and that they only contain a single
inding site. Nonetheless, scFvs provide an excel-
ent building block for intermediate size engi-
eered fragments, such as minibodies, in which the
cFv have been fused to the human IgG1 hinge and
H3 regions to provide a dimerization domain113

nd diabodies, where scFv self-assemble into non-

ovalent dimers containing 2 functional antigen h
inding sites.114 These fragments show antigen
inding comparable to intact bivalent antibodies,
nd may show improved tumor penetration and
aster normal tissue clearance. They include the
cFv (27 kDa), diabody (a noncovalent dimer of
cFv, 55 kDa), and the minibody (a dimer of
cFv-hinge-CH3, 80 kDa).

Biodistribution and tumor targeting studies of
adioiodinated or radiometal-labeled anti-CEA
inibodies and diabodies in athymic mice bearing

.c. LS174T human colon cancer xenografts
howed that these fragments localize to CEA-
ositive tumors with fast clearance from blood and
ormal tissues (� half-life 3 to 5 hours) after IV
njection.113,115,116 Maximum uptake levels of 10%
o 15% ID/g for radioiodinated diabody at 1 to 2
ours after injection, or 20% to 25% ID/g for
inibody at 6 to 12 hours after injection occurred

ollowing IV administration to mice. The blood
harmacokinetics of 111In- and 64Cu-labeled mini-
odies was similar, and high uptake in LS174T
umors occurred. However, radiometal-chelate
onjugated minibody showed uptake in the liver,
nd the anti-CEA diabody localized in the kidneys.
evertheless, the rapid blood clearance of both of

hese antibody fragments resulted in high tumor-
o-normal tissue ratios for other tissues. Results in
he CEA system have been confirmed in other
umor-associated antigen systems, including TAG-
2, Her2/neu, placental alkaline phosphatase, and
bronectin ED-B domain.117 Furthermore, anti-
ody fragments, such as diabodies or scFv, show
mproved tumor penetration.34,118 Anti-CEA mini-
odies labeled with 64Cu have been used for
maging by micro-positron emission tomography
PET),117 and potentially provide a vehicle for the
elivery of therapeutic radionuclides either as a
ingle agent or in genetic radioisotope and molec-
lar prodrug therapy approaches as described
erein.

COMBINATION OF GENE THERAPY AND
TARGETED RADIOTHERAPY ADDRESSES THE

KEY SHORTCOMINGS IN GENE THERAPY
(LESS THAN COMPLETE TRANSDUCTION)

AND TARGETED RADIOTHERAPY
(INADEQUATE DELIVERY/LOCALIZATION

OF RADIOLIGANDS)

The ability of recombinant Ad vectors to accom-
lish efficient gene transfer to tumor cells in vivo

as led to the use of this vector approach in several,



c
g
d
a
l
c
c
e
t
t
t
l
a
l
l
w
s
t
s
o
t
r
h
t
t
c

t
t
s
t
m
l
a
s
m
1
i
d
d
r
i
t
b
b

e
t
t
h
a

t
s
a
t
i
l
p
c
l
e
m
t
r
t
p
h
a
e

h
p
b
P
S
A
i
i
a
f
(
m
e
A
M
i
M
s
o

p
t
t
p
l
h
t

36 DONALD J. BUCHSBAUM
linical cancer gene therapy trials.119 A number of
ene therapy approaches use direct in situ trans-
uction of tumor for the purpose of achieving an
nticancer effect. In these various strategies, the
imited transduction frequency achievable with
urrently available vectors mitigates against effi-
acy. Thus, strategies to amplify the biologic
ffects of genetic transduction events would poten-
ially allow the enhanced therapeutic effect of
hese gene therapy methods. By linking tumor
ransduction to the induced binding of radiolabeled
igands, it is possible that this effect may be
chieved because cells in proximity to bound
igand may be killed as a result of exposure to the
ocal radiation field. It should be understood that
ith this approach, we are attempting to increase

pecifically the number of receptors on tumor cells
hat normally express a receptor or to induce
pecifically expression on tumor cells that do not
rdinarily express the receptor by genetic transduc-
ion, with the result being increased targeting of the
adiolabeled ligand to the tumor site. It is our
ypothesis that one can deliver a larger fraction of
he administered dose of the radiolabeled ligand to
he tumor cells selectively through increased re-
eptor expression at the tumor site.

When used with radiation therapy, uniform sys-
emic incorporation of the genetic construct into
umor cells is not necessary. It should be empha-
ized that the advantage of the proposed strategy is
hat transduction of 20% to 40% of tumor cells
ay be all that is necessary for radiolabeled

igands to produce tumor responses, given the
bility of �-emitters to deliver radiation across
everal cell diameters in primary tumor sites and
etastases. Current strategies only transduce 5% to

0% of the tumor cells. The chief stumbling block
n the use of radiolabeled peptides has been the low
ose of radiation that can be delivered to the tumor
ue to rapid catabolism. The use of high affinity
adiolabeled minibodies and diabodies will likely
ncrease the delivered radiation dose to tumor due
o better tumor uptake and retention. There should
e enhanced cell killing as a result of gene transfer
eing combined with radiation therapy.
We have developed an approach to increase

xpression of targetable cell surface receptors in
umor cells using a gene transfer strategy. Using
his strategy, we have accomplished induction of
igh levels of receptors for radioligand targeting,

s described later. The advantages of the genetic t
ransduction approach are (1) constitutive expres-
ion of a tumor-associated receptor is not required,
nd (2) tumor cells are altered to express a new
arget receptor at levels that may significantly
mprove tumor to normal tissue targeting of radio-
abeled ligands. This method thus represents a new
aradigm by which augmented therapeutic efficacy
an be achieved through enhanced radiolabeled
igand localization to tumors transduced in situ to
xpress unique and novel receptors. The use of
odern molecular biology techniques to increase

he expression of tumor-associated receptors for
adiolabeled ligands is a novel approach to the
reatment of cancer. The importance of this ap-
roach lies in that although each modality alone
as limitations, the combination of gene transfer
nd radioligand therapy would be synergistic in
ffect.

INDUCTION OF RECEPTOR IN VITRO

We produced an Ad encoding the gene for
SSTr2 under the control of the cytomegalovirus
romoter (AdCMVhSSTr2), and showed in vitro
inding of 125I-somatostatin and 111In-DTPA-D-
he1-octreotide to cell membrane preparations of
K-OV-3.ip1 human ovarian cancer cells and
-427 human nonsmall cell lung cancer cells

nfected with AdCMVhSSTr2.60 The cells were
nfected with various amounts of AdCMVhSSTr2,
nd binding assays on membrane preparations
rom these cells showed high expression of hSSTr2
Fig 1).120 In addition, reverse transcriptase poly-
erase chain reaction analysis showed the pres-

nce of hSSTr2 messenger ribonucleic acid in
-427 and SK-OV-3.ip1 cells infected with AdC-
VhSSTr2. Scatchard analysis of A-427 cells

nfected with 10 plaque forming units (pfu) AdC-
VhSSTr2 and binding of 99mTc-P829 (Neotect)

howed a Bmax of 19,000 fmol/mg and the affinity
f 99mTc-P829 to be 7 nM.

INDUCTION OF RECEPTORS IN VIVO

To evaluate the ability to induce receptor ex-
ression in vivo, AdCMVhSSTr2 was injected IP
o induce hSSTr2 expression on SK-OV-3.ip1
umors 5 days after tumor cell injection in the
eritoneum in nude mice. Two days later, tumor
ocalization of 111In-DTPA-D-Phe1-octreotide 4
ours after IP injection was equal to 60.4% ID/g of
he radiolabeled peptide.60 However, the uptake in

umor decreased to 18.6% ID/g at 24 hours after
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37IMAGING AND THERAPY OF TUMORS
njection (Fig 2). The tumor localization was sig-
ificantly lower (1.6% ID/g) when a control Ad
AdCMVGRPr) was injected. These studies also
howed that the tumor uptake of 111In-DTPA-D-
he1-octreotide was similar 1, 2, or 4 days after
dCMVhSSTr2 injection and that 2 injections of
dCMVhSSTr2 did not improve the tumor local-

zation of 111In-DTPA-D-Phe1-octreotide. Thus,
hese studies showed that tumor uptake of 111In-
TPA-D-Phe1-octreotide could be achieved after

nfection of the ovarian tumor in vivo with AdC-
VhSSTr2.
Other studies have investigated the localization

Fig 1. Binding of 125I-Tyr1-so-

atostatin and 111In-DTPA-D-

he1-octreotide to A-427 and SK-

V-3.ip1 membrane preparations.
f 111In-DTPA-D-Phe1-octreotide to s.c. A-427
onsmall cell lung tumors injected intratumorally
i.t.) with AdCMVhSSTr2.121 The gamma camera
egion of interest analysis showed the tumor up-
ake of 111In-DTPA-D-Phe1-octreotide to be 2.8%
D/g 48 hours after a single intratumoral AdCM-
hSSTr2 injection and 3.1% ID/g at 96 hours.
ptake of 111In-DTPA-D-Phe1-octreotide in con-

rol Ad-injected tumors was �0.3% ID/g at both
imes.

Gamma camera imaging was used to detect
SSTr2 expression in s.c. A-427 tumors infected
ith AdCMVhSSTr2 using a 99mTc- or 188Re-

Fig 2. Biodistribution of 125I-

somatostatin and 111In-DTPA-D-

Phe1-octreotide in mice bearing

intraperitoneal (IP) SK-OV-3.ip1

tumors injected with AdCMVh-

SSTr2. BL, blood; LU, lung; LI,

liver; SI, small intestine; SP,

spleen; KI, kidney; SK, skin; BO,

bone; MS, muscle; TU, tumor;

PL, peritoneal lining; UT, uterus.

Reprinted with permission from

the American Association for
Cancer Research, Inc.
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38 DONALD J. BUCHSBAUM
abeled somatostatin analogue.122 The somatostatin
nalogue, P829, was radiolabeled with 99mTc at
igh specific activity and was shown to bind with
igh affinity to hSSTr2-positive tumors by external
cintigraphic imaging. The 99mTc-P829 and 188Re-
829 bound with high affinity (6 to 7 nM) to
embrane preparations from A-427 cells infected
ith AdCMVhSSTr2, and were internalized simi-

arly by AdCMVhSSTr2-infected A-427 cells.122

ice bearing s.c. A-427 tumors injected i.t. with
dCMVhSSTr2 showed uptake of IV-injected

9mTc-P829 and 188Re-P829 detected by gamma
amera imaging, while uptake was not observed
hen the tumors were infected with a control Ad.
his result was confirmed by counting the tumors

n a gamma counter, which showed 3.8% and 2.9%
D/g of 99mTc-P829 and 188Re-P829 in the AdC-

VhSSTr2 injected tumors, respectively, com-
ared with �0.4% ID/g in the tumors infected with
he control Ad. Independent confirmation of
SSTr2 expression was shown by immunohisto-
hemical analysis.

A novel 99mTc-labeled peptide (P2045) recently
escribed by Diatide, Inc.123 binds with high affin-
ty to hSSTr2 and has favorable in vivo biodistri-
ution. This peptide was evaluated in mice bearing
K-OV-3.ip1 tumors in the peritoneum. Tumor
ptake of 99mTc-P2045 at 48 hours after IV injec-
ion averaged 2.2 � 0.3% ID/g for mice injected IP
ith AdCMVhSSTr2 (1 � 109 pfu), as compared
ith 0.18 � 0.002% ID/g in control mice not
eceiving Ad injection (P � 0.05) or in tumors M
rom mice injected IP with an Ad encoding the
reen fluorescent protein, which averaged 0.26 �
.17% ID/g.124 We also evaluated P2045 in mice
earing s.c. A-427 tumors injected i.t. with AdC-
VhSSTr2 or with a control Ad. The 99mTc-P2045
as injected IV 2 or 4 days after AdCMVhSSTr2

njection, and the animals were imaged using a
amma camera equipped with a pinhole collimator
.5 to 4.5 hours later. The images showed similar
ptake of 99mTc-P2045 in the tumors injected with
dCMVhSSTr2, but background uptake in tumors

njected with control Ad. The biodistribution re-
ults in the mice 4 days after AdCMVhSSTr2
njection and 4 hours after 99mTc-P2045 injection
howed 7.8% ID/g in the positive tumor. No other
issue had higher uptake than the AdCMVhSSTr2-
njected tumor.120

Further studies were reported using a bicistronic
d vector encoding hSSTr2 and thymidine kinase

TK) in the same mouse tumor model.125 The
umors were injected i.t. with the bicistronic vector
AdCMVhSSTr2TK), and the animals were im-
ged for hSSTr2 expression with 99mTc-P2045 and
K with 131I-FIAU (Fig 3). The biodistribution

esults showed the uptake of 99mTc-labeled P2045
nd 131I-labeled FIAU for AdCMVhSSTr2TK-
njected tumors (n � 8) was 11.1% and 1.6% ID/g,
espectively. AdCMVhSSTr2-injected tumors (n �
) accumulated 10.2% ID/g of the 99mTc-labeled
2045 and 0.3% of the 131I-labeled FIAU. AdC-

Fig 3. In vivo simultaneous

imaging for human somatosta-

tin receptor subtype 2 (hSSTr2)

and thymidine kinase (TK) ex-

pression. Photograph of the

mouse shows tumor locations

and adenoviral (Ad) doses. The

expression of hSSTr2 was de-

picted with imaging tumor accu-

mulation of 99mTc-labeled P2045

(bottom left), while TK expres-

sion was depicted with imaging

tumor accumulation of 131I-la-

beled FIAU (bottom right). The

images were obtained 5 hours

after intravenous (IV) injection

of the radiotracers. Reprinted

with permission from the Radio-

logical Society of North Amer-

ica, Inc.
VTK-injected tumors (n � 4) had 0.2% ID/g for
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39IMAGING AND THERAPY OF TUMORS
he 99mTc-labeled P2045 and 3.7% for 131I-labeled
IAU.
It was shown that 64Cu-TETA-octreotide bound

o cell membrane preparations of A-427 and SK-
V-3.ip1 cells infected with AdCMVhSSTr2 (Fig
). Tumor localization and pharmacokinetics of
4Cu-TETA-octreotide was investigated in mice
earing IP SK-OV-3.ip1 human ovarian tumors
nduced to express hSSTr2 with AdCMVhSSTr2.

ice bearing IP SK-OV-3.ip1 tumors infected
ith 1 � 109 pfu AdCMVhSSTr2 5 days after

umor cell inoculation followed by IP injection of
4Cu-TETA-octreotide 2 days later had median
umor uptake of 25.1%ID/g at 4 hours after 64Cu-
ETA-octreotide administration (Fig 5). The up-

ake at 4 hours was significantly higher than when
he control Ad (AdCMVLacZ) was given (1.6%
D/g). The tumor uptake of 64Cu-TETA-octreotide
ecreased to 7.2% ID/g at 18 hours after injection.

Fig 4. Induction of human so-

atostatin receptor subtype 2

hSSTr2) and 64Cu-TETA-oct-

eotide binding in vitro.

Fig 5. Biodistribution of 64Cu-TETA-octreotide in mice

earing intraperitoneal (IP) SK-OV-03.ip1 tumors injected
ith AdCMVhSSTr2. S
THERAPY STUDIES WITH THE SINGLE GENE
VECTOR AdCMVhSSTr2

In a therapy study, we evaluated a single admin-
stration of 1.4 or 2.0 mCi of 64Cu-TETA-oct-
eotide 2 days after AdCMVhSSTr2 injection in
ice bearing IP SK-OV-3.ip1 tumors. Also, mice

eceived 2 doses of 64Cu-TETA-octreotide. In this
roup of animals, 1.4 mCi of 64Cu-TETA-oct-
eotide was administered 2 days after AdCMVh-
STr2, followed by an additional dose of AdCM-
hSSTr2 13 days after the first, and administration
f 700 �Ci of 64Cu-TETA-octreotide 2 days later.
ntreated animals had a median survival of 34
ays, while median survival following a single 1.4
Ci dose was 36 days, and a single 2.0 mCi dose
as 14 days. The mice that received 2 doses of

4Cu-TETA-octreotide (1.4 plus 0.7 mCi) had a
edian survival of 62 days (Fig 6). Overall, the

ombination of gene therapy and 64Cu-TETA-
ctreotide resulted in significantly (P � 0.05)
onger survival of the mice. These results establish

Fig 6. Survival of nude mice bearing intraperitoneal (IP)
64
K-OV-3.ip1 tumors treated with Cu-TETA-octreotide.
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40 DONALD J. BUCHSBAUM
he key feasibilities of inducing hSSTr2 expression
n ovarian tumors and achieving therapy with a
adiolabeled somatostatin analogue. Our hypothe-
is is that a radiolabeled ligand with a longer
etention time would deliver a higher radiation
bsorbed dose and result in higher therapeutic
fficacy.

Another somatostatin analogue that is being
sed for therapy is 90Y-SMT 487.27,81 Nude mice
ere inoculated s.c. with 2 � 106 A-427 cells.
wenty-four days later the mice were administered
� 109 pfu AdCMVhSSTr2 i.t. (day 0), and the

rst measurement of the tumor size (surface area
qual to length x width) was made with vernier
alipers. Mice received an IV injection of either
00 or 500 �Ci 90Y-SMT 487 on days 2 and 4. The
ice then received an additional i.t. injection of
dCMVhSSTr2 on day 7, followed by 2 more 400
r 500 �Ci doses of 90Y-SMT 487 on days 9 and
1. Control tumor-bearing mice either did not
eceive treatment or received 4, 500 �Ci doses of
0Y-SMT 487 on days 2, 4, 9, and 11 without
dCMVhSSTr2 injections.121 Mice that received

Fig 7. Evaluation of AdSSTr2CD bicistronic vectors for

xpression of human somatostatin receptor subtype 2

hSSTr2).
i.t. injections of AdCMVhSSTr2 and 4 doses of
00 or 500 �Ci 90Y-SMT 487 had median tumor
uadrupling times of 40 and 44 days, respectively.
he log-rank test revealed a statistically significant
ifference in time to tumor, quadrupling between
he AdCMVhSSTr2 � 90Y-SMT 487 treatment
roups and the control groups (P � 0.02). The
edian tumor quadrupling times of the no treat-
ent group and the no virus � 4 doses of 500 �Ci

0Y-SMT 487 group were 16 and 25 days, respec-
ively.

THERAPY WITH THE BICISTRONIC VECTOR
AdCMVhSSTr2CD

We have constructed and evaluated bicistronic
d vectors encoding for hSSTr2 and the CD

nzyme.126 The rationale for the construction of
hese vectors is 2-fold. First, hSSTr2 can be used
or noninvasive imaging to determine the expres-
ion of the therapeutic gene (CD) in vivo.125

econd, hSSTr2 can be used for therapy as
iscussed previously, and the combination of this
ith CD mediated therapy through conversion of
-FC to 5-FU may result in an additive or syner-
istic therapeutic effect. The A-427 cells infected
ith bicistronic vectors AdCMVhSSTr2CD or
dCMVhSSTr2CDRGD with the arginine–gly-

ine–aspartic acid (RGD) peptide genetically engi-
eered in the fiber knob to retarget Ad binding to
ntegrins on the cell surface had equivalent hSSTr2
xpression as the single gene vector AdCMVh-
STr2 (Fig 7). In addition, the AdCMVhSSTr2CD
nd AdCMVhSSTr2CDRGD vectors produced
imilar CD enzyme activity levels as the single
ene vector AdCMVCD (Fig 8). Thus, both genes

Fig 8. Evaluation of AdSSTr2CD

bicistronic vectors for cytosine
deaminase (CD) activity.
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41IMAGING AND THERAPY OF TUMORS
ere active in the bicistronic vectors. Therefore,
herapy studies were initiated with AdCMVhSSTr2CD
nd 90Y-SMT 487 in combination with 5-FC.

The AdCMVhSSTr2CD was injected i.t. into
-427 tumors at 1 � 109 pfu on days 20 and 27.
he 90Y-SMT 487 was administered IV on days
2, 24, 29, and 31 at 500 �Ci per injection. The
-FC was administered IP at 400 mg/kg twice a
ay for 5 days beginning on day 21, followed by
nother 5-day cycle beginning on day 28. Tumor
nhibition results showed that 90Y-SMT 487 and
0Y-SMT 487 in combination with 5-FC inhibited
umor growth (Fig 9). Importantly, the combina-
ion treatment had a higher tumor growth inhibi-
ion than the 90Y-SMT 487 treatment alone. In
ddition, the levels of toxicity (weight loss) were
odest (Fig 10).

Fig 9. Therapy results with AdCMVSSTr2CD, 5-FC, and
0Y-SMT 487 in athymic nude mice bearing subcutaneous

s.c.) A-427 xenografts.

Fig 10. Toxicity with AdCMVSSTr2CD, 5-FC, and 90Y-SMT

87 in athymic nude mice bearing subcutaneous (s.c.) A-427
aenografts.
The next therapy study consisted of intratumoral
njections of AdCMVhSSTr2CD into A-427 tu-
ors at 1 � 109 pfu on days 18, 25, 32, and 39.
he 90Y-SMT 487 was administered IV on days
0, 22, 27, 29, 34, 36, 41, and 43 at 500 �Ci per
njection. The 5-FC was administered IP at 400
g/kg twice a day for 5 days beginning on day 19,

ollowed by 3 more 5-day cycles beginning on
ays 26, 33, and 40. The 60Co was given as a single
Gy dose on days 21, 28, 35, and 42. Tumor

nhibition results were extremely encouraging be-
ause they show that the combination of 90Y-SMT
87 � 5-FC � 3 Gy resulted in tumor regressions
Fig 11 and Table 1). All combination therapies
ad at least 2 complete regressions with most being
ecurrence-free. The triple therapy groups had the
ighest mean tumor growth suppression of all
reatment groups, but these differences were not
tatistically significant (P � 0.116). The problem,
owever, was that the intense therapeutic regimen
as not well tolerated (Table 2). A summary of the
eight change data is shown in Table 2. From
efore and after weight (paired t-test) comparisons,
he controls had a significant weight gain (P �
.001), while 90Y-SMT 487 (400 �Ci x8) and
0Y-SMT 487 (500 �Ci x4) � 5-FC � 3 Gy had
o significant weight changes (P � 0.065 and
.216, respectively), and all other treatments
roups had significant mean weight losses (all P �

.01). We plan to investigate lower doses of 5-FC
90

Fig 11. Therapy results with AdCMVSSTr2CD, 5-FC, 60Co,

nd 90Y-SMT 487 in athymic nude mice bearing subcutaneous

s.c.) A-427 xenografts.
nd Y-SMT 487 in future studies.
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42 DONALD J. BUCHSBAUM
CONCLUSION

These studies show that genetic induction of
SSTr2 results in tumor localization of radiola-
eled peptides at a level sufficient to produce
herapeutic effects. Efforts continue to optimize
his novel approach to cancer gene therapy by
olecular chemotherapy and radiation therapy.

Table 1. Tumor Doubling Times and Compl

Treatment no.

Untreated controls 15
90Y-SMT 487 (500 �Ci � 8) 8
90Y-SMT 487 (400 �Ci � 8) 8
90Y-SMT 487 (500 �Ci � 8) � 3 Gy 8
90Y-SMT 487 (400 �Ci � 8) � 3 Gy 8
90Y-SMT 487 (500 �Ci � 4) � 5-FC � 3 Gy 8
90Y-SMT 487 (400 �Ci � 8) � 5-FC � 3 Gy 8

Table 2. Animal Weight Changes in

AdCMVhSSTr2CD Experiments

Treatment no.
Percent
Change

Percentage
with �20%

loss

Untreated controls 15 117 0
90Y-SMT 487 (500 �Ci � 8) 8 78 63
90Y-SMT 487 (400 �Ci � 8) 8 85 38
90Y-SMT 487 (500 �Ci � 8) � 3 Gy 8 84 38
90Y-SMT 487 (400 �Ci � 8) � 3 Gy 8 78 50
90Y-SMT 487 (500 �Ci � 4) � 5-FC

� 3 Gy 8 91 50
90Y-SMT 487 (400 �Ci � 8) � 5-FC

� 3 Gy 8 79 50

c
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