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Image registration is finding increased clinical use both

in aiding diagnosis and guiding therapy. There are nu-

merous algorithms for registration, which all involve

maximizing a measure of similarity between a trans-

formed floating image and a fixed reference image. The

choice of the similarity measure depends, to some

extent, on the application. Methods based on the use of

the joint intensity histogram have become popular be-

cause of their flexibility and robustness. A distinction is

made between rigid-body and non-rigid transforma-

tions. The latter are needed for inter-subject registration

or intra-subject registration in cases where the region of

the body of interest is not considered rigid. Non-rigid

transformation is normally achieved using a global

model of the deformation but can also be defined by a

set of locally rigid transformations, each constrained to

a small block in the image. There is scope for further

research on the incorporation of appropriate con-

straints, especially for the application of non-rigid trans-

formations to nuclear medicine studies. Most of the

initial practical concerns regarding image registration

have been overcome and there is increasing availability

of commercial software. There are several approaches

to the validation of registration software, with valida-

tion of non-rigid algorithms being particularly difficult.

Studies have demonstrated the accuracy on the order of

half a pixel for both intra- and inter-modality registration

(typically 2 to 3 mm). Although hardware-based regis-

tration has now become possible by using dual-modal-

ity instruments, software-based registration will con-

tinue to play an important role in nuclear medicine.
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THE COMPLEMENTARY NATURE of informa-
tion provided by different imaging modalities is

well understood by nuclear medicine practitioners, but it
is only recent software and hardware developments that
have enabled this to be exploited in a clinical setting.
Increasingly, reporting stations provide access to data
from multiple modalities, and various forms of fused
display are becoming available for viewing spatially
registered images. Aside from multi-modality fusion,
availability of registration software improves the utility
of serial nuclear medicine studies. The availability of
registered data has also prompted the development of
improved quantitative tools for image analysis.

To a large extent, the availability of image fusion
based on registration software has been limited to sites
with on-site technical expertise. This is not surprising
given the rapid evolution of algorithms and the slow
adoption of standards for image transfer. The advent of
dual-modality instrumentation has provided a direct
fusion capability, prompting demand that has exceeded
expectation. It has become clear that high quality fusion
can provide important additional diagnostic information,
although the full impact on clinical management has yet
to be scientifically demonstrated. The unprecedented
interest in image fusion has itself created a demand for
software solutions that can complement the hardware

approach. There are many studies performed on conven-
tional single-modality equipment that can benefit from
image fusion. Even with dual-modality instrumentation,
there are important applications that require software
approaches. These include serial studies, fusion with a
modality not available in a dual-modality instrument,
and inter-subject studies. Furthermore, hardware-based
fusion cannot account for differences caused by devia-
tions from ideal imaging conditions, such as the effects
of field non-uniformities in magnetic resonance imaging
(MRI), and differences caused by discrepancies in ac-
quisition times, such as respiratory motion blurring. It is
clear that the demand for effective fusion software will
increase as the clinical impact of image fusion and
associated techniques is more fully demonstrated.

The adoption of software registration has been ham-
pered by limitations in the ease of image transfer and the
profusion of poorly validated algorithms. It is only rela-
tively recently that fairly robust algorithms have become
available and, indeed, the development of algorithms con-
tinues, particularly for the more complex problem of
non-rigid registration. The objectives here are to review
software approaches to registration, to comment on the
accuracy of registration algorithms, and to discuss limita-
tions and potential future directions in the development of
software registration in the nuclear medicine context. The
interested reader is referred to Hajnal et al.1 for a more
extensive coverage. There are also useful reviews covering
various aspects of medical image registration.2-14

GENERAL ALGORITHMS FOR IMAGE
REGISTRATION

Distinction is made between image fusion and image
registration. In broad terms, image fusion denotes syn-
ergistic exploitation of spatially related images. Exam-
ples include not only the combined display of registered
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studies, but also the use of registered data for region-of-
interest definition, for correction of attenuation or partial
volume effects, and for incorporation of anatomical
information in tomographic reconstruction of emission
data. Underlying all fusion applications are algorithms
for the spatial registration of images. This review fo-
cuses on registration algorithms and on the evaluation of
their performance.

There are many instances of image registration being
used for modalities other than nuclear medicine. Here,
the discussion will focus particularly on the software
approaches that are relevant to nuclear medicine. In most
cases, data sets to be aligned are three-dimensional (3D),
although applications of 2D-3D,15 as well as 2D-2D
registration have been described, for example, in the
context of correction for patient motion.16-18

Given two image data sets (normally 3D but, for
simplicity, referred to as “images”), registration requires
the determination of a transformation (T) that can be
applied to one image (referred to as the floating image)
to bring it into alignment with the second image (re-
ferred to as the reference image). Determining the
necessary transformation normally requires an iterative
search in which a measure of similarity between the
transformed floating image and the reference image is

maximized. This is usually achieved by using an itera-
tive, automatic optimization algorithm (Fig 1).

There are two basic types of transformation that can
be applied in aligning images:

● Rigid body: This assumes that only translation
and/or rotation are necessary. The relative scale
factors along the axes are usually determined inde-
pendently, based on the known voxel dimensions.

● Non-rigid body: This is applicable where rigidity
cannot be assumed. A non-rigid transformation may
take the form of an affine transformation (which
allows for shape change via a shearing action) or
more complex transformations where shape change
is accommodated either globally or locally.

It is useful at the outset to define different classes of
application and to outline the different demands they place
on the registration algorithms. In practice, three classes of
image registration problem are distinguished:2,8,14

● Intra-modality, intra-subject. In the comparison of
serial studies in the same modality, assumptions
made regarding the similarity between images favor
the choice of relatively simple algorithms that are
well suited to rigid-body transformations. Compar-
ison of ictal and interictal brain single photon
emission computed tomography (SPECT) studies in

Fig 1. Schematic of a general image registration algorithm. An initial set of transformation parameters is applied to the floating

image. The transformed floating image is then compared with the reference image by assessing the similarity between the two images.

The algorithm iteratively updates the transformation parameters and reassesses the similarity measure until alignment is achieved.
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an individual patient is an example.
● Intra-modality, inter-subject. Aligning studies from

multiple patients is quite common in establishing
normal ranges or in performing group analysis. How-
ever, matching images across individuals is not trivial
and requires non-rigid transformations. Assessment of
activation in patient groups by using statistical para-
metric mapping (SPM) is an example.

● Inter-modality, intra-subject. Probably the area of
most interest is the alignment of images from different
modalities, where the underlying image values can be
quite different in the two images to be aligned. This
requires algorithms more sophisticated than those
relying on a direct comparison of values. A rigid-body
or non-rigid model is assumed, depending on the
application. Clearly, registration of a positron emis-
sion tomography (PET) or SPECT image with a
computed tomography (CT) or MR image falls into
this category. Registration of images of the head is
usually adequately defined by a rigid-body transfor-
mation, whereas images of other regions of the body
may require a non-rigid transformation.

Inter-modality, inter-subject registration falls outside
the problems of interest in clinical practice and, in any
case, is not practical in a clinical setting.

SIMILARITY MEASURES

A measure of similarity between images is central to
the registration algorithm. In the main, it determines the
robustness and flexibility of the algorithm. A number of
similarity measures have been suggested, generally fall-
ing into three categories: landmark-based measures,
surface or edge measures, and voxel intensity measures.

Landmark Measures

Registration can be achieved by identifying unique
landmarks, either anatomically defined or fixed exter-
nally to the patient, that appear in the two images to be
aligned. Relatively simple and well-developed algo-
rithms19,20 can then be used to find the transformation
that minimizes the average distance between the corre-
sponding imaged landmarks. In general, nuclear medi-
cine images lack anatomical detail and identification of
specific anatomical landmarks21,22 tends to be difficult, if
not impossible. Instead, external fiducial markers are
attached to the skin, made visible in both images by
means of radioactivity and/or contrast material.23-26 Use
of external fiducial markers is generally inconvenient
and impractical for routine use, although it is useful for
validation of registration techniques (see section on
validation). As an alternative to the anatomical land-
marks, which typically require significant user input,
geometrical features can be automatically identified,27

but again this tends to be limited to high-resolution
modalities. Landmarks can provide a basis for both rigid
and non-rigid transformations (as in commercially avail-
able morphing programs). However, this relies on accu-

rate landmark identification. Moreover, the complexity
and fidelity of the transformation is determined by the
number of landmarks. Landmark techniques are, there-
fore, even less well suited to non-rigid registrations of
nuclear medicine data.

Surface and Edge Measures

Two images can be aligned by minimizing the average
distance between corresponding surfaces or edges, identi-
fied by preprocessing the images.28-31 An alternative is to
match surface points in one image to the identified surface
in the second image.32 This particular technique was among
the first to be successfully applied in matching nuclear
medicine data to other modalities by using the “head and
hat” algorithm, where alignment is likened to moving a hat
to best fit a person’s head. The technique was designed for
use in brain studies, but has been adapted for other
applications.33,34 However, the accuracy of the technique is
poor in low-resolution studies, and the presence of a
suitable surface is not always guaranteed. Like the land-
mark measures, the surface/edge measures are better suited
to high-resolution anatomical modalities.

Voxel Intensity Measures

In nuclear medicine, similarity measures based directly
on voxel intensities have the greatest appeal and are most
widely used. The simplest measures compare intensity
values in the images to be aligned. However, intensities
obtained with different modalities are usually poorly cor-
related. More general measures that do not rely on intensity
correlations are better suited to inter-modality registration.
Similarity measures based on analysis of the joint intensity
histogram (representing the co-occurrence of intensity val-
ues in the two images) have become particularly popular.

The following discusses some of the available voxel
intensity similarity measures:

● Principal axes: The center of mass (counts) and
orientation (principal axes) of each image set can be
determined35,36 and used to align the floating image
to the reference image. Although relatively fast, the
technique is limited to situations where the imaged
area and intensity distributions are similar. It is also
limited to rigid-body transformations.

● Minimum intensity difference: A simple approach
for intra-modality registration is to use the sum of
either absolute or squared intensity differences be-
tween the two images.37-39 In the case of images
that differ in intensity only due to Gaussian noise,
this can be shown to provide optimum registra-
tion.40 Although the technique is limited to the
registration of similar images, it has found numer-
ous applications in nuclear medicine.39 The tech-
nique can be considered the method of choice for
intra-modality registration in nuclear medicine.

● Cross-correlation: Cross-correlation is a useful
technique that has been applied to both inter- and
intra-modality registration,41-43 either directly to
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images or extracted features.
● Minimum variance: This measure is well suited to

the registration of nuclear medicine data with high-
resolution modalities. It defines a transformation
that minimizes the variance in those regions of the
functional study that are aligned with “single tissue”
regions defined by segmentation of the anatomical
image. At its simplest, the algorithm defines a
segment as a set of voxels sharing the same inten-
sity value.44 A more sophisticated segmentation that
accounts for spatial correlations among neighboring
voxels has also been reported.45 Both approaches
have been demonstrated to be accurate and robust.

● Voxel intensity histogram: Most of the above tech-
niques imply a spatial correspondence between inten-
sity values in the images to be aligned. A separate
class of similarity measures can be defined that rely
only on the co-occurrence of specific intensity pairs,
independent of location.46 A joint intensity histogram
can be constructed for a pair of images to estimate the
probability of occurrence of each intensity pair (Fig 2).
At correct alignment, a reduction in the dispersion of
the joint histogram values is observed. This dispersion
can be analyzed either in terms of variance reduc-
tion47,48 or by using information theory.49-52 The main
attraction of these algorithms is that they do not rely
on a direct correlation between image intensities in the
two images. Therefore, they can be applied in inter-
modality registration where the images to be aligned

can be quite different. These algorithms have been
successfully applied in a wide range of situations, with
rigid-body and non-rigid transformations. A more
detailed description is, therefore, warranted.

REGISTRATION BASED ON THE JOINT
INTENSITY HISTOGRAM

It is useful to adopt an intuitive view of the joint
intensity histogram. As can be seen in Fig 2, when
identical images are correctly aligned, the knowledge of
the intensity in one image provides maximum informa-
tion about the other, allowing perfect prediction of the
intensity in the second image. This information is known
as the mutual information (MI). In the more general
case, where the images differ, registration is still
achieved by maximizing the MI, but there will be
residual uncertainty in the prediction of intensity in the
second image. The maximization of MI has been dem-
onstrated to be extremely robust53 even though explicit
dependence on spatial correspondence is absent from the
relationship between intensity values.

The information available in an image can be measured
by entropy H (or uncertainty in the intensity values),

H � � �
i

pilogpi , (1)

where pi is the probability of finding intensity i. Based
on information theory, MI(A,B), between images A and

Fig 2. Joint intensity histogram. For two images, a joint intensity histogram is constructed by plotting the relative frequency

of each pair of intensities. For voxels with a given intensity in B, the proportion of corresponding voxels in A with a particular

intensity is plotted. The histogram approximates the joint probability density function and, therefore, the value in each cell

estimates the probability of occurrence of a particular pair of intensities in the two images. For the special case of identical images

(illustrated), the joint histogram forms a single line when the images are aligned, but disperses from this line as image B is

reoriented. One approach to estimating dispersion is by measuring or standard deviation of voxel intensities in A for specific

intensities in B (as illustrated for intensities b1 and b2).
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B, can be determined from the entropy of the individual
images H(A) and H(B) and their joint entropy H(A,B),

MI(A,B) � H(A) � H(B) � H(A,B) . (2)

All three terms rely only on the probability of occur-
rence of the various intensities, independent of their
spatial distribution (Fig 3). Because one of the images is
rotated, or otherwise transformed, the definition of the
MI is valid only over the area of overlap of the two
images. Alternatively, it can be shown that

MI(A,B) � H(B) � H(A�B) , (3)

where H(B�A) represents the conditional entropy of
image B given image A.

It can be seen in this definition that maximizing the
MI can be achieved by minimizing the conditional
entropy. When identical images are correctly aligned,
the conditional entropy will be zero, i.e., knowing the
intensity values in A, the intensity values of B should be
predicted perfectly. A problem arises because of the
possible variation in the area of overlap of the two
images. A variation of MI referred to as the normalized
MI accounts for the area of overlap and provides a more
robust similarity measure.52,54 The reader is referred to
the excellent review by Hill et al.13 for a more detailed
discussion on information theoretic approaches.

An alternative similarity measure for the joint histo-
gram involves estimation of the variance in the intensi-
ties of those voxels in one image (A) that are spatially
aligned with voxels of a specific intensity (b) in the
second image (B). Referring to Fig 2, the variance of
intensities of A can be seen to vary for different
intensities of B. The weighted sum of these variances is
compared with the overall variance of intensities of A as
a measure of the dispersion. The defined statistic is the
correlation ratio (CR)47 given by

CRA � 1 � ��
b

var�Ab�Nb/N�/var�A� , (4)

where Ab refers to the intensity values in image A that
correspond to intensity b in image B, var(A) is the

variance of all intensity values in A, Nb is the number of
voxels with intensity b in image B, N is the total number
of voxels in image B.

It can be easily recognized that a complementary
version of the correlation ratio (CRB) can be defined, in
which the roles of images A and B are swapped, leading
to a different outcome. To remove the dependence on the
order of images, a symmetric CR is defined as the sum
CRA�CRB

48 or average (CRA�CRB)/2 of the two
asymmetric terms. The behavior of the normalized MI
and the symmetric CR is very similar, with the latter
proving more robust when sparse sampling is used to
improve the speed of computation.48,55

NON-RIGID REGISTRATION

As outlined earlier, there are two main types of
transformation: rigid-body and non-rigid. A rigid-body
transformation, which permits only rotations and trans-
lations, or a slightly more general affine transforma-
tion,56 which additionally permits zooming and shearing
deformations, can be expressed as a matrix that acts on
the coordinates of every voxel in the image. However, in
some cases, neither rigid-body nor affine transformations
adequately describe the necessary alignment. In partic-
ular, inter-subject registration requires more complex
transformations to account for the many anatomical
differences between individuals. In addition, non-rigid
registration may be necessary to account for differences
in posture or organ size and position in serial studies (eg,
pre- and post-therapy). Most non-rigid algorithms use a
smooth transformation, often based on a physical pro-
cess. For reasons of computational efficiency, the trans-
formation is computed at a subset of voxels and inter-
polation is used to propagate the transformation
throughout the image volume. One approach is to use a
set of basis functions57-59 or shape descriptors60 to
describe the transformation. Alternatively, various phys-
ical models have been suggested, including a thin metal
plate,61 elastic solid,62,63 and viscous fluid.64,65

The choice of voxels where the transformation should
be computed and how far the transformation is to
propagate from these voxels poses problems in nuclear
medicine. To illustrate the problem, consider the hypo-
thetical situation illustrated in Fig 4 where the two
images represent a functional and an anatomical study.
Each image consists of a large organ (or the whole body)
with an embedded lesion. Comparing the two images
shows that both the organ and the lesion differ in shape
and size, but the distortion is different. A global non-
rigid transformation will give the best average match for
all parts of the image. Because the organ is much larger
than the lesion, the transformation will be biased toward
correcting the organ distortion and may not adequately
correct for lesion distortions. Use of a locally non-rigid
algorithm may better adapt to local shape change, but
introduces a potentially serious problem. These algo-
rithms seek to match local regions and would, therefore,

Fig 3. Mutual information. We denote the entropy or

uncertainty associated with images A and B as H(A) and H(B)

and their joint entropy as H(A,B). The area of overlap defines

the mutual information, MI(A,B), where image A can be

predicted from image B. Aligning the two images maximizes

MI. The relationship between MI and the conditional entro-

pies H(A�B) or H(B�A) is illustrated (see text).
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ideally match the shape and size of the lesion in the
anatomical and functional images. Such a transformation
may essentially destroy the relevant diagnostic informa-
tion, which distinguishes functional and anatomical ex-
tent of disease. Without appropriate constraints, a non-
rigid registration algorithm can be quite misleading.
There is, therefore, a need to incorporate “intelligent”
constraints as part of a non-rigid model, for example,
limiting the extent of the local non-rigid transformation.
A limited amount of work has been done to develop
appropriate constraints, for example, accounting for
rigid structures such as bone.66 This is an area of
continuing research.

An alternative approach to non-rigid registration im-
plements a set of local transformations, which individu-
ally can be rigid but collectively define a non-rigid
displacement field (Fig 5). These algorithms usually
work by using a multi-resolution approach, where the
algorithm commences with fairly coarse resolution
(large blocks), progressing to finer resolution (small
blocks) in subsequent iterations.67-72 Interpolation is
used to determine the transformation at points interme-
diate to the points where displacement vectors were
calculated, with the local transformation encouraged to
change smoothly from point to point, for example, by
median filtering.70 Simply removing obvious outliers

may not be sufficient, so additional constraints may still
be necessary.

PRACTICAL CONSIDERATIONS

Image Transfer

Historically, the difficulty of achieving efficient im-
age transfer between modalities (or even within nuclear
medicine) has been a marked impediment to software-
based registration. However, most hospitals now have
fast, corporate networks linking departments and direct
internet connection. Physically transferring images in-
side an institution or from external consultants is easily
realized. It should be stressed that a simple point-to-
point connection is all that is necessary if a network
connection is unavailable. The simplicity of this type of
connection is frequently overlooked. Similarly, the prob-
lem of translating file formats is virtually solved through
the current improved version of the DICOM standard.73

However, problems are still encountered, and care needs
to be taken to ensure that the order in which slices are
stored and the image orientation are well understood.
The availability of manufacturer-supplied software reg-
istration tools places a greater responsibility on the
supplier to provide fail-proof image transfer.

Fig 4. Limitations of non-rigid transformations. Alignment of a functional image with an anatomical image may be expressed

as a global (non-rigid) transformation to account for change in shape between the two studies. (a) However, this transformation

will reflect the average deformation across the image and may fail to account adequately for local changes in shape, size, and

location of internal structures. (b) A locally non-rigid algorithm may be better suited resulting in a match for both body outline and

internal structures. (c) Care needs to be taken to constrain the transformation (eg, avoiding local transformation within the defined

area) to preserve anatomical/functional differences of diagnostic importance.
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Subsampling

It is quite common in registration algorithms to
base the alignment on only a subset of image points
rather than the complete data set, mainly to improve
computational speed. In some cases, the sampling is
modified to refine the registration at later iterations in
the optimization process (as is the case in multi-
resolution approaches). In the joint intensity histo-

gram methods, care must be taken to ensure an
adequate number of intensity levels (by using histo-
gram re-binning), particularly with coarse sampling
where the joint histogram becomes sparse.52,74

Interpolation

Interpolation is an important consideration in reg-
istration. Image transformation necessitates interpola-

Fig 5. Non-rigid, locally implemented registration. Arbitrarily complex, non-rigid registration can be implemented by perform-

ing a series of rigid registrations in a local neighborhood (identified by the box). By moving the box to different locations, a set of

displacement vectors can be defined. For computational efficiency, the algorithm usually starts with a large box, gradually reducing

the box size to provide a more detailed displacement vector field. A displacement field is illustrated for a simple rotation.

Fig 6. Interpolation associated with image registration. The transformation of an image results in the re-mapping of each voxel

to a new location. For the purpose of registration, the transformed image must be re-sampled on the original grid. Determination

of the intensity at each original grid point (for example point P) requires estimation based on surrounding voxel values. The

resulting interpolation will result in some degree of smoothing of the original image.
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tion (Fig 6), which can degrade image quality exces-
sively if used repetitively. The simplest (and crudest)
interpolator, the nearest neighbor scheme, finds a
voxel nearest the point of interest and assigns the
value of the voxel to that point. More sophisticated
interpolators, although generally more accurate, re-
quire more voxels, estimate more parameters and,
consequently, are slower. In general, insufficient at-
tention is paid to the interpolation methods used, and
the trade-off between speed and accuracy may not be
optimally resolved.13 The influence of interpolation
on registration performance is well documented for
algorithms based on MI.75 Recent reviews of interpo-
lation methods recommend the use of B-splines or a
6 � 6 cubic interpolator, which is easy to implement
and is relatively fast.76,77

In non-rigid registration, interpolation is used also to
provide an estimate of the displacement vectors at voxels
intermediate to the calculated values. In this case, the
interpolator imposes a smoothness constraint on the
displacement field. The accuracy of non-rigid registra-
tion, especially along boundaries between rigid and
non-rigid structures, will depend on the choice of the
interpolator.

Optimization

The determination of the optimal transformation nor-
mally proceeds automatically by using well-established
optimization algorithms, such as those described in
Numerical Recipes in C.78 The choice of the algorithm
should suit the similarity measure to be maximized. In
general, the algorithm should be insensitive to the
presence of local maxima and should converge rapidly to
the optimal solution. For registration using MI, the
simplex, conjugate gradient and Levenberg Marquardt
algorithms were all demonstrated to be effective.67

Approaches such as simulated annealing,79 designed to
avoid local maxima, are slow and usually are not

necessary. Problems may occur where some transforma-
tion parameters are correlated, giving rise to spurious
maxima. Such problems can be avoided by removing
excess parameters or constraining the optimization.

VALIDATION OF SOFTWARE APPROACHES TO
REGISTRATION

For registration algorithms to be clinically useful,
they must be accurate, precise, robust (adaptable to
different degrees of mis-registration), and flexible (ap-
plicable to different situations). Ideally, they should also
be automatic and fast. Validation of software registration
is not trivial because ground truth is rarely known. A
number of approaches to validation have been used and
form the basis for published results on registration
accuracy. Much less is published on precision, robust-
ness, and flexibility. Validation is particularly difficult to
devise for non-rigid registration algorithms.

Rigid-Body Registration

Some published studies report using visual compari-
sons of anatomical landmarks relevant to the clinical
application.44,80-82 Despite inter-observer variability,
these techniques have demonstrated the accuracy of
approximately half a voxel in nuclear medicine registra-
tion applications. Other groups have used external fidu-
cial markers to measure the accuracy of registration.25,26

The markers are digitally removed from images so that
they do not influence the registration, but are subse-
quently used to verify the registration accuracy for the
fiducial points. The errors associated with this method
are well documented and an extensive survey, relating to
PET data and high-resolution modalities, has been pub-
lished.25 A similar study for brain SPECT/MR registra-
tion also demonstrated accuracy of about half a SPECT
voxel.26 A summary of reported values for registration
accuracy is given in Table 1. It should be noted that the

Table 1. A Summary of Published Validation Results

Study Modality
Validation

Method
Reported

Accuracy* (mm)

Intra-modality registration
Eberl et al39 SPECT Visual �2.0
Woods et al83 MRI (inter-subject) Consistency �1.0

PET (inter-subject) Consistency �1.5
Lau et al77 MRI (inter-subject) Consistency �1.0
Holden et al86 MRI* Consistency �0.15

Inter-modality registration
West et al24 CT-MRI Fiducials 1.0–2.5

PET-MRI Fiducials 2.0–3.5
Barnden et al25 SPECT-MRI Fiducials 1.2–2.6
Wong et al81 PET-MRI Visual 2.0–3.0
Fitzpatrick et al82 CT-MRI Visual �2.0
Ardekani et al45 PET-MRI Visual 2.0–3.0

*Note that the reported accuracy is measured differently in different studies (eg, fiducial registration error versus target
registration error).
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parameters used to estimate accuracy differ in these
studies: for fiducial markers, the average fiducial regis-
tration error (FRE) is usually quoted instead of the more
appropriate target registration error (TRE; Fig 7). Recent
reports attempt to elucidate these errors.84,85

The consistency approach, which does not rely on
landmark identification or the use of fiducial markers,
requires at least three independent studies (A,B,C; Fig
8). The result of applying two successive transforma-
tions, TAB followed by TBC, is compared with the single
transformation TAC. The difference in results can be
quantified, assumingthat transformation errors are ran-
dom and can be attributed equally to each transforma-

tion.83 This type of consistency approach has been
demonstrated to be very sensitive when applied to high
resolution images.86 Although it has been reported in the
evaluation of rigid-body algorithms, it may be applied
also to assess the accuracy of non-rigid registration
algorithms.

Although most published reports describe automatic
algorithms, some recent studies claim that interactive
algorithms based on external markers are more accu-
rate.87,88 Others have demonstrated that substituting a
matched transmission map for the emission image im-
proves the robustness of PET-CT registration.89 Error
magnitude will depend on the specific application as
well as on the flexibility of the software tested. Difficul-
ties can be encountered in specific nuclear medicine
applications where there may be little information that
can be used by the similarity measure. There are few
published reports on validation of nuclear medicine
registration, despite anecdotal evidence of widespread
use of registration algorithms in nuclear medicine. Fur-
ther work is necessary to optimize automatic methods
and to demonstrate their efficacy.

Non-Rigid Registration

The validation of non-rigid registration algorithms is
difficult because there are rarely any means of direct,
accurate assessment of the true alignment. Validation is
particularly difficult because the extent of non-rigid
misalignment can vary greatly from case to case so that
no single validation model can be expected to apply in
all cases. Although clearly limited, visual assessment has
been successfully applied to validate registration results
qualitatively.90 Quantitative validation results can be
generated with high precision and in different applica-

Fig 7. Estimation of registration errors. The FRE is the average distance between the corresponding fiducial markers in the

reference image (shaded circles) and the floating image (open circles) after registration. Note that FRE may represent the errors on

a bounding box (stereotactic frame) or at the surface of the patient (skin markers). The TRE measures the spatial distance between

corresponding anatomical landmarks (squares) in the two images after registration. Note that TRE is the more clinically relevant

error, provided landmarks are chosen in the area of clinical interest.

Fig 8. Use of consistency to estimate registration errors.

Given three independently acquired images (A,B,C), registra-

tion of A with C can be achieved either by first transforming

A to B (TAB), followed by transformation from B to C (TBC), or

by direct transformation from A to C (TAC). The two transfor-

mations (TABTBC) and TAC should be identical. The residual

difference can be attributed to errors in each of the transfor-

mations.
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tions by means of simulation. Based on independent
clinical data, realistic, usually non-rigid, transformations
are derived and applied to the floating image.48,72 The
algorithm being tested can then be applied, and the
resultant displacement field directly compared with that
obtained by simulation. An extension of this is the
simulation of deformed functional studies based on an
anatomical atlas (Fig 9).91,92 In this case, both the
activity distribution and the non-rigid misalignment can
be modeled on clinical data, with a range of distortions
applied within clinically feasible limits. The technique is
useful in comparing the effectiveness of registration
techniques, although results may be biased toward the
type of clinical data used for simulation. There is scope
for further research in this area.

EFFICACY OF IMAGE REGISTRATION IN
NUCLEAR MEDICINE

Registration software faces considerable challenges in
nuclear medicine. Compared with anatomical images,
nuclear medicine images have a relatively poor resolu-
tion, the data are intrinsically noisy, and the distribution
of activity can be functionally localized providing lim-
ited definition of organs and body boundary. Registra-
tion of nuclear medicine images with anatomical images
must contend with all these differences as well as the

very different intensity distributions arising from the
different properties being mapped in the images. Motion
blurring is a further confounding factor. This imposes
restrictions on the type of registration that can be
performed, particularly in some clinical studies (eg,
studies of the lung acquired with and without breath
holding). The studies that may benefit most from image
registration are characterized by focal tracer uptake with
limited visual clues regarding the anatomical localiza-
tion. Such studies are also particularly difficult to regis-
ter and usually need additional information to further
constrain the registration. Some operator input may be
required to at least define similar volumes to register
(where the fields of view are different) or to constrain
registration to regions where there is reasonable infor-
mation content. Improvement in robustness can be dem-
onstrated when care is taken to define sensible regions.55

There is a need to introduce further constraints to assist
registration, such as identifying specific organs or struc-
tures that can form the basis for an initial “landmark”
alignment or can define a specific type of transformation.
A number of approaches have been suggested, including
the use of a second tracer to define specific features,93

the use of transmission data to define the body outline
and lung boundaries,39,94,95 and incorporation of edge
information96 or tissue labeling.97 Algorithms have been

Fig 9. Modeling SPECT using the Zubal phantom. The pair of clinical images is pre-registered. The high resolution image is first

non-rigidly warped (W) to register with the Zubal phantom CT, and the same transformation is applied to the functional study. The

segmented Zubal phantom is then used in combination with the functional study to create a realistic activity distribution and

attenuation map. These are subsequently used to create a set of projections that incorporate instrument features, such as

distance-dependent resolution. The reconstructed image provides a clinically realistic image perfectly aligned with the Zubal

phantom. The simulated SPECT image can subsequently be distorted to generate a bank of data for validation assessment.
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suggested that permit the incorporation of information
about rigid structures, such as bone, within a non-rigid
registration context.98 Further research should provide
future improvements in this area.

The increasing volume of published work that uses
image registration to illustrate diagnostic features, sug-
gests that the acceptance of software-based image reg-
istration is increasing. Although primarily aimed at
improved diagnostic interpretation, image registration
also has found applications in treatment planning and
interventional procedures. Furthermore, registration is
an important component of fusion algorithms of consid-
erable interest in nuclear medicine, including attenuation

correction,99 motion correction,16-18 partial volume cor-
rection,100-102 and tomographic reconstruction with ana-
tomical image priors.103-106
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