Lateral Ridge Augmentation and Implant Placement: An Experimental Study Evaluating Implant Osseointegration in Different Augmentation Materials in the Canine Mandible

The present study investigated the osseointegration of dental implants with a titanium plasma-sprayed surface (TPS) in regenerated and native bone in an experimental dog study. Initially, lateral bone defects were created in the alveolar ridge on both sides of the mandible. Two months later, lateral ridge augmentation was performed with (1) autogenous corticocancellous block grafts, (2) autogenous corticocancellous block grafts and e-PTFE membrane, (3) tricalcium phosphate particles and e-PTFE membrane, or (4) canine-derived demineralized freeze-dried bone allograft particles and e-PTFE membrane. After 4 months, membranes were removed, and non-submerged titanium implants were placed in regenerated bone (test implants) and in native bone (control implants). Two months later, the animals were sacrificed and non-decalcified orofacial sections were evaluated histometrically. All implants demonstrated high percentages (59% to 75%) of bone-to-implant contact, with no significant differences across the various treatment groups. The different grafting techniques did not significantly influence the location of first bone-to-implant contact and the horizontal bone width at the most coronal bone level. (INT J ORAL MAXILLOFAC IMPLANTS 2001;16:343–354)

Key words: autogenous bone, barrier membrane, demineralized freeze-dried bone allograft, histometry, osseointegration, ridge augmentation, titanium implant, tricalcium phosphate

Tooth restoration using implant-supported prostheses for functional and esthetic rehabilitation has become an established and widely used treatment modality in dentistry. One of the most critical factors in treatment planning is bone volume at the future implant site. The quantity and quality of the bone supply not only influence implant osseointegration, but also affect the shape and contour of the overlying soft tissue and, hence, the esthetic outcome. In addition, prosthetic parameters such as restoration/implant axis and restoration/implant ratio are affected by the quantity and quality of bone at the implant site.

Following the evolution of root-form dental implants, a multitude of surgical techniques have evolved to enhance alveolar bone volume for implant placement. Among these techniques, guided bone regeneration (GBR) has become not only the most extensively studied technique but probably the most popular bone reconstructive procedure in implant dentistry. One major point of differentiation of GBR procedures is the scheduling of bone regeneration in relation to implant placement. In the staged approach, bony site development is performed usually 6 months prior to implant placement, whereas in the simultaneous approach, the bone regeneration
procedure is carried out in conjunction with implant placement. Selection criteria for the appropriate surgical approach include anatomic aspects, such as the size and morphology of the bone defect. Additional and essential issues include primary implant stability and correct implant position and orientation in relation to the prosthetic restoration. With respect to the staged approach, a number of clinical studies have demonstrated that implants placed subsequently into regenerated alveolar bone have excellent long-term results and maintain their peri-implant tissue status. These clinical results were confirmed in an experimental canine study by Buser and colleagues. In 5 dogs, acute through-and-through ridge defects were created in the mandible and immediately covered with expanded polytetrafluoroethylene (e-PTFE) membranes. No bone grafts or substitutes were applied. Following a healing period of 6 months, non-submerged implants were placed. After 3 months of implant healing, some of the implants were restored with fixed prostheses and loaded for 6 months. At the completion of the study, all implants, irrespective of loading status, demonstrated osseointegration with direct bone-to-implant contact. Peri-implant bone parameters did not differ between loaded and unloaded implants. The authors concluded that bone regenerated in membrane-protected defects responded to implant placement in the same way as non-regenerated native bone.

Other factors important in GBR are the achievement of primary soft tissue healing and the type of graft material to be used as a membrane-supporting device to avoid membrane collapse during healing. Though autogenous bone is unequivocally accepted as the gold standard for bone grafting, other filling materials have been successfully used for bone regeneration. The main reasons to avoid the utilization of autografts are as follows: (1) the additional harvesting procedure with possible donor site morbidity, (2) a sometimes limited amount of available bone graft from intraoral sites, and (3) the higher cost and often more complex surgery for extraoral graft donor sites.

Bone regeneration with different grafting materials protected by an e-PTFE membrane was recently analyzed in an experimental study in 12 miniature pigs. The filler materials compared to autogenous bone included a collagen sponge, demineralized freeze-dried bone allograft (DFDBA) (from the tibia of a miniature pig), tricalcium phosphate (TCP) granules, and coral-derived hydroxyapatite granules. Autogenous bone showed the best results in the initial phase of healing (4 weeks), whereas TCP demonstrated 70% new bone formation at the completion of the study (24 weeks), compared to 54% in autografted sites.

Taking into account the findings of the above-mentioned studies, the authors designed the present experimental study to evaluate osseointegration of dental implants placed in bone regenerated with different grafting materials. Implants placed in augmented areas (test implants) were compared to implants placed in non-regenerated, native alveolar bone (control implants).

MATERIALS AND METHODS

Study Design and Time Schedule

Osseointegration of implants placed in regenerated bone in previously created localized bone defects was evaluated in an experimental study employing 3 dogs. Initially, all premolars and the first molar were surgically removed in the mandible (Fig 1), and 2 lat-
eral bone defects were created per side (see below). Two months later, lateral ridge augmentation was performed utilizing 4 different grafting treatments. Four months after augmentation surgery, dental implants were placed into regenerated bone (test implants) and into native bone (control implants). All animals were sacrificed 6 months after ridge augmentation, ie, 2 months after implant placement.

Parallel to this study, another 3 animals underwent the same surgeries except for implant placement. That part of the study evaluated reconstruction of the alveolar ridge using the same grafting techniques. Results have been published in a separate article.11

Animals

Lab-bred American foxhounds were used in this study. At the beginning of the study, these animals were about 2 years old and weighed approximately 30 kg. The study was conducted according to the guidelines of the Department of Laboratory Animal Resources at the University of Texas Health Science Center at San Antonio (UTHSCSA), and the protocol was approved by the Institutional Animal Care and Use Committee.

Surgery

Pre- and postoperative medication and preparatory surgical steps were identical to those reported elsewhere.11 Therefore, only a brief summary is given. All surgical procedures were performed under general anesthesia employing endotracheal intubation. In addition, local anesthesia was administered by infiltration at the respective buccal and lingual aspects of the mandibular ridge. Antibiotics were given postoperatively (benzathine penicillin, procaine penicillin G, and gentamicin).

During the first surgery, all mandibular premolars and first molars, as well as the second and third maxillary premolars, were removed. Immediately afterward, 2 lateral bone defects (14×10×8 mm) were created on each side of the mandible. Two months later, the lateral bone defects were augmented in 4 different ways,11 with random assignment of each grafting condition (Table 1).

Table 1 Randomization of Grafting Techniques by Dog and Mandibular Bone Defect

<table>
<thead>
<tr>
<th>Dog</th>
<th>Mesial defect in right mandible (R1)</th>
<th>Distal defect in right mandible (R2)</th>
<th>Mesial defect in left mandible (L1)</th>
<th>Distal defect in left mandible (L2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dog #2235</td>
<td>DFDBA + membrane</td>
<td>Autograft + membrane</td>
<td>TCP + membrane</td>
<td>Autograft alone</td>
</tr>
<tr>
<td>Dog #240</td>
<td>Autograft alone</td>
<td>TCP + membrane</td>
<td>Autograft + membrane</td>
<td>DFDBA + membrane</td>
</tr>
<tr>
<td>Dog #2633</td>
<td>DFDBA + membrane</td>
<td>Autograft + membrane</td>
<td>TCP + membrane</td>
<td>Autograft alone</td>
</tr>
</tbody>
</table>

DFDBA = demineralized, freeze-dried bone allograft; TCP = tricalcium phosphate.

Site 1: Corticocancellous block graft and bone particles (autograft) without membrane protection

Site 2: Corticocancellous block graft and bone particles (autograft) with e-PTFE membrane

Site 3: Tricalcium phosphate granules (TCP) with e-PTFE membrane

Site 4: Canine DFDBA with e-PTFE membrane

The corticocancellous block grafts were harvested from the site of the previously extracted first molar. The autografts were immediately transplanted to their assigned defect sites and secured with a stabilization screw (Memfix, Institut Straumann AG, Waldenburg, Switzerland). Cancellous bone chips were placed on all sides around and on top of the monocortical block grafts. In each dog, 1 autografted site was subsequently covered with an e-PTFE membrane (GTAM, W.L. Gore, Flagstaff, AZ). The membrane was stabilized with 2 Memfix fixation screws at its buccal base. The third defect was grafted with DFDBA particles processed from canine tibiae (Osteotech, Shrewsbury, NJ). The graft particles measured 250 to 500 µm. The remaining defect was augmented with TCP granules, 0.7 to 1.4 mm (Ceros TCP, Robert Mathys AG, Bettlach, Switzerland), for ridge reconstruction. To prevent membrane collapse, a supporting Memfix screw was inserted into the lingual cortex in the middle of the defects were treated with DFDBA and TCP. Periosteal releasing incisions allowed for tension-free wound closure, which was accomplished with horizontal mattress and interrupted sutures. Sutures were removed 2 weeks postoperatively.

Four months after ridge augmentation, the dogs were scheduled for implant placement. A midcrestal incision with vertical release incisions was made to reflect full mucoperiosteal flaps. The e-PTFE membranes and all fixation and supporting screws were removed. Commerically available implants were placed in augmented sites when bone density and volume were adequate. A single implant was placed in the anterior augmentation site, whereas 1 or 2 implants were placed in the posterior augmentation site. Control implants were placed into native bone either between the 2 augmentation sites.
sites and/or distal to the posterior augmentation site (Fig 2). Two different types of ITI titanium plasma-sprayed dental implants (ITI Dental Implant System, Institut Straumann, Waldenburg, Switzerland) were used: 6-mm hollow-screw implants (HS-6) and 8-mm solid-screw implants (S-8), both with an outer diameter of 4.1 mm. Implants placed at anterior augmentation sites were always HS-6 implants, whereas all other sites received S-8 implants. Implant beds were prepared according to the standard ITI surgical protocol. The implants were placed in a non-submerged technique, with flaps reapproximated around the implants using multiple interrupted sutures. A total of 19 implants were placed (13 test and 6 control) (Table 2).

Oral hygiene procedures, including implant cleansing, were carried out 2 times a week using 0.2% chlorhexidine gel (Plak-Out Gel, Hawe Neos Dental, Biaggio, Switzerland). A soft diet was maintained throughout the study.

Sacrifice
All animals were sacrificed 2 months after implant placement, ie, 6 months after ridge augmentation. Euthanasia was performed with an overdose of pentobarbital sodium 0.2 mL intravenously (65 mg/kg, Euthanasia-5, Henry Schein, Port Washington, NY). Subsequently, the mandibles were block-resected using an oscillating autopsy saw, and the recovered segments were immersed in a solution of 4% formaldehyde combined with 1% calcium chloride prior to histologic preparation.

Histologic and Histometric Analysis
The specimens were prepared for histology as described by Schenk and coworkers. Briefly summarized, non-decalcified specimens were embedded in methyl methacrylate resin and stained with toluidine blue and basic fuchsin. Consecutive orofacial step sections with a thickness of approximately 80 µm, spaced at intervals of about 1 mm, were obtained for histologic and histometric analysis. For each implant site, all sections showing the implant body were evaluated. Histometric quantification was carried out under a light microscope utilizing a high-resolution videocamera coupled to a computer monitor. A morphometry software package (Image Pro Plus, Media Cybernetics, Silver Spring, MD) with image-capturing capabilities was employed to measure the following parameters (Fig 3).

- fBIC = first bone-to-implant contact (mm) measured from the implant shoulder (at ×12.5 magnification)
- HBW = horizontal bone width (mm) at level of first bone-to-implant contact (at ×12.5 magnification)
- BIC = percentage of bone-to-implant contact from first bone-to-implant contact down to where the implant begins to curve at the apical end (at ×31.25 magnification)

All parameters were measured on the buccal and lingual aspects of the implants. Osseointegration was defined according to Brånemark and associates as direct bone-to-implant contact without intervening soft tissues.

<table>
<thead>
<tr>
<th>Table 2</th>
<th>No. of Implants Placed per Treatment Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment</td>
<td>Specimens</td>
</tr>
<tr>
<td>Autograft alone</td>
<td>Test</td>
</tr>
<tr>
<td>Autograft + membrane</td>
<td>Test</td>
</tr>
<tr>
<td>TCP + membrane</td>
<td>Test</td>
</tr>
<tr>
<td>DFDBA + membrane</td>
<td>Test</td>
</tr>
<tr>
<td>Native bone</td>
<td>Control</td>
</tr>
<tr>
<td>Total</td>
<td></td>
</tr>
</tbody>
</table>
Statistical Analysis
The statistical analysis involved comparisons across treatment groups as well as buccal versus lingual. Histometric data were obtained for at least 3 sections taken from each implant site. The data were averaged so that each measure had a single value per implant to be used for statistical analysis. For the comparisons across treatment groups, analysis of variance was performed for each histometric parameter at the buccal and the lingual, as well as the difference between the buccal and lingual measures. When the resulting F tests were statistically significant ($P < .05$), Bonferroni-adjusted unpaired Student t tests (with $P < .05$ considered significant) were performed to identify individual treatment group differences. For each treatment group, the corresponding buccal and lingual histologic measures were compared by paired Student t tests (with $P < .05$ considered significant). Since the small sample sizes had the potential of producing Type II errors, marginally significant results ($P < .10$) involving mean differences greater than 1 mm were also reported.

RESULTS
Clinical Findings
Following ridge augmentation, 2 membrane-covered sites in the same animal showed extended membrane exposures (dog #2240, right posterior site with TCP + membrane and left posterior site with DFDBA + membrane). Three weeks after surgery 2, these exposed membranes were surgically removed. Subsequent wound healing was uneventful. The overall membrane exposure rate was 22% (2 of 9 membrane sites). In surgery 3, implants could be placed at both sites with previous membrane exposure. The number of test implants placed per grafting condition in surgery 3 varied. For instance, no implants could be placed in 2 sites because of severe resorption or loss of the bone grafting material (1 “autograft alone” site and 1 “DFDBA + membrane” site). In contrast, 2 implants instead of a single implant could be placed in 3 sites with exceptionally good bone regeneration (2 “autograft + membrane” sites and 1 “DFDBA + membrane” site). This led to diverging numbers of implants evaluated per grafting group. No implants were lost, and all implants were clinically stable at the completion of the experiment.

Histologic Observations
Experimental Implants in “Autograft Alone” Sites. Only 2 implants had been placed in autografted sites without membrane application. In 1 site, the buccal wall was critically thin but reached the level of the former alveolar crest (Fig 4a). The other site showed an inadequate crestal contour but good reconstruction of the buccal wall (Fig 4b). The grafted bone exhibited good remodeling. However, the periosteal surface showed ongoing osteoclastic resorption (Fig 4c).

Experimental Implants in “TCP with Membrane” Sites. Five implants had been placed into sites regenerated with membrane-protected autografts. All of these sites showed a well-preserved crestal contour with adequate ridge width. All sites demonstrated good buccal bone dimensions, generally reaching the coronal TPS level of the placed implant. The outer surface of the transplanted corticocancellous block grafts usually demonstrated little surface resorption, thus re-establishing the original dimension of the buccal cortex (Figs 5a and 5b). Similarly, the cortical bulk of the block graft had undergone little remodeling, and only a limited number of new Haversian systems were present (Fig 5c). New bone formation was more extensive in the cancellous portion of the graft facing the buccal implant surface and around the block graft where the cancellous chips had been placed.

Experimental Implants in “TCP with Membrane” Sites. Three implants had been placed into regenerated sites using TCP particles with membrane coverage. Two specimens with buccal inclination of the
Figs 4a to 4c Defects treated with corticocancellous block grafts without membrane placement. Undecalcified ground sections surface-stained with toluidine blue and basic fuchsin. The buccal wall of the specimens is always oriented to the right.

Fig 4a Implant placed just coronal to the mental foramen. The unprotected block graft underwent extensive resorption, but the bone-to-implant contact remained intact (magnification ×2).

Fig 4b This specimen shows good reconstruction of the former alveolar width. Most of the corticocancellous graft is preserved, except for the buccocrestal aspect, which underwent active resorption (magnification ×2).

Fig 4c Coronal portion of the autogenous block graft. The implant surface is almost completely covered with newly formed bone, except for a small area with primary contact at the lower thread. The cortical graft underwent quite intense remodeling, with most remodeling units being in the formative stage. Osteoclastic resorption dominates along the full extent of the surface exposed to the periosteum (magnification ×10).

Figs 5a to 5c Defects treated with corticocancellous block grafts and e-PTFE membrane placement. Undecalcified ground sections surface-stained with toluidine blue and basic fuchsin. The buccal wall of the specimens is always oriented to the right.

Fig 5a Worst case of the membrane-protected autograft due to the small size of the block graft. Extensive bone-to-implant contact can be seen on both implant aspects (magnification ×10).

Fig 5b Best case of a membrane-protected corticocancellous autograft, demonstrating full osseointegration of the implant (magnification ×2).

Fig 5c Bony ongrowth has led to extensive contact of this corticocancellous block graft with the implant surface. Most of the grafted compact bone is avascular and devitalized, and remodeling has just started. The smooth periosteal surface indicates that membrane protection has prevented osteoclastic resorption (magnification ×10).
implant axis showed less than adequate bone regeneration buccally, resulting in a critically thin buccal bone plate at the crestal level (Fig 6a). This finding was associated with reduced bone height on the buccal aspect of the implant. One site demonstrated good reconstruction of the buccal bone wall (Fig 6b). Most of the previously grafted TCP particles had been incorporated into bone that had been regenerated since augmentation in the periods before and after implant placement (Fig 6c). Substitution of the graft material was not yet complete.

Experimental Implants in “DFDBA with Membrane” Sites. Three implants had been placed into regenerated bone following osteopromotion by canine DFDBA with membrane coverage. Two sites demonstrated a very thin bony layer on the buccal implant surface (Fig 7a). However, this bone almost always reached the coronal TPS level of the implant. One site showed excellent bone regeneration, with good buccal bone width (Fig 7b). The DFDBA particles were incorporated into newly formed woven and lamellar bone (Fig 7c). However, the density of regenerated bone was low.

Control Implants in “Native Bone” Sites. Six implants had been placed into non-regenerated bone. The buccal bone height almost always reached the coronal TPS level and demonstrated adequate width unless the implant was angulated to the buccal aspect (Fig 8a). Since the cortical bone wall had not been removed at the control sites, normally dense, compact bone was found at both the buccal and lingual implant aspects (Fig 8b). This bone showed characteristic remodeling, with newly formed osteons in the area adjacent to the implant surface (Fig 8c).

Histometric Results

The mean data per treatment group of the 3 histometrically evaluated parameters are listed in Table 3. A summary of the statistical data is given in Table 4.

Analysis of fBIC. Treatment means calculated for first bone-to-implant contact (fBIC) ranged from 3.80 to 4.70 mm (controls, 3.87 mm) for buccal aspects and from 2.67 to 3.98 mm (controls, 3.2 mm) for lingual aspects. The most coronal levels of bone were found in “DFDBA + membrane” sites. A significantly greater lingual fBIC ($P < .05$) was calculated for “autograft alone” sites compared to “DFDBA + membrane,” “autograft + membrane,” and control sites, but no significant difference was observed at “TCP + membrane” sites. The lingual fBIC of “TCP + membrane” was also significantly greater than that of “DFDBA + membrane” sites ($P < .05$). No statistically significant differences were found between buccal and lingual fBICs within any of the treatment groups.
Figs 7a to 7c Defects treated with DFDBA particles and e-PTFE membrane placement. Undecalcified ground sections surface-stained with toluidine blue and basic fuchsin. The buccal wall of the specimens is always oriented to the right.

Fig 7a The buccal wall is thin but reaches the smooth/rough implant border. Extensive bone-to-implant contact is present (magnification ×2).

Fig 7b The buccal wall is remarkably wide. It consists mostly of cancellous bone, confined by a thin cortical layer formed underneath the membrane (magnification ×2).

Fig 7c This case of augmentation with DFDBA particles and membrane protection provided a result comparable to the TCP graft. A somewhat higher magnification (×16) was chosen for easier identification of remnants of DFDBA particles (arrow) that, after incorporation in new bone, underwent recalcification.

Figs 8a to 8c Undecalcified ground sections from non-augmented control sites surface-stained with toluidine blue and basic fuchsin. The buccal wall of the specimens is always oriented to the right.

Fig 8a This control specimen illustrates the asymmetry between the lingual and buccal walls resulting from the buccally angulated implant position. Structure and bone remodeling as well as bone-to-implant contact are identical on both sides of the implant (magnification ×2).

Fig 8b This control implant is in an axial position and supported by almost symmetric lingual and buccal walls, both consisting of compact bone with comparable remodeling activity (magnification ×2).

Fig 8c This part of the buccal wall underwent intense remodeling, a result of the interruption of the blood supply during implantation. Extensive secondary bone-to-implant contact ensures osseointegration. The periosteal surface has not been subjected to osteoclastic resorption (magnification ×12.5).
conditions, but buccal was marginally \((P = .08)\) greater than lingual for “autograft + membrane” sites. **Analysis of HBW.** Treatment means calculated for the horizontal bone width (HBW) measured at the level of the first bone-to-implant contact ranged from 0.32 to 1.22 mm (controls, 1.09 mm) on buccal aspects and from 2.26 to 3.08 mm (controls, 2.1 mm) on lingual aspects. Buccally, “autograft + membrane” sites had the highest mean HBW, whereas lingually, “autograft alone” sites showed the greatest mean HBW. Generally, the mean buccal HBWs were 2 to 7 times smaller than their lingual counterparts when the lingual dimension exceeded 2 mm. However, a significantly smaller buccal HBW \((P < .025)\) compared to the lingual HBW was seen for only “autograft + membrane” and for “DFDBA membrane” sites. Comparisons across the different grafting conditions and control sites revealed no statistically significant differences for mean buccal or lingual HBW measurements.

Analysis of BIC. Treatment means calculated for BIC ranged from 58.8% to 75.0% (controls, 73.7%) on the buccal implant surface and from 65.2% to 76.3% (controls, 76.4%) on the lingual implant surface. Sites treated with TCP and DFDBA had more BIC on the buccal compared to the lingual implant surface, whereas autografted sites (with or without a membrane) and control sites had higher BIC on the lingual surface. A comparison of buccal versus lingual BICs revealed no significant differences across and within the different treatment conditions.

DISCUSSION

The first experimental study evaluating an osteo-promotive technique (subsequently termed guided bone regeneration, or GBR) in conjunction with root-form dental implants was published by Dahlin and coworkers.\(^{14}\) Thirty submerged titanium implants

Table 3 Data of Test and Control Sites (Mean ± SD)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Autograft alone</th>
<th>Autograft + membrane</th>
<th>TCP + membrane</th>
<th>DFDBA + membrane</th>
<th>Control sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>fBIC buccal (mm)</td>
<td>4.62 ± 0.67</td>
<td>3.92 ± 0.84</td>
<td>4.70 ± 1.41</td>
<td>3.80 ± 0.49</td>
<td>3.87 ± 0.86</td>
</tr>
<tr>
<td>fBIC lingual (mm)</td>
<td>3.98 ± 0.15</td>
<td>3.13 ± 0.13</td>
<td>3.46 ± 0.57</td>
<td>2.67 ± 0.37</td>
<td>3.20 ± 0.15</td>
</tr>
<tr>
<td>HBW buccal (mm)</td>
<td>0.85 ± 0.53</td>
<td>1.22 ± 0.64</td>
<td>1.04 ± 0.44</td>
<td>0.32 ± 0.20</td>
<td>1.09 ± 0.76</td>
</tr>
<tr>
<td>HBW lingual (mm)</td>
<td>3.08 ± 1.09</td>
<td>2.63 ± 0.76</td>
<td>2.41 ± 0.84</td>
<td>2.26 ± 0.31</td>
<td>2.10 ± 0.79</td>
</tr>
<tr>
<td>BIC buccal (%)</td>
<td>58.8 ± 19.6</td>
<td>74.1 ± 6.6</td>
<td>75.0 ± 2.5</td>
<td>74.2 ± 11.6</td>
<td>73.7 ± 7.5</td>
</tr>
<tr>
<td>BIC lingual (%)</td>
<td>65.2 ± 17.0</td>
<td>76.3 ± 5.5</td>
<td>66.8 ± 8.6</td>
<td>69.1 ± 19.6</td>
<td>76.4 ± 9.9</td>
</tr>
</tbody>
</table>

fBIC = first bone-to-implant contact measured from implant shoulder, which is placed 2.8 mm coronal to the alveolar crest; HBW = horizontal bone width at fBIC; BIC = bone-to-implant contact along implant surface from fBIC to bottom of implant.

Table 4 Summary of Statistically Significant Differences for Evaluated Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Buccal means compared among groups</th>
<th>Lingual means compared among groups</th>
<th>Buccal compared to lingual means within groups</th>
<th>Difference of buccal and lingual means within groups</th>
</tr>
</thead>
<tbody>
<tr>
<td>fBIC, by grafting technique</td>
<td>F = 0.72, P > .58 No significant differences</td>
<td>Autograft alone > DFDBA/membrane, autograft/membrane, control ((P < .05))</td>
<td>Buccal > lingual for autograft/membrane (marginal, (P = .08))</td>
<td>F = 0.38, P > .81 No significant differences</td>
</tr>
<tr>
<td>HBW, by grafting technique</td>
<td>F = 1.13, P > .38 No significant differences</td>
<td>F = 0.75, P > .57 No significant differences</td>
<td>Lingular > buccal for autograft/membrane and for DFDBA/membrane ((P < .05))</td>
<td>F = 0.57, P > .68 No significant differences</td>
</tr>
<tr>
<td>BIC, by grafting technique</td>
<td>F = 1.33, P > .30 No significant differences</td>
<td>F = 0.78, P > .55 No significant differences</td>
<td>No significant differences ((P > .17))</td>
<td>F = 1.38, P > .28 No significant differences</td>
</tr>
</tbody>
</table>
Control sites were not filled and were left to spon-

gently than regenerated bone away from the implant

firmed after 6, 9, and 15 weeks, respectively. A sig-

ificantly better (P < .0001) bone gain of 99.5% was found for test implants, compared to 66.4% for control implants irrespective of the time of sacrifice. However, no data were reported on direct bone-to-

mplant contact within the regenerated area.

Since that pioneer study, a multitude of animal studies have evaluated different histometric and histomorphometric parameters of peri-implant bone regeneration. Most of these studies have examined the effect of a non-resorbable, bioinert e-PTFE membrane on bone regeneration around partially exposed implant surfaces with simultaneous implant placement. Though it was demonstrated in several experimental studies that the bone-promoting effect of this technique and indication was reproducible, complications such as membrane exposure or membrane collapse were also often reported.15–18

Recently, experimental studies evaluating bone-pro-

motion techniques with simultaneous implant placement have focused on bioabsorbable membranes,19–22 on new bone grafting materials,23–25 or even on the use of biologic mediators.26

The present study investigated the osseointegra-

tion of non-submerged dental implants placed into previously augmented sites. Four grafting tech-

niques employing 3 different bone grafting materi-

als were tested in the canine mandible and com-

pared to native bone. Irrespective of the type of grafting technique, all implants achieved osseointe-

gration during a healing period of 2 months. All implants demonstrated intimate contact of the rough and microporous TPS surface with bone, which in turn showed remodeling and osteons adjacent to the implant surface. Within a specific site, BIC on the buccal aspect (ie, the implant surface contacting regenerated bone) was statistically similar to the BIC on the lingual aspect (ie, the implant surface in contact with the non-regenerated lingual bone) among the 4 tested grafting conditions. Also, no difference was found in comparison to control implants placed in native bone.

In another canine study, Berglundh and Lindhe27 reported lower BIC for implants placed in a staged approach compared to the present study. After extractions in that study, defects in test sites were filled with a demineralized deproteinized bovine bone material; however, no membrane was applied. Control sites were not filled and were left to spon-

taneous healing with a blood clot. Three months later, nonsubmerged implants with a TPS surface were placed (8×3.3-mm ITI dental implants). Follow-

ing a healing period of 4 months, bone-to-

implant contact measured along the entire TPS sur-

face was 44.1% for test implants and 45.8% for control implants. The smaller BIC percentage in that study compared to this study may have resulted from the possibility that the smaller-diameter implants may not have engaged the buccal and lingual cortices and may have contacted only cancel-

lous bone within the previous alveoli.

Bone-to-implant contact may differ when implants are placed in a staged approach compared to a simultaneous approach. The reasons for this are not known but may be related to the number of times the bone is stimulated.28 For instance, implant placement in a staged approach following an osteo-

promotion procedure stimulates bone formation at 2 separate timepoints. In contrast, a single activa-

tion of bone formation occurs when an implant is placed concomitantly with the osteopromotion pro-

cedure. The present study had a triple activation of bone formation, since tooth removal, ridge aug-

mentation, and implant placement were all performed at separate timepoints. In addition, the implants immediately had intimate contact with both previously regenerated and native bone.

Few experimental studies have examined the behavior of regenerated bone around implants prior to loading. Rasmussen and associates29 investigated changes in augmented bone after membrane removal around unloaded dental implants placed in the tibial metaphysis of rabbits. Membranes were removed after 8 weeks of healing, and the implants were followed for 16 more weeks. They reported substantial morphologic changes in membrane-protected newly formed bone. However, fewer dimensional changes were observed for the bone formed adjacent to the implant body compared to bone regenerated at distant areas, indicating that a solid surface may have a stabilizing effect on newly formed bone. Because that study was performed in long bones, it was not known whether a similar finding would occur in jawbone. The present study, however, has demonstrated such a phenomenon. Regenerated bone in direct contact with the buccal implant surface was consistently located more coro-

nally than regenerated bone away from the implant surface. This was observed particularly in “DFDBA + membrane” sites, which had the most coronal fBIC (mean = 3.80 mm). In these sites, the thinnest buccal bone width was found (mean HBW = 0.32 mm). Bone resorption is thought to occur if a critical thickness of bone is not maintained. In the present
study, only “autograft + membrane,” “TCP + membrane,” and control sites demonstrated a mean buccal HBW greater than 1 mm, whereas lingual mean HBWs for all sites were greater than 2.1 mm irrespective of treatment.

Implant position and angulation in the bone may also affect the level of the fBIC, as well as the buccal and lingual width of the crestal bone around implants. However, to the authors’ knowledge, no study has ever investigated such a possible correlation. It must be emphasized that no attempt was made to standardize the angulation and position of implants upon placement in the present study. It was rather a post-experimental observation that the long axis of the placed implants seldom matched the long axis of the alveolar ridge. The inadvertent buccal inclination of many of the evaluated implants may be explained by 2 reasons: (1) placement of implants in intubated dogs lying on their side makes tilting of drills toward the surgeon more likely, and (2) augmentation sites, particularly those with a granular bone grafting material, may demonstrate low resistance on the buccal aspect, facilitating swerving of drills.

Maintenance of a reconstructed alveolar crest is important for the final outcome of any osteopromotion technique. A bone grafting material or a mechanical support are measures attempting to prevent membrane collapse into the defect. In the present study, the membranes covering the sites grafted with TCP- and DFDBA-particles had been supported by a tent pole–like screw anchored in the middle of the defect into the lingual cortex. Nevertheless, partial membrane collapse was observed at surgery 2 around the supporting screw, compromising the amount of the localized ridge augmentation. Possible explanations for this finding might be pressure of the soft tissue onto the membrane during the initial healing period and displacement of loose grafting particles prior to their osseous integration. In contrast to particulate grafting materials, cortico-cancellous block grafts are rigid and provide better biomechanical stability. However, without a barrier membrane or titanium mesh, block grafts may also undergo considerable resorption. The beneficial effect of placing a membrane in conjunction with block autografts was also demonstrated in the present study. Sites treated with membrane-protected autografts showed better mean buccal fBIC and HBW measurements than sites treated with autografts alone. Also, the original contour was more ideally preserved in membrane-protected autografts. The same findings were shown in a pilot study evaluating different bone fillers with or without membrane application for lateral ridge augmentation.11

CONCLUSIONS

The findings in the present study support the following conclusions:

1. Non-submerged implants with a rough titanium surface (TPS) placed into regenerated bone obtained a high percentage of bone-to-implant contact, irrespective of which of 4 different tested grafting techniques was used.
2. No statistically significant differences were calculated for any of the 3 histometrically evaluated parameters (fBIC, HBW, and BIC) on the buccal implant aspect facing regenerated bone among the 4 different grafting conditions and compared to native bone.
3. Based on the BIC results, regeneration of bone using the presented techniques of lateral ridge augmentation resulted in a similar proportion of direct connection between the implant surface and the bone.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the assistance of Britt Hoffmann, Department of Oral Surgery, University of Berne, and Sonja A. Bustamante, HT, and Richard J. Haines, DVM, Clinical Veterinarian, and Dr Haines’ team, Laboratory Animal Resources, all at UTHSCSA. We are also thankful to John D. Schoolfield, Mathematical Consultant at UTHSCSA, for the statistical analysis. The study was funded by grants from the ITI Foundation, Waldenburg, Switzerland; the Foundation for Dental Research and Education (FDR), Waldenburg, Switzerland; and the Dr H C Robert Mathys Foundation, Bettlach, Switzerland.

REFERENCES

