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Biological Space Adaptation to Implant Dimensions
David P. Sarment, DDS, MS1,2/Stephen J. Meraw, DDS, MS1,2

Purpose: Implant osseointegration has been well described, but coronal osseous healing continues to
be investigated because of its impact on esthetic results and long-term maintenance. Although numer-
ous implant diameters and designs exist, little is known about the role of these parameters on sur-
rounding bone. Therefore, this study aimed at elucidating the influence of implant dimensions on cre-
stal bone morphology. Materials and Methods: Sixty Biomet/3i implants (20 standard, 20 wide, and
20 expanded platform [XP]) were randomly placed in posterior quadrants of 5 mongrel dogs. After
healing, exposure of the implants to the oral cavity, and euthanasia of the animals, samples were har-
vested. Histomorphometric measurements were performed to determine the bone cuff height, width,
and angle, and analysis of variance was applied to compare groups. Results: Formation of a peri-
implant cuff was noticed in all implant sites. Mean cuff height was 0.8 mm, 1 mm, and 1.4 mm for
standard, wide, and XP implants, respectively. Mean cuff width was 1.9 mm, 2.1 mm, and 2.8 mm for
standard, wide, and XP implants, respectively. These differences were statistically significant between
wide and XP implants (P = .035), as well as between standard and XP implants (P = .001). Angle did
not differ significantly between implants of different platform widths. Conclusions: Craterization after
placement of healing abutments and a healing period was observed around all implants. Width and
height of the cuff varied significantly with implant diameter and platform design, but the angle formed
with the implant did not vary significantly. INT J ORAL MAXILLOFAC IMPLANTS 2008;23:99–104
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The long-term stability of dental implant osseoin-
tegration has been well described over the past

decades.1–3 The implant interface with the oral cavity
has been under clinical4,5 and histologic6–8 scrutiny
because preservation of this area is important for
long-term maintenance of the restoration.9,10 Fur-
thermore, conservation of the overlying soft tissue
contours is important for esthetic purposes.11 After
exposure to the oral cavity, soft tissue healing around
an implant differs greatly from the attachment
around a natural tooth; it is similar to a scar tissue.12

In addition, the bony crest architecture undergoes
early changes, which have been compared to the

creation of a “biological width” similar to that around
natural teeth.13 The bone crest, even when at the
coronal level at time of surgical placement, is
expected to migrate along the implant axis shortly
after uncovering1,2 until meeting the rough surface. If
the distance from the implant platform to this land-
mark is less than that of a biological width, a variable
dimension that is, on average, approximately 2 mm,
the osseous crest migrates farther until it reaches
such a distance.14,15

The reasons for the formation of a cuff-like archi-
tecture around implants are unclear.16 A comparison
with the biological width around natural teeth is lim-
ited, since the angulated bony architecture adjacent
to dental implants would be considered pathological
in a natural dentition. However, little is known
regarding the horizontal component of the cuff.
Microgap leakage17,18 and mechanical stress19 have
been cited as principal causes for such a reaction. In
particular, it is possible that the crater size may be
dependent upon the diameter of the implant head if
mechanical stress is the main etiology, as has been
suggested by preliminary finite element analysis
studies.20 Therefore, the purpose of this investigation
was to compare osseous healing around implants
with various diameters and head designs.
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MATERIALS AND METHODS

This prospective randomized descriptive experimen-
tal animal study compared the architecture of crestal
bone around 3 Osseotite (Biomet/3i, Palm Beach Gar-
dens, FL) implant types: standard, 3.75 mm diameter;
wide, 5 mm diameter; and expanded platform (XP),
4/5 mm (Figs 1 and 2). Implants of a customized
length (5 mm) were provided for the study.

Preparation of Edentulous Quadrants
General anesthesia was induced in 5 mongrel dogs
via the intravenous administration of 20 mg/kg of
4% thiamylal sodium (Surital; Park Davis, Detroit, MI)
and the subsequent inhalation of 1% halothane
along with a 50% mixture of nitrous oxide and oxy-
gen. The surgical sites were disinfected with povi-
done-iodine (Betadine; Purdue Frederick, Newport,
CT) and local anesthesia was induced with 2% lido-
caine HCl (1:100,000). The second, third, and fourth
premolars and first molars of all 4 quadrants were

extracted bilaterally as atraumatically as possible
using midcoronal facial to lingual sectioning. Follow-
ing odontectomy, alveoloplasty was performed on
the remaining alveolar ridge for improved form and
elimination of bony spicules. Surgical flaps were
reapproximated and closed with 4-0 polyglactin 910
suture ( Vicryl; Johnson & Johnson/Ethicon,
Somerville, NJ). Following surgery, butorphanol (Tor-
bugesic; Aveco, Fort Dodge, IA; 0.2 to 0.4 mg/kg) was
administered intramuscularly every 2 to 5 hours as
needed for postoperative discomfort, and a 300,000
IU/mL preparation of penicillin G benzathine and
penicillin G procaine (Flo-Cillin; Fort Dodge, Fort
Dodge, IA) was administered intramuscularly at a
dose of 1 mL/5–10 kg to reduce potential of infec-
tion. The dogs remained on a soft diet (Science Diet;
Hill’s Pet Nutrition, Topeka, KS) to reduce potential
trauma to the surgical sites. Extraction sites were
allowed to heal for 2 months prior to the second
surgery in order to imitate an intact ridge with pres-
ence of cortical bone.

Fig 1 Surgical site at the time of implant placement, showing random positioning of the 3 implant types. (Left) Implants were positioned
in areas of ample buccolingual bone width with sufficient distance between them to allow for histologic evaluation of adjacent and distant
bone. (Right) At stage 2, implants were uncovered and 2-piece healing abutments were inserted.

Fig 2 Radiographic follow-up of osseous cuff formation (left) at implant uncovering, (center) at 2 months, and (right) at 3 months.
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Implant Placement and Uncovering
General anesthesia and local preparation were iden-
tical to the first surgery. For each quadrant, full-thick-
ness mucoperiosteal flaps were reflected, and
implant surgical sites were prepared in the standard
fashion, with at least 10 mm between them.
Osteotomies and implant placement were per-
formed so that each quadrant received 1 implant of
each type.The mesiodistal positions of implants were
randomly generated prior to the study using soft-
ware (Microsoft Excel; Microsoft, Redmond, WA). After
the placement of cover screws, surgical flaps were
sutured with primary closure. Recovery and postop-
erative care were identical to the first surgery.

After 2 months of healing, full-thickness mucope-
riosteal flaps were elevated to expose the implants.
Cover screws were removed, and standard healing
abutments (5 mm in height and 5 mm in diameter)
were placed. Surgical flaps were positioned and
sutured. After healing, a hygiene regimen consisting of
weekly brushing and visual examination was insti-
tuted for the remaining 3 months to minimize inflam-
mation. Healing abutments were disconnected and
immediately reconnected monthly to imitate pros-
thetic manipulations. Peri-implant osseous maturation
was monitored using standardized radiographs (Fig 3).

Specimen Preparation
Animals were euthanized at 3 months with an over-
dose of sodium pentobarbital (Sleepaway; Fort
Dodge). Specimens were harvested, fixed in 70%
ethanol, and dehydrated with a series of graded alco-
hols and 2-hydroxyethyl methacrylate (GMA). Plastic
infiltration of the specimens was accomplished with
an even mixture of GMA and embedding medium

( Technovit 7200 VLC, Kulzer:EXAKT, Kulzer & Co.
Norderstedt, Germany) followed by repeated immer-
sions in 100% embedding medium. Specimens were
later sectioned with use of a microgrinding system
(EXAKT Apparatebau; Norderstedt, Germany; EXAKT
Medical Instruments, Oklahoma City, OK) until a final
desired thickness of less than 50 µm was obtained.21

Histomorphometric Analysis
Histologic specimens were analyzed under a 100�
objective using a semiautomated computerized tech-
nique with a Leitz Orthoplan microscope interfaced
with an IBM computer and a Bioquant HIPAD digitizer.
Histomorphometric measurements were performed
using Image-Pro Plus software (Media Cybernetics,
Silver Spring, MD; Fig 4). For each implant, mesial and
distal cuffs were defined by detecting a point (w)
where the bone met the osseous crest. The apical
location of the cuff was defined as the first bone-
implant contact (h).Thus, the cuff height (H) was mea-
sured by projecting w on the implant body (wi) and
measuring the distance h-wi; whereas cuff width (W)
was measured from wi to w. The angle � formed by
the angled bone against the implant was measured
by tracing the lines h-wi and h-w (Fig 4).

Statistical Analysis
Power analysis was performed using a randomized
block analysis of variance (ANOVA) to reach a power
of 0.8 and � = 0.05 with a medium effect size of
implant size and a small effect size of implant posi-
tion. All measurements were repeated at 2 time
points by the same trained examiner. Statistical com-
parisons were performed using ANOVA and software
(SPSS 9.0; SPSS, Chicago, IL).

Fig 3 (Left) Histologic specimen of a 4.1-
mm implant utilized for histomorphometric
analysis and adjacent bone showing the
osseous cuff.

Fig 4 (Right) Diagram of histomorphomet-
ric landmarks and measurements. h = most
coronal bone-implant contact; w = intersec-
tion of crestal and cuff bone; wi = projection
of w on implant long axis; H = distance from
h to wi; W = distance from w to wi; � = angle
formed by lines h-wi and h-w.
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RESULTS

Sixty implants were inserted. At stage 2, 6 implants
had not become osseointegrated (1 standard, 2 wide,
and 3 XPs). Four implants were lost in the mandible
and 2 in the maxilla. Formation of a peri-implant cuff
was observed at all implant sites.

Cuff height was not constant between implant
types. For standard implants, it was 0.8 mm (± 0.27

SD), whereas it was 1 mm (± 0.64 SD) for wide
implants and 1.4 mm (± 0.6 SD) for XP implants. The
difference between XP and wide implants was statis-
tically significant (P = .035), as was the difference
between XP and standard implants (P = .001; Fig 5a).

For cuff width, a similar pattern was observed. Cuff
width was 1.9 mm (± 0.56 SD) for standard implants,
2.1 mm (± 0.33 SD) for the wide implants, and 2.8
mm (± 0.56 SD) for XP implants. There were statisti-
cally significant differences between XP and wide
implants (P < .001) and between XP and standard
implants (P < .001; Fig 5b).

Finally, the angle between the implant and the
cuff was similar between implant types. It measured
64 degrees (± 5 SD) for standard implants, 62
degrees (±10 SD) for wide implants, and 59 degrees
(±7 SD) for XP implants. These differences were not
statistically significant (Fig 5c).

DISCUSSION

A stable osseous contour around dental implants is
crucial to maintenance and esthetic purposes, yet
bone remodeling is not well understood. This study
was undertaken to identify any association between
implant dimensions and surrounding bone mor-
phology. Architecture surrounding 3 implant designs
was compared to investigate whether osseous cuff
formation is dependent upon implant shape and
diameter.

The formation of a biological dimension has been
documented using various implant designs and posi-
tions. In a series of publications using an animal
model similar to the one presented in this study, Her-
mann et al demonstrated that bone contacts the
implant where the smooth-rough inter face is
located, or apical to the microgap, if it exists, between
the implant and abutment to imitate the biologic
width occurring around teeth.22,23 The hypothesis is
that bacterial leakage at the microgap interface
causes an inflammatory process which is isolated by
the establishment of a soft tissue barrier. Other
authors have challenged this concept, instead
proposing that crestal mechanical stress is the cause
of the observed remodeling.24 Using rabbit tibiae,
Duyck et al were able to analyze bone in the direc-
tion of applied forces. The present study, however,
only investigated mesial and distal remodeling. It is
possible that observation of the buccolingual dimen-
sion would have yielded further information, since
nonaxial masticatory forces in this direction are sig-
nificant. In addition, buccolingual crest width could
affect peri-implant tissue maturation; the present
study did not examine this variable.
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Figs 5a to 5c Histomorphometric results for (a) cuff height, (b)
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= wide, XP = expanded platform.
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Healing time after implant exposure must be suf-
ficient to allow for tissue maturation. In the present
study, radiographs were obtained during maturation
(Fig 2) to ensure that cuff formation took place after
implant exposure and not at the time of implant
insertion. The 3-month maturation period is consis-
tent with other studies.22,25

In a more recent report,Todescan et al reported on
the placement of various 2-stage standard-size
implants using an animal model.26 The distance from
the platform to the first bone-implant contact was
assessed; additional bone loss was not detected if the
implant was placed deeper in the bone. Thus, early
remodeling did not necessarily cause bone resorption
to the first thread, as previously suggested. The cur-
rent results suggest that other parameters, such as
implant diameter and shape, also influence bone
remodeling.

Customized prosthetic restorations were not fabri-
cated in the present study to obtain similar emergence
profiles and forces on all implants. Although no
occlusal contacts were present, some mechanical load-
ing of the abutments occurred. It has been demon-
strated that biological remodeling around implants
with healing abutments is similar to that around
restored implants.13 However, it is possible that the
presence of prosthetic contacts would have influenced
the amount of force dissipated through the implants.
In addition, the abutment or prosthetic emergence
profile may also influence bone remodeling.27,28

In this study, healing abutments were placed at
stage 2 and then briefly disconnected and recon-
nected every month for 3 months. Disconnection
was carried out to imitate prosthetic impression
making and abutment and crown insertion. It initi-
ates further apical migration of gingival tissues.25

However, immediate connection of healing abut-
ments at stage 1 may have yielded similar results.29

Despite its clinical importance, few studies have
considered the horizontal component of bone loss
around implants as a critical parameter. Duyck et al
studied the surface of the crater while comparing
loading forces on an animal model.24 Crater forma-
tion was only present when excessive transverse
forces were applied, but this hypothesis is not sup-
ported by the results of the present study. Whether
bone remodeling is caused by a biological or
mechanical stress, the horizontal component is most
likely variable, since it is in close proximity with the
implant-abutment junction. The “cuff” may be con-
stant between similar types of implants,16 or it may
vary between implant sizes or when coronal designs
are modified.

Clinical studies using radiographs have also
reported variations in bone crest remodeling width

when comparing implant sizes or types.30 Indeed, a
wider cuff has been reported around wide-diameter
implants.31 Tarnow et al, in a human radiographic
analysis, reported that this dimension is in the range
of 1.3 to 1.4 mm.11 This is consistent with the present
histologic results on standard implants, where an
average width of 1.9 mm was found histologically,
since radiographic measurements may underesti-
mate this dimension due to projections of buccal
and lingual walls.

The present study suggests that there is a ten-
dency of the horizontal distance to increase with a
wider implant or a flared neck. This observation sup-
ports the hypothesis that platform diameter influ-
ences the cuff width. In addition, since a greater api-
cal component of the cuff is also visible with wide or
XP implants, the angle formed between bone and
implant remains constant.

Although the apical position of bone-implant con-
tact has been well documented, the present data
clarify how implant diameter and design may influ-
ence adjoining osseous healing. The precise mecha-
nism for such a difference remains unclear. Implant
surgical site preparation would have likely caused
bone remodeling prior to exposure. However, matu-
ration after stage 2 was observed radiographically. In
addition, a greater mechanical stress at the implant-
abutment junction is unlikely, since forces in this
study were similar on all implants. Greater fluid leak-
age could explain the differences observed. The
design of the implant platform could affect the sur-
rounding bone, regardless of forces or fluid penetra-
tion. In addition, a narrower prosthetic platform
would likely influence remodeling outcome as well.
Further, wider abutments or the presence of a pros-
thesis would have likely influenced force distribution,
as suggested in photoelastic studies.32 Finally, a com-
bination of these factors is also possible. Although
further human trials are necessary to validate the
findings, the clinical implications of the present study
are of importance: implant design may influence cre-
stal bone remodeling, with implications for long-
term maintenance and esthetic outcome.
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