
The International Journal of Oral & Maxillofacial Implants 409

Genetic Susceptibility to Dental Implant Failure:
A Critical Review
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The observation that clinical factors alone do not explain why some patients develop implant loss; the
understanding of the osseointegrated implant failure as a complex, multifactorial process; and the
observed aggregation of repetitive failure in certain individuals raise interesting questions related to
host susceptibility to dental implant failure. Genetic analysis applied to dental implants began in the
late 1990s, and since then, increased interest in genetic susceptibility to the phenotype has been
demonstrated by several studies. These studies, however, have been based on and limited to candi-
date gene association analysis and were intended to find associations between specific alleles and/or
genotypes of genetic markers and susceptibility to implant failure. The aim of this review is to provide
a brief description of the current methodology for genetic analysis of complex traits, followed by a com-
prehensive review of the literature related to genetic susceptibility to dental implant failure and a dis-
cussion of different aspects of the applied methodology. Moreover, a novel approach of genome wide,
case-control analysis is discussed as an alternative method to access genetic influence to dental
implant failure mechanisms. Advances toward the elucidation of the genetic basis of dental implant
loss may contribute to the understanding of why some patients do not respond to currently available
treatments while others do and provide potential targets for effective screening, prevention, and treat-
ment. For example, clinicians might be able to estimate, before the elective surgical procedure, the
risk of a given patient to develop a negative individual host response. INT J ORAL MAXILLOFAC IMPLANTS
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Osseointegrated dental implants are fixtures, com-
monly of titanium, which are surgically screwed

into the jaw bone. After the surgery, a traditional, 2-
step technique requires a healing phase of 90 to 180
days without submitting the implant to mechanical
masticatory forces. Only after the healing phase, the
prosthesis (crown) is attached to the implant and

submitted to occlusal load. In an alternative, 1-step,
immediate-load technique, the healing processes
occur in the presence of masticatory forces. In both
cases, the implant is expected to functionally and
structurally connect to the bone in a process known
as osseointegration.1 The mechanism of osseointe-
gration of dental implants is very similar to primary
bone healing. First, the inflammatory process pro-
moted by surgical trauma causes circulatory alter-
ations and hematoma. Then regeneration takes
place, with the wound being substituted by bone tis-
sue in a remodeling process that leads to wound
maturation.2 Therefore, successful implant osseointe-
gration is likely to depend on factors such as an
appropriate tissue repair mechanism3 and adequate
immunologic response.4

Dental implantation is a very predictable proce-
dure that often provides the best result for dental
replacement of patients who present with missing
teeth.5,6 In spite of a success rate of more than 90%,
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the absolute number of dental implant failures is sig-
nificant given that approximately 1 million proce-
dures are conducted annually worldwide.7 Dental
implant osseointegration failure is a complex, multi-
factorial trait that has been investigated by several
clinical follow-up and retrospective studies.6,8,9 The
process is divided into early and late events: early
failure occurs before implant load, and late failure
takes place after the implant has received occlusal
loading.10 Early failures have been related to smok-
ing,11 aging,12 systemic diseases,13,14 bone quantity
and quality,15–17 surgical trauma,18 and contamina-
tion during the surgical procedure.19,20 Late failures
have been related to peri-implantitis17 and occlusal
overload.21

Although these previous studies have provided an
important contribution to the understanding of the
implant failure process, in some situations, clinical fac-
tors alone do not explain why some patients develop
implant loss.22 Moreover, the occurrence of implant
failures is not randomly distributed in treated popula-
tions; multiple implant losses are likely to occur in
specific high-risk individuals, a phenomenon termed
clusterization,23 and reoccurrence of implant failure is
frequently observed.14,24 Taken together, these obser-
vations strongly suggest the existence of genetic risk
factors for dental implant loss.25

GENETIC ANALYSIS OF COMPLEX TRAITS

Complex traits result from an interaction between 1
or more genetic variants and environmental or non-
genetic risk factors.26 When studying complex traits,
the existence of multiple loci affecting the disorder is
generally expected.27 Classically, the first goal of a
genetic study involving a complex trait is to detect a
genetic component from observational data. This
can be achieved by applying several different strate-
gies, such as the observation of familiar aggregation
of cases or the clusterization phenomenon, in cases
where access to pedigrees is limited. Another power-
ful tool is twin studies, in which the concordance rate
of a trait is estimated and compared among monozy-
gotic and dizygotic twins. Finally, complex segrega-
tion analysis can be used to describe the mode of
inheritance that provides the best fit, given the
observed pedigree data. Unfortunately, none of
these approaches provide information about the
exact nature of the genetic component, such as
number, location, and identity of the genes involved;
therefore, further studies are necessary, typically
involving 2 main strategies: linkage analysis and
association analysis. Fig 1 shows the usual pathway
one might follow from detecting a genetic compo-
nent to the identification of the gene variants
responsible for the studied complex phenotype.

Linkage analysis is a genomic region hunting
technique that traces patterns of cosegregation of
the trait and specific genomic segments in high-risk,
multiple affected pedigrees.28 The goal is to physi-
cally locate a disease-causing gene within the nar-
rowest possible genomic interval. Genes are located
based solely on their position in the genome. Mod-
ern linkage analysis is a powerful approach for study-
ing both mendelian and complex genetic disor-
ders.29 It is suitable for large candidate region
analysis or even genome-wide searches.30,31 Results
are usually expressed as a logarithm of odds (LOD
scores); it is generally accepted that statistical signifi-
cance is reached when the LOD score is higher than
3.0 for candidate region analysis and 3.3 for genome-
wide studies.32,33 The most important limitations of
linkage analysis are (1) the need to enroll multiple
affected pedigrees, which may be difficult to obtain
in cases of rare or late-onset diseases; (2) low power
to detect genes exerting moderate to low effect over
the phenotype34; (3) the difficulty of replication of
positive linkage; and (4) low power to pinpoint the
exact gene/variation causing the linkage effect.35 In
fact, linkage analysis of complex traits often results in
the identification of a genomic region several
megabases long and containing a large number of
genes. In these cases, narrowing down the candidate
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Fig 1 Suggested flow chart combining different strategies for
genetic analysis of complex traits, from the detection of a genetic
component to the identification of the functional gene variants. 
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genomic region is usually attempted through associ-
ation analysis.

Association analysis is based on the comparison
of the allele frequencies of a genetic marker across
affected and unaffected individuals. This can be done
in a family-based or population-based (case-control)
sample. A given allele is considered to be associated
with the disease if that allele occurs at a significantly
higher frequency among affected as compared to
unaffected individuals.36 The strategy is commonly
used for candidate gene analysis, with the candidate
genes usually defined based on their possible role on
disease physiopathology (functional candidates), by
previous linkage analysis (positional candidates), or
both. Association analysis is more powerful than link-
age analysis for the detection of genetic effects with
low to moderate genotypic relative risk.31 However,
since the association effect extends over very short
genomic segments, the strategy is not as suitable as
linkage analysis for large genomic region or
genome-wide screening; several hundreds of thou-
sands of markers would be required for a reliable
genome-wide coverage. In addition, the need of
large sample sizes, small P values, and replication in
independent samples have been advocated as relia-
bility parameters for true association.37 Moreover, in
population-based, case-control studies, patients may
differ from the control group in their genetic back-
ground, introducing variables unrelated to the dis-
ease and causing a type of spurious association or
confounding named population stratification.38,39

Encouraged by the early success in the identifica-
tion of genes responsible for monogenic diseases,
many investigators have embraced different strate-
gies for the dissection of the genetic component
controlling complex diseases.40 For example, a 2-step
study using hypothesis-generating, genome-wide
linkage analysis followed by association-based, fine
mapping of the candidate regions identified has
resulted in the first positional cloning of genetic vari-
ants associated with an infectious disease.41 How-
ever, the knowledge about the genetic mechanisms
controlling complex traits is still fragmented and
incomplete, and little is known about genetic sus-
ceptibility to most physiopathologic processes.4

Genetic Analysis of Dental Implant Failures
Interindividual variability to different phenotypes is
partially determined by the human genetic code.
Specifically, variability is due to the existence of a
large number of polymorphisms, gene sequence
variations with minimum allele frequency higher
than 1% in the population distributed evenly
throughout the entire genome.42 Polymorphisms
have been shown to modulate host response and

susceptibility to numerous diseases.43–46 A polymor-
phism is said to be “functional” if it modulates gene
expression or results in an amino acid change in the
polypeptide chain.45 Alternatively, a polymorphism is
defined as “silent” if no obvious, predictable biologic
impact can be inferred.47 Independent of their func-
tional impact, polymorphisms can be used as gene
markers for genetic analysis, and several cases of
association between functional and silent polymor-
phisms have been observed.

The focus of studies investigating genetic suscep-
tibility to dental implant failure has been limited to
candidate gene association analysis.18,48–51 In this
approach, selected genes are defined as candidates
based on available information about the osseointe-
gration process. Incomplete biologic knowledge of
the involved metabolic pathways, however, limits the
search to a fraction of all the correlated genes. In
these studies, functional polymorphisms, especially
those that modulate the correspondent protein
expression rate, are frequently chosen.

The most commonly studied functional polymor-
phisms for dental implant failure are variations of the
interleukin-1 (IL-1) gene cluster, in particular in the IL-�
(IL1A) and IL-1� (IL1B) genes. Because of IL-1 proin-
flammatory and bone resorbing properties,52,53 a role
has been suggested for this cytokine in controlling the
risk of severe chronic periodontitis development.54

Also, a role for IL-1 in dental implant success was pro-
posed.55 However, evidence for association has been
found between IL1A and IL1B gene polymorphisms
(allele T for both IL1A-889 and IL1B+3953 polymor-
phisms, called “positive genotype”) and periodontal
disease54 but not implant failure.56 A statistically
insignificant evidence of an increased risk to implant
failure in patients with specific IL1A and IL1B geno-
types has been reported for different populations.57,58

Otherwise, in a partially edentulous group treated for
periodontal disease prior to implant treatment, a syn-
ergistic effect between the IL1 positive genotype and
smoking was detected,59 and individuals with these 2
conditions together were characterized as a high-risk
population for implant failure. Moreover, studies com-
paring smoking and nonsmoking groups detected an
increased risk for peri-implant bone loss in a heavy
smoking population with IL1A and IL1B polymor-
phisms during the after-loading phase.18,49,60

Interleukin-2 (IL-2) is a cytokine involved in the B-
cell activation. It stimulates macrophages, natural
killer cells, and T-cell proliferation, which mediate the
cellular immune response; thus, it is regarded as a
proinflammatory cytokine.61–63 Interleukin-2 has
been also implicated in the stimulation of osteoclast
activity in bone resorption.64 Interleukin-6 (IL-6)
plays a role in B-cell differentiation and T-cell prolifer-
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ation.68 It also stimulates hematopoiesis69 and accel-
erates bone resorption.70 In spite of the association
between IL2 and IL6 promoter polymorphisms and
periodontal disease,71,72 no significant differences in
the distribution of those polymorphisms were found
between implant failure and control groups in a
Brazilian population.65

Tumor necrosis factor-� (TNF-�) is a potent medi-
ator of immune-inflammatory response73,74 and also
has been reported to induce bone resorption in vitro
and in vivo.75,76 The TNFA (G-308A) gene polymor-
phism was investigated and showed no association
with early implant failure.48

No association was also found between early
osseointegrated implant failure and polymorphisms
in the transforming growth factor beta-1 (TGF-�1)
gene.51 This last cytokine is a multifunctional protein
known to induce the expression of collagen genes, to
provoke extracellular matrix fibrosis, and to regulate
cell growth, differentiation, and function.77

Matrix metalloproteinases (MMPs) are a family of
metal-dependent proteolytic enzymes which medi-
ate the degradation of extracellular matrix and base-
ment membranes in several tissues.78 MMPs are
likely to be involved in the dental implant osseointe-
gration process.79,80 Polymorphisms that increase
transcriptional activity of MMP-1 and MMP-9 were
analyzed, and allele and genotype frequencies were
compared between the failure and control groups.
Results showed that MMP1 polymorphisms were
associated with implant failure, while no association
with implant loss was found for the MMP9 promoter
region polymorphism.50

Polymorphisms in genes involved in bone metab-
olism have also been investigated. A polymorphism
in the bone morphogenetic protein-4 (BMP-4) gene
was associated with marginal bone loss before sec-
ond-stage surgery (implant loading).66 A positive
correlation was also observed between a calcitonin
receptor (CTR) gene polymorphism and marginal

Table 1 A Summary of Association Studies Between Genetic Polymorphisms and Osseointegrated Dental
Implant Failures in Different Populations

Case (n)/ Mean age Smoking 
Authors Year Polymorphisms Control (n) (y) Yes/No Population Results

Rogers et al56 2002 IL1A (-889) and 19/31 66 ? Australian Not associated with 
IL1B (+3953) Caucasian implant failure

Wilson and Nunn58 1999 IL1A (-889) and 27/38 57 27/35 ? Not associated with 
IL1B (+3953) implant failure

Campos et al57 2005b IL1A (-889), IL1B 28/34 47.5 0/62 Brazilian Not associated with early 
(-511, +3953),  implant failure
and IL1RN (intron 
2 - 86 bp repeats)

Feloutzis et al60 2003 IL1A (+4845) and ? 59.5 41/39 European Smoking + IL1 positive 
IL1B (+3954) Caucasian genotype associated with 

marginal bone loss
Gruica et al18 2004 IL1A (+4845) and 34/146 * 53/127 European Smoking + IL1 positive 

IL1B (+3954) Caucasian genotype associated with 
late infection

Jansson et al59 2005 IL1A (-889) 6/16 54 10/12 European Smoking + IL1 positive 
IL1B (+3954) Caucasian genotype associated with

implant loss
Shimpuku et al49 2003b IL1A (-889) and 17/22 55.1 14/25 Japanese Associated with marginal 

IL1B (-511, +3954) bone loss
Campos et al65 2005a IL2 (-330) and 34/40 46.3 0/74 Brazilian Not associated with early 

IL6 (-174) implant failure
Campos et al48 2004 TNFA (-308) 28/38 47.2 0/66 Brazilian Not associated with early 

implant failure
Santos et al51 2004a TGFB1 (-509, -800) 28/40 46 0/68 Brazilian Not associated with early 

implant failure
Santos et al50 2004b MMP1 (-1607) and 20/26 45.9 0/46 Brazilian MMP1 -  associated, and

MMP9 (-1562) MMP9 - not associated with 
implant failure

Shimpuku et al66 2003a BMP4 (+538) 21/36 52.6 24/38 Japanese Associated with marginal 
bone loss

Nosaka et al67 2002 CTR (+1377) 15/20 54.8 15/20 Japanese Associated with marginal 
bone loss in mandible, 
but not in maxilla

*Age range, 25 to 90 years; ? means data unknown. 
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bone loss at second-stage surgery.67 A summary of
studies investigating the association between
genetic polymorphisms and osseointegrated dental
implant failure in different populations is shown in
Table 1. The functional impact of the polymorphisms
investigated for susceptibility to implant failure is
shown in Table 2.

Despite these promising advances, the exact
number, identity, and role of regulatory factors that
lead to a successful implant osseointegration and its
maintenance are still largely unknown, which limits
genetic analysis approaches based on functional
candidate genes. The challenge then is to map all the
involved genes,40 a considerably difficult task given
that the human genome is composed of 22 pairs of
autosomal chromosomes and 1 pair of sexual chro-
mosomes carrying at least 30,000 genes.92

FUTURE PERSPECTIVES

Although candidate gene association analysis has
proved to be a promising tool for the dissection of
the exact nature of the genetic component control-
ling dental implant failure, the design is limited by
the fact that just a small segment of the genome is
analyzed. Candidate gene approach is limited in pro-
viding a genome-wide perspective on interesting
gene regions and gene-to-gene interactions. In addi-
tion, the sample sizes are often small; therefore, find-
ings must be replicated in larger populations. Finally,
larger-scale studies, such as genome-wide linkage
analysis, are made difficult by the need of large sam-
ples of multiple affected pedigrees. As a conse-
quence, genetic susceptibility to osseointegrated
implant failure remains widely unknown.

All the studies mentioned thus far employed single-

nucleotide polymorphisms (SNPs) as gene markers.
SNPs are the most frequently observed type of
genetic polymorphisms. Catalogued SNPs in public
databases have grown from 1.4 million in 199993 to
2.1 million in 200194 and up to approximately 4.1 mil-
lion markers available in SNP public databases
today.95 Though somewhat less informative than
other types of DNA markers, SNPs are technically eas-
ier and less expensive to genotype. As a recent devel-
opment, DNA microarrays are a new, fully automated
technology that allows genotyping hundreds of
thousands of SNPs in a single experiment.96 This new,
extremely high throughput SNP genotyping technol-
ogy is making possible, for the first time, the develop-
ment of association-based genome-wide scans using
case-control samples to investigate genes related to
complex traits such as Parkinson disease.97 These
whole-genome association studies, using hundreds
of thousands of SNPs covering the entire genome,
combine the best features of linkage analysis with
the strength of association analysis.98 In this new
approach, classic, family-based linkage analysis
would not be necessary, making it possible to study
population samples of unrelated subjects. This fea-
ture is particularly interesting in the context of den-
tal implant failure, where the difficulty of enrolling
multiple-case families poses a major obstacle for the
application of family-based linkage tools.

However, some limitations exist. Association-
based genome-wide studies are still very expensive
and are limited to laboratories equipped with cut-
ting-edge genotyping technology.99 Also, as men-
tioned already, population-based association analy-
ses always involve the risk of cryptic, undetected
population stratification leading to spurious results.
Finally, the generation of such a tremendous amount
of raw data demands the development of adequate

Table 2 Functional Impact of the Polymorphisms Investigated for Susceptibility to Implant Failure

Authors Year Polymorphisms Functional Type of Functionality

Dominici et al81 2002 IL1A (C-889T) Yes Regulation of gene expression
Cox et al82 1998 IL1A (G+4845T) - 99% linkage disequilibrium with IL1A (-889)
Pociot et al83 1992 IL1B (C+3953/4T) Yes Regulation of gene expression 
Hu et al84 2005 IL1RN (inton 2 to Yes Regulation of gene expression

86 bp repeats)
Hoffmann et al85 2001 IL2 (T-330G) Yes Regulation of gene expression
Fishman et al86 1998 IL6 (G-174C) Yes Regulation of gene expression
Hajeer and Hutchinson87 2001 TNFA (G-308A) Yes Regulation of gene expression
Kim et al77 1989 TGFB1 (C-509T) Yes Regulation of gene expression
Kim et al77 1989 TGFB1 (G-800A) Yes Regulation of gene expression
Rutter et al88 1998 MMP1 (G-1607GG) Yes Regulation of gene expression
Zhang et al89 1999 MMP9 (C-1562T) Yes Regulation of gene expression
Mangino et al90 1999 BMP4 (T+538C) Yes Amino acid change Val147Ala
Nakamura et al91 1997 CTR (C+1377T) Yes Amino acid change Pro463Leu
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methods of statistical analysis.38 Furthermore, due to
the large number of tests performed, false-positive
results are likely to increase.89 In this context, replica-
tion of the original findings in independent popula-
tions becomes mandatory.90

Despite the difficulties, the motivation to continue
to apply traditional and new approaches of genetic
analysis to the effort toward a better understanding
of dental implant failure mechanisms is clear. Genetic
studies may shed new light not only upon the phys-
iopathology of dental implant failure but also upon
broader, related processes, such as bone healing. In
addition, a direct result of such studies may be the
definition of potential targets for effective screening,
prevention, and maintenance of dental implants.
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