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An In Vitro Load Evaluation of a Conical Implant 
System with 2 Abutment Designs and 

3 Different Retaining-Screw Alloys
Christian Erneklint, DT1/Per Ödman, LDS, Odont Dr2/Ulf Örtengren, LDS, Odont Dr3/

Stig Karlsson, LDS, Odont Dr4

Purpose: The aim of this in vitro study was to evaluate the load resistance in a conical implant system
by comparing combinations of 2 different abutment head angles and 3 different retaining screw mate-
rials. Materials and Methods: The retaining screw materials (titanium alloy, gold alloy, and commer-
cially pure titanium) were tested with abutment-head angles of 20 degrees and 45 degrees. Six groups
of 10 specimens each were prepared. An oblique (30-degree) compression test was performed in a
Lloyd LRX universal testing machine with the abutment attached to a superstructure with a retaining
screw. All specimens were loaded until fracture or permanent deformation occurred. The results were
evaluated statistically with Wilcoxon signed rank test for variance distribution (P < .05 considered sig-
nificant). Results: There were statistically significant differences in load resistance between 20-degree
and 45-degree abutments. The titanium screws (titanium alloy and commercially pure) in the 45-
degree abutment group had almost equal mean values, while the gold alloy had a significantly lower
value. In the 20-degree abutment group, significantly higher values were found with commercially pure
titanium compared to titanium alloy and gold alloy, but the difference between the values for the gold
and titanium alloys was not significant. Discussion: The angulation of the abutment head played the
most significant role in determining the amount of load withstood, but the material used for the screw
was also relevant. Conclusion: A 45-degree abutment can be combined with a retaining screw of any
of these materials to create a functional implant system. The test also substantiated that, irrespective
of the retaining-screw material, a 20-degree abutment could resist loading forces of at least 900 N. INT
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Mechanical failures of oral implants are most
often related to undiagnosed unfavorable mas-

ticatory forces and/or incorrect choice of implant
components and dimensions.1–5 Metals still remain
the predominant material used for oral implants, pri-

marily because they allow biocompatibility, slender
design with adequate strength, and intraoperative
adjustment of shape.5–8 This last feature is often seen
as an advantage in loading situations for which no
standard design can be adopted; for example, in
patients developing abnormally high bite forces.1

However, choosing an implant (ie, deciding on the
material, components, and design) can be difficult
when no “treatment planning tools” are available.6

The matter is further complicated because the load
and stress distribution in both the bone and the
implant components must be considered.9 Similarly,
the connection between the superstructure and
abutment requires consideration.10,11

Biological integrity is still, however, the predomi-
nant research topic in implant dentistry and the prin-
cipal explanation for high survival rates. However,
mechanical problems may also exist, primarily con-
cerning the design principles used to produce an
implant, the interaction between the different parts
of the implant, and the connection between the
implant and the superstructure.2,3,5,7,12–18 In practice,
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this means that the prosthesis should be given maxi-
mum support in both vertical and horizontal direc-
tion to ensure rigidity. At the same time it is prefer-
able to have a mechanism that protects the implant
from overload.19 These opposing requirements can
be difficult to balance using an inflexible Astra
implant system with absolute rigidity on the conical
abutment heads. Several retaining-screw material
alternatives must therefore be available to compen-
sate for the abutment head angle and provide
resilience under stress.17 This involves, among other
things, theoretical understanding of the component
performance.20 To facilitate the choice among these
options, more knowledge of the mechanical and
functional behavior of these components, including
design, dimension, and material composition would
be desirable. The aim of this study was therefore to
evaluate the load resistance in a conical implant sys-
tem with 2 different abutment designs and three dif-
ferent retaining screw materials.

MATERIALS AND METHODS

The 20-degree and 45-degree Uni Abutments (Astra
Tech, Mölndal, Sweden) were tested together with 3
retaining screw materials (Fig 1). A hemispherical
superstructure in a high precious gold alloy M3 con-
forming to ISO 1562 (KAR/Sjödings Kista, Sweden)
was manually tightened to the abutment with the
screw to 10 Ncm with a torque wrench. The 3 screw
materials were solid commercially pure titanium
(cpTi; grade 2), an experimental nonoxidation (no-ox)
gold clasp alloy, and a titanium alloy (Ti-6Al-4V). The
hemispherical superstructure design was described
in a draft standard ISO/CD 14801 with a diameter of 8
mm and height of 6 mm. Sixty-one bulb-shaped spec-
imens were produced with gold cylinders (semi-burn-
out) incorporated in the center of the plane surface

with a centric thread for the screw through the body.
The lost wax technique was used together with a cen-
trifugal casting procedure using a Degussa apparatus
(Hanau, Germany). After casting, the bulb-shaped
specimens were sandblasted with 110 µm Al2O3,
except for the gold cylinder surface. Superstructure
processing and assembly of the implant sections
were undertaken at a dental laboratory. The other
standard components were supplied from Astra Tech
routine stock, except for the gold-alloy retaining
screws, which were produced by KAR/Sjödings.

The specimens were subjected to an oblique com-
pressive test in which a linearly increasing compres-
sive force was applied from a flat surface at an angle
of 30 degrees to the long axis of the implant. The
abutments were gripped around their major cylin-
dric diameters in a horizontally split metal clamping
block (Fig 2). The test was performed in a water tank
to simulate a frictional oral environment. The
crosshead of the Lloyds machine (Lloyd Instruments,
Fareham, England; Fig 3) advanced at a speed of 0.5
mm/min until failure occurred. Failure was defined as
(1) a 3-mm deflection downward from the abut-
ment’s long axis, (2) achievement of the maximum
load value (2,000 N), or (3) component breakdown.
All 3 were detected by a load dip sensor in the test
machine. The load geometry imposed a bending
moment M (N), given by the formula M = F � L,
where L was the lever arm length (in cm) perpendic-
ular to the force F measured by the load cell. Alto-
gether 5 groups of 10 specimens each (and 1 group
with 11 specimens) ( Table 1) were prepared and
compared crosswise, in combinations of the 2 conical
designs and 3 different screw materials. The results
were evaluated statistically using the Wilcoxon
signed rank test for variance distribution (P < .05).

RESULTS

The commercially pure titanium and titanium-alloy
retaining screws in the 45-degree abutment group
had almost identical mean values; both withstood
significantly higher loads than the gold-alloy retain-
ing screws (P < .033 and P < .008). For the 20-degree
abutment, the 2 types of titanium screws showed
significantly different failure loads (P < .037). In the
20-degree group the commercially pure titanium
retaining-screw assemblies also withstood signifi-
cantly greater loads than the gold alloy assemblies (P
< .002), but no significant difference was found
between the gold alloy and the titanium-alloy retain-
ing screws (P < .045). The highest group average
(1570 N) and individual value (1821 N [SD 257]) were
found in assemblies with a commercially pure tita-
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Fig 1 The shape of the abutments tested. The shape of the
retaining screw, exaggerated, is also shown.
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nium screw on a 20-degree conical head. The 45-
degree abutment assemblies with gold screws
demonstrated the lowest mean value (456 N [SD 48])
and the lowest individual value (366 N). A visual
examination concluded that failure of all the 45-
degree assemblies had occurred by complete trans-
verse fracture of the threaded shank of the abutment
screws between the abutment top and the gold
cylinder (Fig 4), while the 20-degree group generally
had deformed abutments, superstructures, and
retaining screws (Fig 5), with just 3 fractures.

DISCUSSION

The 3 groups with a 20-degree top angle could with-
stand much larger loads (ie, 2 to 3 times greater) than
the assemblies with 45-degree abutments. The differ-
ence was substantiated by the visual examination of
the failure mode. The permanent deformation of a
20-degree abutment may complicate the replace-
ment of prosthetic and/or abutment components,
while a fractured 45-degree abutment is more easily
retrieved and replaced with a new one. This deforma-
tion is a consequence of the exposure of the protec-
tive 20-degree abutment head to the 30-degree
force.14 The present study indicated that the head
angle of the conical abutment plays an important
role in load resistance. This in vitro test represented a
theoretical worst-case scenario, simulating a clinical
situation with an unfavorable load to the abutment.
Therefore, a critical limit for maximum bite-forces
was estimated and set to 680 N in accordance with
earlier studies.21–27 The highest individual and group
mean values were found among the commercially
pure titanium screws and 20-degree abutments. The
lowest mean values were seen with gold alloy screws
and the 45-degree abutments; the lowest individual
value was also recorded for this combination.

Within the 45-degree abutment groups, all 3 screw
metals fractured at approximately 500 N under oblique
compression load (Table 1 and Fig 6). This was below
the critical load limit for hazardous masticatory forces
and in accordance with the fail-safe philosophy.28 This
is also in accordance with the Brånemark System,
where a gold alloy screw is the main factor in the fail-
safe mechanism.29,30 The low-angle (45-degree) conical
abutment uses the same principle: a weak link, in this
case the retaining-screw material, is included in a pas-
sive-fit system, where rigidity combined with bruxism
might cause breakdown of the surrounding bone and
damage to the components.2,11,31–33

All retaining screws in the 20-degree abutment
group withstood 680 N of force, and not until 940 N
was reached did a critical deformation occur in 1 of
the test specimens. This high load value makes the
20-degree abutment less suitable for clinical applica-
tions in which the retaining screw must be capable
of fracturing like the 45-degree abutment, which did
not deform elastically. As stated earlier, the high val-
ues withstood can mainly be explained by the angle
of the abutment.17 Another difference between the
20-degree and 45-degree abutments was that in the

Fig 2 The test appparatus with the test specimen at a 30-
degree angle. The arrow indicates the load direction. 

Fig 3 Crosshead design with a rounded edge of 1 mm in diameter.

Table 1 Mean Maximum Load Values for All
Groups 

Mean (N) SD SE

20-degree angulation
Titanium alloy 1327 150 47
Gold alloy 1280 115 35
Commercially pure titanium 1570 257 81

45-degree angulation
Titanium alloy 528 58 18
Gold alloy 456 48 15
Commercially pure titanium 529 51 16
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20-degree group, the assemblies with pure titanium
screws were significantly stronger than those with
the other 2 screw metals. Whether this high value is
of clinical relevance is difficult to say, but the present
study demonstrated that screw material has a
greater effect when the conical taper is steeper.34

This suggests that the properties of the screws influ-
ence the system mechanics more in this protected
load situation than in an unprotected situation with
a more flat abutment head design and that the prop-
erties (specifically, the elasticity modulus) of the
material used are crucial. Yet the main difference
between the 2 abutment systems was the mean
force withstood (450 to 530 N for 45-degree abut-
ments compared with 1280 to 1570 N for the 20-
degree assemblies). In vivo, such heavy masticatory
loads would break the 45-degree abutment and
related components, while the 20-degree assem-
blage might resist much greater load and protect the

screw from fracture but at the same time expose the
bone tissue to potential damage.The large difference
in mean force withstood shows the different
mechanics of the 2 designs. The 45-degree taper
transmits bending forces onto the retaining screw,
inducing fracture under excessive loading. The 20-
degree taper withstands bending forces with the sur-
face of the taper, protects the retaining screw from
fracture, and transmits the load to the implant and
surrounding bone tissue.

The present study uses a simplified model. How-
ever, the results indicate that the Astra system may
be too strong under specific circumstances, and that
the implant could fracture under heavy masticatory
forces if the dimension, table width, height, and
depth of the joint were unfavorable.14,18,35 Although
implant fracture is rather rare, it is occasionally
reported4,5,8,35–37 together with excessive occlusal
forces in the molar region.38 These circumstances,
combined with a rigid coupling (20 degrees), most
likely increase the risk of exceeding the physical limit
for the implant and causing a fracture.

More research, both experimental and clinical, is
necessary to evaluate an optimal top angle under
varying conditions. The UniAbutment system gener-
ally uses more than 1 implant element that might
lead to deviating stress distribution and conduction
of the forces into other loading areas; the number of
options available makes load evaluation complex.39,40

Therefore, the current in vitro results and observa-
tions are to be regarded as complementary to clinical
experience, and further investigations are needed.

CONCLUSION

1. A steep-angle taper connection (20 degrees) with-
stood nonaxial forces to a greater extent than a 45-
degree taper, regardless of retaining-screw material.

Fig 4 Typical failed specimen from the 45-degree abutment
group.

Fig 5 Typical failed specimen from the 20-degree abutment
group.
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Fig 6 Distribution plot of maximum force by groups (outliers
and extreme values excluded).
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2. Differences in retaining-screw material are more
obvious in a 20-degree taper abutment construc-
tions but not insignificant in a 45-degree situation.

3. The 45-degree taper construction failed under
oblique loads between 450 and 530 N, which
might be suitable for overload protection of
implants.

4. Finally, abutment taper angles are more impor-
tant than retaining-screw material in determining
assembly strength.
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