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Controlled Release of Fibroblast Growth Factor 2
Stimulates Bone Healing in an Animal Model of 

Diabetes Mellitus
Ronaldo B. Santana, DDS, MScD, DSc1/Philip C. Trackman, PhD2

Purpose: Bone formation and the healing of calvarial defects in mice is diminished in chemically
induced type 1 diabetes. The present study investigated whether controlled local release of fibroblast
growth factor 2 (FGF-2) stimulates bone defect healing in this model of diabetes. Materials and Meth-
ods: First, in vitro release kinetics of different doses of recombinant human FGF-2 (rhFGF-2) from
polyglycolate:polylactide membranes was determined over a 14-day period by incubating loaded mem-
branes in PBS with constant shaking. The amount of FGF-2 was measured by enzyme-linked
immunosorbent assay. Then, the effects of rhFGF-2–loaded and control membranes on calvarial
defect healing over a 14-day healing period were determined in diabetic and nondiabetic mice. The
degree of healing was determined by histomorphometric analyses of bone area percentage and by
area measurements. The significance of the data was determined by statistical analyses, including
analysis of variance.  Results: Kinetic release data in vitro showed that membranes loaded with 5 µg
FGF-2 released measurable levels of growth factor for more than 14 days. Data from the in vivo study
supported the previous finding that diabetes inhibits bone formation. Membranes containing rhFGF-2
significantly (P < .05) stimulated bone formation in diabetic animals to near normal levels during the
healing period. Conclusion: FGF-2–loaded membranes may be useful in further studies aimed at
developing therapeutic strategies for correcting deficient bone healing in patients with diabetes. (More
than 50 references) INT J ORAL MAXILLOFAC IMPLANTS 2006;21:711–718
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Osseointegration represents a direct connection
between bone and implant without interposed

soft tissue layers1 and is a fundamental prerequisite
for long-term survival of dental implants.2 Inade-
quate amounts of bone at the time of implantation
have been associated with decreased success rates.3

Methods to increase host bone volume have been
developed to obtain a larger area of bone-to-implant
contact. Osteopromotion via guided bone regenera-
tion (GBR) involves the creation of a protected envi-
ronment for the blood clot and competent regenera-
tive cells. A physical barrier is placed between the
soft tissues of the gingival flap and the osseous

defect to form a protected environment for regener-
ation.4–8 The goals of the procedure are to improve
bone healing, bring about complete bone restitu-
tion, improve bone grafting results, and create new
bone (bone neogenesis).9 GBR has been used clini-
cally for the treatment of a variety of intraoral bone
deformities, including periodontal defects,10–13

extraction site bone defects,14,15 and defects around
implants16,17 and in conjunction with other types of
oral surgeries.18–22 Barrier membranes used in these
GBR techniques should possess tissue integration
capacity, cell occlusion properties, clinical manage-
ability, space-making ability, and biocompatibility.23

The membrane, however, acts as a passive element in
bone regeneration and does not possess an active
stimulatory effect on osteogenesis. Thus, the effec-
tiveness of GBR is dependent on the intrinsic healing
potential of the host.

Osteopenia is a complication of type 1 diabetes in
humans.24 Decreased bone mineral content25,26 and
delayed fracture healing27 are common in type 1 dia-
betes. In addition, reduced osteoblastic activity occurs
in humans and in animal models of type 1 dia-
betes.28–32 Osteopenia is likely to result in diminished
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bone formation, and studies have demonstrated
diminished bone formation in experimental bone
defects33 as well as delayed bone regeneration in
extraction sockets34 and inhibited osseointegration of
implants in type 1 diabetic animals.35 Such negative
effects of diabetes on bone metabolism may influence
normal as well as GBR-mediated bone regeneration.

Fibroblast growth factors (FGFs) play important
roles in morphogenesis and wound healing36 and are
potent stimulators of osteoblastic proliferation in
vitro.37 FGF-2 regulates extracellular matrix produc-
tion by osteoblastic cells in vitro.38–40 FGFs systemi-
cally administered in vivo have increased endosteal
bone formation in rats.41,42 The goal of the current
study was to assess whether the controlled local
application of recombinant human FGF-2 (rhFGF-2)
from an absorbable GBR membrane restores
intramembranous bone healing to normal levels in an
animal model of type 1 diabetes.

MATERIALS AND METHODS

The FGF-2 delivery system was first prepared. The sys-
tem chosen for rhFGF-2 delivery was a polylactide:
polyglycolide copolymer kit (Atrisorb; Atrix Laborato-
ries, Fort Collins, CO). This kit consists of polymer,
polymerization buffer, a plastic molding device con-
taining 2 opposite Porex pads (Porex, Fairburn, GA),
and plastic spacers and permits preparation of
resorbable membranes of 0.8 mm in thickness. A
stock solution of rhFGF-2 (Chemicon, Temecula, CA)
in phosphate buffer solution (PBS) was prepared, and
either 2 or 5 µg of rhFGF-2 in a final volume of 5 µL
were applied to about 35 µL of the liquid polymer
solution on a 5 � 5-mm area (limited by the plastic
spacers) of the hydrated Porex pads of the Atrisorb
molding device. After closure, the device polymerized
the liquid polymer solution into a uniform layer that
was 0.8 mm thick. After 4 minutes, the polymerized
membrane was removed, and limited excess was
trimmed so that the membrane was 5 � 5 � 0.8 mm.
Control membranes were prepared the same way,
except that vehicle (5 µL PBS without FGF-2) was
applied to the polymer mixture.

Release kinetics of rhFGF-2 in vitro was then deter-
mined. Four membranes containing either 2 or 5 µg of
rhFGF-2 were prepared. After polymerization, the
membranes were individually incubated with con-
stant shaking at 32 rpm in 3 mL of PBS at 37°C for 14
days in closed borosilicate glass tubes. The solutions
were collected and changed on days 1, 2, 3, 5, 7, and
14. Aliquots of the collected solutions were diluted
1:15 and assayed in triplicate with a competitive
enzyme-linked immunosorbent assay (ELISA) system

(Millipore/Chemicon, Billerica, MA); the valid range of
this assay for FGF-2 is 0.5 ng/mL to 500 ng/mL. Data
were expressed as total FGF-2 released ± SD.

Diabetic and nondiabetic control mice were then
prepared. Sixteen diabetic and sixteen control animals
were used.All procedures involving mice were approved
by Boston University Institutional Animal Care and Use
Committee and performed as described in a previous
publication.33 Diabetes was experimentally induced in
16 male 8-week-old test animals via 5 daily low-dose
intraperitoneal (IP) injections of streptozotocin using a
dose of 40 mg/kg body weight.43 The first day of injec-
tion was designated experimental day zero. Normal con-
trols received IP injections of the solvent alone (10
mmol/L sodium citrate, pH 4.0).44 The diabetic condition
was confirmed. Glucose levels were determined in the
whole blood or serum twice weekly (Accu-Check Advan-
tage; Roche Diagnostics, Indianapolis, Indiana, and Glu-
cose Trinder; Sigma Diagnostics, St. Louis, MO). Glucose
and ketone (acetoacetic acid) levels were evaluated in
the urine (Bayer Multisix 10SG reagent strips for urinaly-
sis; Bayer Diagnostics, Tarrytown, NY). Glycated hemo-
globin was quantified in whole blood at sacrifice (Glyc-
Affin Isolab,Akron,OH).

Surgical procedures were performed 7 days follow-
ing confirmation of onset of diabetes, on experimen-
tal day 19. Animals were anesthetized by IP injection
of 0.12 mL/100 g body weight of 62.5 mg/mL keta-
mine hydrochloride (Ketalar; Parke Davis, Ann Arbor,
MI) and 6.25 mg/mL of xylazine (Rompum; Mobay,
Pittsburgh, PA), in 0.5 mol/L sodium chloride (NaCl).
The animals’ heads were shaved and scalps were
washed with 1% iodine. Circular craniotomy defects
1.6 mm in diameter were prepared in the parietal
bones with cylindric carbide burs at slow speed under
constant saline irrigation. The membrane, loaded with
5 µg of rhFGF-2, was applied with the surface contain-
ing the growth factor facing the bone defect (n = 5).
In a second group of animals, the defects were treated
with membranes without rhFGF-2 (n = 5), and a third
group of animals did not receive membranes (n = 6).
Identical treatment regimens were used for both the
control nondiabetic and diabetic animals; thus, there
were a total of 6 different groups of animals. Group
sizes were determined based on power analyses,
assuming normal distributions and with unequal vari-
ances45 and the knowledge that bone healing is
inhibited by 50% in diabetic animals in this model.33

The flaps were sutured with interrupted resorbable 4-
0 expanded polytetrafluoroethylene (ePTFE) sutures.
After the surgical procedures, the animals were given
IP analgesic injections of buprenorphine (0.3mg/mL
Temgesic; Reckitt & Collman, Hull, United Kingdom) at
a dose of 3 mg/kg twice a day. All the animals were
sacrificed 14 days after the surgical procedure in a 
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carbon dioxide chamber, and the heads were
processed for histology. The lesion size (1.6 mm diam-
eter) was selected based on the authors’ previous
studies showing partial bone healing of defects in a 2-
week healing period in normal animals,33 as required
by the experimental design.

Tissues were then prepared for histology and histo-
morphometric analysis. Block biopsies were fixed in
10% buffered formalin at 4°C and decalcified in EDTA
for 5 to 7 days, dehydrated, and embedded in paraffin.
Serial sections (4 µm) were stained with hematoxylin
and eosin (H&E) or Masson trichrome, and the 3 most
central sections of each defect were analyzed. Linear
measurements were performed with an image analy-
sis system (ImagePro 3.1; Media Cybernetics, Silver
Spring, MD). Bone ingrowth from the border of the
each initial defect toward the center was measured,
and bone bridging was expressed as a percentage of
the total defect width.46 The results of the histomor-
phometric measurements for bone bridging were ana-
lyzed with 1-way analysis of variance (ANOVA). Post-
hoc analyses were carried out with the Wilcoxon sign
rank test. Post-hoc statistical testing was performed
using the Bonferroni method. Alpha values of 95% or
higher were considered statistically significant.

RESULTS

rhFGF-2 Release Kinetics In Vitro
The release kinetics of FGF-2 from a resorbable mem-
brane in vitro was first determined.Two doses of rhFGF-
2 (2 and 5 µg) were loaded into membranes, and the
release of the growth factor was measured by ELISA.
The results demonstrate that rhFGF-2 was released for
the entire experimental period in a dose-dependent
manner (Fig 1). Membranes containing 2 µg of rhFGF-2
released peak amounts of the growth factor at 48

hours and then released growth factor at lower levels
until day 14, when virtually undetectable amounts
were liberated. In contrast, membranes loaded with 5
µg of rhFGF-2 released continuously higher amounts of
the growth factor until 72 hours, when the released
amounts peaked. A lower constant release rate was
then maintained until day 7, and lower levels of
released growth factor were still being observed by day
14. Thus, membranes loaded with 5 µg of rhFGF-2
exhibited clear sustained release of the growth factor
throughout the 14-day experimental period, whereas
the lower-dose membranes released low amounts of
FGF-2 after day 3 (Fig 1).The devices made with 5 µg of
rhFGF-2 were, therefore, selected for the in vivo studies.

Experimental Diabetes
Animals injected with streptozotocin became dia-
betic by experimental day 12, with blood glucose
levels of more than 250 mg/dl, whereas control ani-
mals had no more than 120 mg/dl (Table 1). Diabetic
animals exhibited glucosuria at levels similar to
blood glucose levels at all time points. Glycated
hemoglobin levels were higher than in nondiabetic
animals, indicating consistent and intransient hyper-
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Fig 1 In vitro release kinetics of rhFGF-2 from
Atrisorb membranes. Atrisorb membranes (n = 4)
(size, 25 mm2) containing 2 µg or 5 µg of FGF-2
were prepared. After polymerization, the mem-
branes were incubated under constant shaking
at 32 rpm in 3 mL of PBS at 37°C for 14 days.
The solution was collected and changed at inter-
vals (days 1, 2, 3, 5, 7, and 14). Aliquots of the
collected solutions were assayed in triplicate
with a competitive ELISA system. White bars rep-
resent the membranes loaded with 2 µg of
rhFGF-2 and the black bars represent the mem-
branes loaded with 5 µg of rhFGF-2. Data are
means ± SDs.

Table 1 Biochemical and Biometric 
Measurements of Diabetic (n = 16) and 
Nondiabetic (n = 16) Animals 

Parameter Normal Diabetic

Glucose (mg/dL) 116.2 ± 18.1 383.6 ± 48.2*
Glycated hemoglobin (%) 5.3 ± 0.4 10.25 ± 0.9*
Food (g/d/animal) 6.6 ± 3.6 10.25 ± 2.4*
Weight (g) 29.3 ± 0.4 26.12 ± 0.9*

Data shown for glucose and glycated hemoglobin levels were
obtained at sacrifice from whole blood preparations. Average food con-
sumption and animal body weight were derived from twice weekly
measurements of food consumption and body weight. Data presented
are means ± SD  (*P < .05; unpaired t test or Mann-Whitney test).
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glycemia in the diabetic animals (Table 1). Ketones
and protein were not detected in the urine of any
animals. Diabetic animals were hyperphagic and
slightly lighter, as expected for this model of diabetes
(Table 1). No unexpected metabolic dysregulation
occurred in diabetic animals.

Effects of FGF- 2 on Bone Regeneration
Evaluation of histologic sections made from lesions
treated with the membranes containing no rhFGF-2
revealed the presence of wovenlike bone within the
lesion, with limited extensions toward the center of
the defects (Fig 2). Lesions that received no mem-
branes had slightly more bone ingrowth compared
to lesions treated with vehicle-loaded control mem-
branes (Fig 2). Marrow cavities were observed, and
osteocytes were seen embedded in the bone matrix.
Osteoblastic activity was seen in the growing
osteogenic fronts, in both the periosteal and dural
surfaces. Most of the bone defect was occupied by
connective tissue.

Lesions treated with rhFGF-2–loaded membranes
revealed more abundant bone formation than control
lesions that did not receive rhFGF-2, both in nondia-
betic and diabetic animals (Fig 2). Intense osteoblastic

activity was seen in the growing osteogenic fronts in
both the periosteal and dural surfaces. Islands of new
bone formation could be seen within the connective
tissue inside the bone defects. Projections of new
bone were present within the lesion extending across
the defects in rhFGF-2–treated lesions. The newly
formed bone exhibited osteocytes embedded in the
bone matrix. A limited amount of connective tissue
was seen in the bone defect.

Linear histomorphometric evaluations demon-
strated that bone healing was inhibited by diabetes
by 40% (Fig 3). Bone area was decreased in diabetic
animals as compared with normal controls for all 3
treatment modalities tested (Fig 3). Treatment of the
defects with resorbable membranes without rhFGF-2
inhibited bone healing in both diabetic and nondia-
betic animals (P < .05). Addition of 5 µg of rhFGF-2 to
the resorbable membrane significantly enhanced the
osteogenic potential of these membranes, since bone
area was enhanced 2.6-fold compared with defects
treated with membranes not containing rhFGF-2 (P <
.05). Such enhancement was observed both in normal
and diabetic animals. Treatment of bone defects from
diabetic animals with membranes containing rhFGF-2
exhibited bridging similar to untreated controls.

a

b
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f

Nondiabetic Diabetic

Fig 2 Histologic evaluation of the effects of rhFGF-2 application. Samples from standardized bone defects were harvested after 2 weeks
of healing. All defects were 1.6 mm wide. Representative slides from decalcified specimens were stained with H&E (a,c,d,e) or alternatively
with Masson trichrome (b,f). (a) Nondiabetic animal, no membrane; (b) nondiabetic animal, membrane + PBS; (c) nondiabetic animal,
membrane + rhFGF-2; (d) diabetic animal, 1.6-mm bone defect, no membrane; (e) diabetic animal, 1.6-mm bone defect, membrane + PBS;
(f) diabetic animal, 1.6-mm bone defect, membrane + rhFGF-2 (Original magnification 100�). 
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DISCUSSION

Undisturbed bone formation and regeneration are
fundamental aspects of implant dentistry. Successful
osseointegration of metallic implants in native or
regenerated bone is intrinsically dependent on nor-
mal bone formation. Consistent with previous data,33

the present study demonstrates that bone healing is
significantly reduced by diabetes. Bone area was
decreased in diabetic animals compared with nondi-
abetic controls in each treatment modality tested.
Since osseointegration is dependent on de novo
bone formation and regeneration,47 such inhibition
of bone formation may have a significant negative
impact on osseointegration of implants. Quantitative
measurements have consistently shown that
implants placed in diabetic animals demonstrate sig-
nificantly less osseointegration than normal
animals.35,48–53 These differences have been docu-
mented for both pure titanium35,48,50,52,53 and HA-
coated implants.49,51 Reduced  areas of formed bone,
reduced surface of contact between bone and
implant, reduced bone contact thickness, and
reduced bone calcification have been observed in
these studies. Interestingly, despite positive effects of
systemic insulin treatment on total bone formation
in diabetic animals, alterations in bone-to-implant
contact ratios were not corrected.35 FGFs play impor-
tant roles in morphogenesis and wound healing36

and are potent stimulators of osteoblastic prolifera-
tion in vitro.37 FGF-2 regulates extracellular matrix
production by osteoblastic cells in vitro.38–40 FGFs
systemically administered in vivo have been shown
to increase endosteal bone formation,41,42 stimulate
the osteoinductive effects of demineralized allogenic
femoral diaphysis implanted into intramuscular
sites,54 and increase the volume and mineral content
of the fracture callus. They have also improved the
mechanical strength of the fractured bone when
injected into fractured limbs of diabetic rats.55

These studies suggest a positive role of exogenous
application of FGF-2 in bone wound healing and
regeneration. Optimization of these effects, however,
may be obtained through targeted delivery with con-
trolled release. Several approaches have been
employed for targeted delivery of FGF to wounded
sites, including local injection,41,42 incorporation into
composite bone grafts,54 incorporation into mini-pel-
lets,56,57 incorporation into a gelatin sheet,58 and the
use of mini-osmotic pumps.59 Optimized results
appear to be dependent on site of application, deliv-
ery mode, dose, and release kinetics of FGF.

The present study shows that a commercially avail-
able absorbable polymer loaded with rhFGF-2 acts as
a suitable material for the incorporation and delivery

of rhFGF-2. The amounts of rhFGF-2 released from
membranes loaded with 5 µg rhFGF-2 were within
the range of previously reported optimal osteogenic
doses of FGF-2 in vivo.60 Surprisingly, control vehicle-
loaded membranes diminished bone healing com-
pared to calvarial defects without membranes. Col-
lapse of control membranes into the bone defect may
have limited the space available for bone regenera-
tion and may have created a physical barrier against
the proliferative osteogenic front prior to membrane
resorption. The lack of space-maintenance capacity
seems likely to have contributed to the limited bone
regeneration observed in the defects treated with
membranes without rhFGF-2 incorporated.61 It seems
possible that an absorbable carrier with greater space
maintenance capacity might further enhance the
osteogenic activity of rhFGF-2.

The amount of bone regenerated with the use of
membranes loaded with rhFGF-2 was markedly
greater than that regenerated using control
vehicle–loaded membranes. Data revealed that the
addition of rhFGF-2 to the absorbable membrane
resulted in up to 3-fold enhancement of bone area,
which is a clear indication of the bioactivity of the
growth factor released from the membranes in vivo.
The authors speculate that the peak release of
rhFGF-2 during the first 48 to 72 hours of healing
may have stimulated granulation tissue formation
and angiogenesis,62,63 which, in turn, may have had a
significant impact on bone regeneration.61 The addi-
tion of 5 µg of rhFGF-2 to the absorbable membrane
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Fig 3 Histomorphometric analyses of bone healing in calvarial
defects. Bone area was expressed as a percentage of the total
defect width and was measured in 3 slides for each bone defect
from each animal. Two defects were made in each animal. The
readings were averaged to obtain means for each bone defect,
and both defects were averaged to obtain the mean for every ani-
mal, which was used as the unit for statistical analyses. Results
were presented as means ± standard error. 
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significantly enhanced the osteogenic potential of
these membranes, and such enhancement was
observed both in normal and diabetic animals.
Therefore, controlled, local application of rhFGF-2
successfully stimulated bone healing and regenera-
tion of bone defects.

The findings of the present study may have
important clinical implications. Uncontrolled dia-
betes results in significantly reduced bone forma-
tion, which is manifested as inhibited osseointegra-
tion due to reduced area and calcification of formed
bone as well as a reduced bone-implant surface con-
tact.35,48–53 Alterations in bone-to-implant contact
are not corrected by metabolic control of diabetes by
means of insulin treatment.35 Therefore, implant
placement in diabetic patients should be carefully
planned and may carry additional risks in areas of
poor bone quality and areas subjected to high
occlusal loads. Increased healing times are suggested
in order to compensate for the reported inhibited
bone formation rates in diabetics. Interestingly,
locally applied FGF-2 has been shown to significantly
improve bone formation around endosseous tita-
nium implants,64,65 and it has been suggested that
continuous application of FGF-2 may facilitate
osseointegration in situations where the bone bed is
suboptimal and residual particles and granuloma-
tous tissue are present.59 Thus, targeted controlled
local delivery of biologically-active substances such
as growth factors may stimulate bone regeneration
and rescue the inhibitory effects of diabetes on bone
healing. Biologically-enhanced membranes may offer
significant clinical benefits by enhancing the
endogenous healing capacity of bone defects and
increasing the rate and total amounts of bone forma-
tion, and ultimately resulting in significantly
improved bone regeneration and endosseous
implant osseointegration, especially in locally or sys-
temically inhibited healing sites, such as those
observed in diabetes mellitus.

CONCLUSION

In summary, the present study demonstrates that
rhFGF-2 released from an absorbable membrane sig-
nificantly stimulated bone regeneration in vivo and
rescued impaired bone healing in diabetic animals to
levels similar to those in normal untreated animals.
Further studies are needed to show whether these
properties of growth factor–enhanced resorbable
barriers could have potential clinical use as a biologi-
cally enhanced procedure for stimulation of bone
regeneration in nondiabetic as well as diabetic
patients.
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