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Primary Stability of a Conical Implant and a 
Hybrid, Cylindric Screw-Type Implant In Vitro
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Purpose: The differences with respect to primary stability between 2 Camlog implants, a conical
implant, and a hybrid cylindric screw-type implant, were investigated in vitro. The effect of under-
dimensioned implant bed preparation was also studied for both implant designs. Materials and Meth-
ods: In an in vitro model the stability of different implants in fresh porcine iliac bone blocks was mea-
sured using torque moment values, the Periotest, resonance frequency analysis, and push-out testing.
Results: The conical implant showed significantly higher primary stability than the cylindric hybrid
implant using the insertion torque, Periotest, and push-out tests. For both types of implants, the torque
moment values following under-dimensioned preparation were significantly better than those obtained
following the standard drilling protocol (Conical: 25.00 vs 11.00 Ncm; Cylindrical: 11.75 vs 5.75 Ncm).
For the cylindric implant, significantly better results following under-dimensioned implant bed prepara-
tion were observed only with the insertion torque and the pushout testing values. The mean ISQ values
for all groups were between 55 and 57; no statistical differences with respect to ISQ could be found.
Conclusion: In this in vitro model conical implants showed higher primary stability than cylindric
implants. The procedure of under-dimensioned drilling seemed to increase primary stability for both
types of implants; however, the effect was only observable using insertion torque. RFA and Periotest,
the noninvasive, clinical methods tested, did not clearly demonstrate this difference. INT J ORAL MAX-
ILLOFAC IMPLANTS 2006;21:560–566
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Successful implant outcome is mainly the result of
primary implant stability following placement1;

thus, implant stability is key to clinical success.2 Opti-
mal implant stabilization is especially essential in
bone of low density.3–5 Several modifications of sur-
gical protocol have been described to increase pri-
mary stability. It has been suggested that the anchor-
age of an implant in 2 cortices enables the
achievement of a higher stability in soft bone.6,7

Under-dimensioned drilling and other bone con-
densing procedures have also been used to increase
primary stability.8,9 In contrast to the clinical use of
these procedures, basic l iterature reporting a
mechanical effect is rare.10

The choice of a macroimplant design can influ-
ence primary stability as well. Many publications
have reported that standard-diameter 3.75-mm-wide
implants experience high failure rates in low density
bone.2,11 Some authors have recommended that the
surgeon use wider implants if the width of the alveo-
lar crest is larger than 8 mm.12,13 However, some
investigators have reported increased bone loss with
wider implants.14,15 O’Sullivan and associates investi-
gated several unconventional implant designs and
found that these designs, in combination with the
use of an undersized form drill, could lead to higher
implant stability than conventional designs.16 How-
ever, a possible difference between conical and cylin-
dric screw designs regarding primary stability has
not yet been investigated.
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One major problem is the lack of a gold standard
for measuring implant stability.4,17 Periotest has been
used to measure the stability of implants, but several
studies have shown that Periotest is not an ideal tool
for this evaluation.18,19 Periotest is incapable of provid-
ing sensitive responses to minor changes in the
implant-bone interface.20,21 Several other groups have
proclaimed that resonance frequency analysis (RFA) is
a useful tool for analyzing primary stability  after place-
ment as well as degree of stability after osseointegra-
tion.22–26 However, interpretation of the implant stabil-
ity quotient (ISQ) values is still lacking scientific
background. To date no break point values exist above
which high or enough primary stability for direct load-
ing can be assumed. Moreover, the RFA values of differ-
ent implant systems may not be comparable.27,28

A more widespread method for measuring pri-
mary stability of the implant is the technique of
reporting insertion torque. This method has exten-
sively been described by Friberg and associates.29

Low insertion torque values may indicate low pri-
mary stability and risk of implant failure. Exceedingly
high primary stability, as seen for conical implants, in
high density bone may also be clinically unfavorable.
Thus, the implant should not be forced into position
when bone density is too high. Huge placement
forces may give rise to collapse of the surrounding
bone and promote implant failure. In the animal
models frequently used methods for quantitative
evaluation of implant-bone interface strength
include mechanical tests such as push-out, pull-out,
or countertorque testing.8,17,28 The disadvantages of
these methods are their invasive character and the
nonphysiologic forces used.

The Camlog implant system, with its internal tube-
in-tube connection to the abutment, is available in
conical and less-conical cylindric hybrid screw-type
macrodesigns. The aim of this study was to investi-
gate possible differences between conical and cylin-
dric screw-type self-tapping implants with respect to
primary stability. The effect of under-dimensioned
implant bed preparation was also studied for both
implant designs.

MATERIALS AND METHODS

Five iliac bone blocks from fresh porcine cadavers
were used for this study. From each bone specimen
only the trabecular part was used. A 6-mm-thick rec-
tangular plate with parallel sides was prepared with
a water-cooled precision diamond saw (Exakt Saw-
ing-Grinding System; Exakt, Norderstedt, Germany).
The surface was cleaned by rinsing with water. Every
bone plate was checked macroscopically for irregu-

larities, and the thickness of 6 mm was verified
within a range of 5.4 to 7.0 mm using a pair of preci-
sion calipers. A radiograph of each bone block was
obtained to check the bone density at the planned
placement site. For this purpose the specimens were
positioned directly on a Lanex Medium Foil with a G
film (Kodak TMAT; Kodak, Rochester, NY) and exposed
122 ms at 42 kV and 2.5 mA with a Tridoros 512 MP
Siemens x-ray apparatus (Siemens, Munich, Ger-
many). For comparison and calibration a thin tita-
nium plate was also exposed. A paper template was
prepared from a photocopy of the bone samples,
which indicated the planned position of the implants
in the bone block. The placement of 20 to 25
implants in randomized positions in each bone block
was planned. The templates were then used to mea-
sure the radiographic bone density at the specific
site of implantation using a digital densitometer
(model 07-424; Fluke Biomedical, Cleveland, OH). The
densitometer measurements were verified within a
range of 0.63 to 1.05 g/cm2.

Two different types of Camlog implants (Camlog,
Basel, Switzerland) were used for this study (Altatec,
Fig 1). One was the conical implant. This implant had
a diameter of 5.0 mm and a length of 13.0 mm. The
other was the less conical cylindric hybrid implant,
which had a diameter of 5.0 mm and a length of 13.0
mm. Both were self-tapping implants. The placement
procedure for both implant types was initiated as
suggested by the manufacturer. A 2.0-mm pilot drill
was used first, followed by 2.8-, 3.3-, and 3.6-mm
twist drills for preparation. The drilling procedure
penetrated through the 6-mm-thick bone plate. The
implants were consecutively assigned to 1 of the fol-
lowing groups:

• Group A: Cylindric hybrid implant, standard pro-
cedure

• Group B: Cylindric hybrid implant, under-dimen-
sioned bone preparation

• Group C: Conical implant, standard procedure
• Group D: Conical implant, under-dimensioned

bone preparation 

For under-dimensioned bone preparation, the last
twist drill in the sequence was not used. Following
the twist drill procedure, either the standard 5.0-mm
drill (for the standard procedure) or the 4.3-mm form
drill (for under-dimensioned bone preparation) was
used. Both types of implants were placed with the
Nobel Biocare drilling system (Osseocare DEC 601;
Nobel Biocare, Göteborg, Sweden), which recorded
the torque necessary for the placement. All implants
were placed so that the crestal part of the implant
was totally surrounded by bone and the polished

Sakoh.qxd  7/25/06  10:12 AM  Page 561



562 Volume 21, Number 4, 2006

Sakoh et al

upper part of the implant was left outside the bone.
Therefore, the apical end of each implant penetrated
the bone plate; about 7 mm of the implant was
exposed beneath the bone plate. Subsequently,
implant mobility was recorded using the Periotest
(model 5950001 D 3218; Siemens). The device was
hand-held at an angle of 30 degrees, and the inser-
tion abutment was used for coupling. The procedure
was repeated 3 times for each implant from different
directions, and the mean values were calculated.

Next, the insertion abutment was removed from
the implant, and resonance frequency analysis (RFA)
was measured using the Osstell resonance frequency
device (model 6.0 with connector type-F19;
Osstell/Integration Diagnostics, Göteborg, Sweden).
When measuring RFA, it was found that the connec-
tion between the implant and the RFA connector did
not always seem to fit perfectly. In cases where the
connection was unstable, the screw was refixed and
the analysis redone. Finally, an abutment was fixed to
the implant, and the implant-bone specimen was
transferred to a Zwick UPM 1425 material testing
device (Zwick, Atlanta, Georgia) to measure the axial
push-out forces (Fig 2). The force was applied to the
apical end of the implant in an axial direction, imitat-
ing a continuous pull-out mode. To avoid a possible
influence of differences between the bone blocks, a
“normalized push-out force value” was calculated for
each group by dividing the individual push-out force
value by the mean of the respective bone sample.

SPSS 10.0 software (SPSS, Chicago, IL) was used for
the descriptive statistical analysis. Mean values and
standard deviation of the different variables were
calculated, and box plots were drawn to visualize the
distribution of the values. The Mann-Whitney test
was used to check for significant group differences. P
< .05 was considered statistically significant.

RESULTS

Results of the insertion torque measurements are
given in Fig 3 as a box plot. After standard bone
preparation, the torque values of the conical
implants were significantly higher than those of the
hybrid cylindric implants, with mean values of 11.00
Ncm versus 5.75 Ncm, respectively (P < .001). For the
conical implant, the torque moment values following
under-dimensioned preparation were significantly
higher than those following the standard drilling
protocol, with mean values of 25.00 versus 11.00
Ncm (P < .05). For the hybrid cylindric implant, the
torque moment values following under-dimen-
sioned preparation were also significantly higher
(11.75 versus 5.75 Ncm; P < .05); however, a much
narrower distribution was seen for this implant type.
So for both types of implants, there was a statistically
significant difference between the standard prepara-
tion group and the respective under-dimensioned
preparation group.

The mean Periotest values are given in Fig 4 as a
box plot. The mean Periotest values of the conical
implant were significantly lower than those of the
hybrid cylindric implant (10.5 versus 13.0; P < .05). For
the conical implant, the mean Periotest values with
the different surgical protocols were 8.2 (standard)
and 10.5 (under-dimensioned). The difference
between the 2 procedures was not statistically signif-
icant. For the hybrid cylindric implant the Periotest
values following under-dimensioned preparation
were significantly lower than those obtained follow-
ing the standard procedure, with mean values of 9.2
versus 13.0, respectively (P < .05).

The ISQ values of the different groups are given in
Fig 5. Median ISQ values ranged from 55 to 57. No
statistically significant difference was found between

Fig 1 (a) The hybrid cylindric screw-type implant and (b) the
conical implant used in this study.

0.5 mm/min

Implant

Bone plate

Steel support

6 mm

Steel rod

Fig 2 Experimental setup for the push-out testing.
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the standard and modified surgical protocols for
either type of implant; furthermore, no statistically
significant difference was found between the 2 types
of implants. It should be noted that the values
showed a wide scattering, with minimal values of 45
and maximal values of 63.

Data from the push-out testing of conical and
hybrid cylindric implants following standard and
under-dimensioned bone preparation are presented
in Fig 6. All the samples showed high values, with
ample distribution. The values ranged from 22 N to
229 N. The conical implant had significantly higher
values than the hybrid cylindric implant, with mean

values of 130 versus 101 N (P < .01). For the conical
implant the mean push-out forces were 130 N and
152 N for groups C and D, respectively.This difference
was not statistically significant. However, for the
hybrid cylindric implant the push-out force values
following under-dimensioned preparation were sig-
nificantly higher, with mean values of 101 N versus
133 N (P < .05). Thus, there was a statistically signifi-
cant difference for only the hybrid cylindric implant.

The normalized push-out force values are shown
in Fig 7. For the conical implant the normalized push-
out forces were 0.90 and 1.14 for the standard and
under-dimensioned bone preparation prcedures,
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Fig 3 Torque moment values following standard and under-
dimensioned drilling.

Fig 4 Periotest values following standard and under-dimen-
sioned drilling.
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Fig 5 ISQ values following standard and under-dimensioned
drilling.

Fig 6 Push-out force values following standard and under-
dimensioned drilling.
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respectively. This difference was not statistically sig-
nificant. For the hybrid cylindric implant the normal-
ized push-out force values after under-dimensioned
preparation were significantly lower, with mean val-
ues of 0.80 versus 0.97 (P < .05). Table 1 shows the
correlations between the different clinical outcome
variables (ISQ, Periotest, torque moment) with the
push-out test for hybrid cylindric implants, and coni-
cal implants. For both implant types, significant cor-
relations to push-out testing were found only for
Periotest and torque moment. RFA did not show a
correlation with the push-out test.

DISCUSSION

The axial primary stability of conical and cylindric
implants were compared to each other in an in vitro
model, and the results obtained using standard and
under-dimensioned bone preparations were evaluated.
The mechanical testing methods, ie, torque moment
values, Periotest values, and push-out testing, indicated
the highest stability for the conical implant following
standard preparation. However, the results for RFA did
not agree with the other tests in this respect.

Under-dimensioned drilling increased the torque
moment values for both types of implants, which
could be considered a sign of higher mechanical pri-
mary stability. Examination of the push-out force val-
ues and the Periotest showed that drilling procedure
significantly affected the results for the cylindric
implant but not those for the conical implant. No sig-
nificant differences were found between implant
types or placement procedures using RFA.

Examination of the torque moment measure-
ments showed the most significant differences; a sig-
nificant difference was found between the 2 surgical
protocols as well as between the 2 implant types
with respect to primary stability. This effect of
increased primary stability was shown previously for
the Nobel Biocare Mark IV; because this implant had
a customized wider implant shape, the placement
site was effectively under-dimensional.16 Bone con-
densing has also been demonstrated in vivo to have
an effect on the initial healing phase.30 The present
work has shown that increased implant stability in
vitro might also be gained by using the same
implant with smaller diameter form drills, especially if
cylindric implants rather than conical implants are
used.

It is somewhat confusing that the effect of obvi-
ously increased implant stability could not clearly be
shown with RFA. It is known from other studies that a
poor correlation between RFA, Periotest, and other
parameters (eg, histology or cutting resistance)
exists.25,28,31,32 The main factors clinically influencing
RFA seem to be implant type,21,22 the height of the
implant above bone,32,33 and the bone quality in the
crestal part of the bone.25

There seems to be evidence that different RFA val-
ues can be observed in soft (D4) bone compared
with normal or dense bone.34,35 As all implants in this
model showed sufficient stability, it might be possi-
ble that the RFA method was not able to detect
major differences in stability. Correspondingly, to
date no defined ISQ cutoff value for sufficient pri-
mary stability has yet been established. Moreover,
ISQ values for different implant systems are not com-
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Fig 7 Normalized push-out force values following standard and
under-dimensioned drilling.

Table 1 Correlation of the Different Clinical 
Outcome Variables (ISQ, Periotest, Torque Moment)
with the Push-out Test 

Implants/ Pearson’s
methods correlation Significance

Cylindric
Push-out test versus RFA ns .073
Push-out test versus Periotest 0.576 .01
Push-out test versus torque moment 0.571 .01

Conical
Push-out test versus RFA ns .097
Push-out test versus Periotest 0.499 .01
Push-out test versus torque moment 0.466 .01

ns = nonsignificant.
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parable. Considering the present data and those of a
previous investigation,28 the ISQ values so far do not
constitute a secure base for therapeutic decisions
with regard to early implant loading. Although only
large differences in primary stability seem to be
detectable with RFA, clinical follow-up measure-
ments might be informative.25,36

More data for different implant systems are avail-
able using the Periotest.37 In the present study the Peri-
otest was unable to detect a difference in primary sta-
bility between the conical implant with standard site
preparation versus the same implant with a modified
preparation procedure. From other studies it is well rec-
ognized that the sensitivity of the device might be too
low to identify minor changes in the bone-implant
interface.20,21 Therefore, the clinical use of this device to
measure implant stability is still controversial.

Besides countertorque measurements, the push-
out and the pull-out testing are well established for in
vitro and in vitro stability testing.17,38–40 This technique
is very sensitive to modifications of technical details;
therefore, values from different studies should not be
directly compared.41,42 This sensitivity might be an
explanation for why significantly different push-out
values were found between site preparation methods
for the hybrid cylindric implant but not for the conical
implant. Another explanation for this might be that
the experimental setup, ie, the application of the force
for the push-out testing from the apical side of the
implant in an axial direction, might produce favorable
results for the cylindric implant, which is loaded with
an exact perpendicular shear force, whereas the coni-
cal implant instantly loses contact with the adherent
bone after a short movement.

CONCLUSION

Within the limitations of this in vitro model, it can be
concluded that both the conical implant design and
the procedure of under-dimensioned dril l ing
appeared to be associated with increased primary
stability.This effect was more obvious when insertion
torque rather than push-out testing was used as an
indicator of primary stability. RFA and Periotest, the
noninvasive, clinical methods tested, did not clearly
demonstrate this difference. Their clinical use for
documenting primary stability of implants must be
further evaluated for different implant types before
clinical conclusions can be drawn. Long-term in vivo
data are necessary to confirm the clinical effective-
ness of the use of under-dimensioned drilling to
increase primary stability.
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