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Early Wound Healing Around Endosseous Implants:
A Review of the Literature 

Sangeetha Raghavendra, DMD, MDSc1/Marjorie C. Wood, DMD2/Thomas D. Taylor, DDS, MSD3

The knowledge base of information related to early wound healing around endosseous dental implants
is rapidly changing and expanding. Unless one is directly involved with creating this pool of information
or has an extraordinary interest in the literature of the field, it is difficult to keep up to date with the
flow of information. This article is intended to provide the clinician with a state-of-the-art review of the
current literature related to early wound healing and the creation of an osseointegrated interface
between living and nonliving structures. While some literature dealing with basic laboratory studies
including tissue culture is discussed, the primary focus of the article is the in vivo literature, ie, animal
and human studies. INT J ORAL MAXILLOFAC IMPLANTS 2005;20:425–431
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The intent of this review was to present the current
state of knowledge related to early bone healing

adjacent to endosseous dental implants. The English
language literature was searched electronically using
PubMed. Key terms used included “wound healing
and implants,” “dental implants and surface rough-
ness,” “bone remodeling and implants,” “dental
implant histology,” “implant surfaces,” and “bone-
implant interface.” A total of 1,095 titles published
from January 1997 through June 2004 were
reviewed. Additionally, 26 references were obtained
from a hand search of reviewed articles. Although
pertinent studies at the molecular and/or tissue 
culture level were included, the emphasis of this 
literature review was the current state of animal and
human studies related to the early stages of healing

at the bone-implant interface. Several key or classic
articles from older sources were included primarily
for background information. Sixty-three sources
were examined in depth, and 50 were selected for
inclusion (Fig 1).

OSSEOUS WOUND HEALING AND
OSSEOINTEGRATION

Current theories of bone biology are an extension of
those formed by Marshall Urist in 1952.1 Bone forma-
tion is a complex series of molecular changes that
lead to a newly formed structural and functional
entity. Endosseous wound healing can be subdivided
into the stages of hematoma, clot resolution, and
osteogenic cell migration, which lead to the forma-
tion of new bone at the wound site.2

Osseointegration was defined by Brånemark and
associates as a direct structural and functional con-
nection between ordered living bone and the sur-
face of a load-carrying implant.3 Histologically, this
has been further defined as direct anchorage of an
implant by the formation of bone directly on the sur-
face of an implant, without an intervening layer of
fibrous tissue.4,5 Clinically, this suggests ankylosis of
the implant-bone inter face as described by
Schröeder and colleagues.5 This ankylotic interface is
created during the healing period immediately post-
surgery and is maintained in dynamic equilibrium
throughout the postintegration period.
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OSTEOINDUCTION AND 
OSTEOCONDUCTION

The induction of bone formation at the site of a sur-
gically created wound (implant site) reflects a major
alteration in the cellular environment.6 Davies7

described peri-implant bone healing as having 3 dis-
tinct phases: osteoconduction, de novo bone forma-
tion, and bone remodeling. Albrektsson and Johans-

son4 described the terms osteoinduction and osteo-
conduction as interrelated but not identical phenom-
ena that occur during bone wound healing. Osteoin-
duction involves the phenotypic conversion of
mesenchymal cells into bone-forming cells.2 Primi-
tive, undifferentiated, pluripotent mesenchymal cells
are stimulated to develop into the bone-forming cell
lineages of osteoblasts and osteocytes.4 Osteocon-
duction has been defined as appositional bone
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growth permitting bone formation on a surface or
down into pores, channels, or pipes.4 Davies2

described de novo bone formation around
endosseous implants as the formation of a mineral-
ized interfacial matrix, equivalent to that found in
natural bone tissue, on the implant surface.

The phenomenon of osteoconduction relies on
the migration of differentiating osteogenic cells to
the implant surface.7 Undifferentiated mesenchymal
cells migrate to the surface of the implant, attach,
and proliferate. According to Boyan and coworkers,8

environmental factors such as oxygen tension help
determine whether mesenchymal cells will differenti-
ate into fibroblasts, chondrocytes, or osteoblasts.
Adherence can occur when the cell itself directly
binds to the surface or when it binds to arginine-
glycine-aspartic acid (RGD) -containing proteins that
adhere to the surface.9 During this time, the mes-
enchymal cells synthesize their own extracellular
matrix, including growth factors and cytokines, and
modify the surface of the implant. Mesenchymal cells
then undergo osteoblastic differentiation.10 Cells of
mesenchymal origin are extremely sensitive to sur-
face properties such as surface energy, roughness,
and topography.11 The new osteoblasts produce
osteoid, including matrix vesicles and growth factors.
Matrix calcification occurs, leading to the formation
of woven bone, which is subsequently remodeled
with osteoclast recruitment.12 In an in vitro model,
Davies13 suggested that although osteoblasts have
the ability to migrate, in bone-healing sites, it is usu-
ally less-differentiated cells in the osteogenic lineage
or perhaps undifferentiated mesenchymal cells that
migrate to and colonize the implant surface.

Osborn and Newesley14 proposed that 2 different
phenomena exist by which bone can become juxta-
posed to an implant surface: contact osteogenesis and
distance osteogenesis. Contact osteogenesis involves
de novo bone formation directly on the implant 
surface. Distance osteogenesis is the formation of new
bone on the surfaces of existing peri-implant bone.
Berglundh and colleagues15 studied wound healing
adjacent to endosseous implants in Labrador dogs
and suggested specific timelines for de novo bone 
formation. They observed that the placement of
implants in the alveolar process elicits a sequence of
healing events, including necrosis and subsequent
resorption of traumatized bone around the implant
body concomitant with new bone formation.

The events involved in osseous wound healing
adjacent to implants appear identical to the normal
events of wound healing in bone.6 Based on investi-
gations at the molecular level, implant substrate-

osteoblast interactions may be characterized as 
specific, protein-mediated, dynamic, signal-generat-
ing events. Implant sur face modification may 
modulate this cell behavior.16 Following implanta-
tion, after hemostasis and clot formation, fibrinolysis
occurs with the formation of a loose connective 
tissue stroma that supports angiogenesis.6 The 
surface of the implant is conditioned by serum 
proteins, mineral ions, sugars, and lipids, as well as
cytokines produced by immune cells.10 The behavior
of adsorbed proteins may be related not only to the
interaction between the charge of the material and
the protein, but also to the protein’s potential for
change once adsorbed onto the surface.9 The static
blood volume surrounding the implant will vary con-
siderably as a function of the implant design and
site.13 Vascular ingrowth or angiogenesis is most
likely mediated by extracellular matrix components
and growth factors.17 The absence or relative paucity
of serum proteins such as albumin indicates a selec-
tive accumulation or deposition of molecules at the
interface.18 Because they contain RGD and polyacetic
sequences, osteopontin and bone sialoprotein are
believed to play roles in cell adhesion and mineral
binding.9,18 In addition, Davies2 suggested that the
implant surface provides anchorage for the fibrin
clot to withstand detachment forces during cell
migration and thus maintain a migratory pathway
for the differentiating osteogenic cells to reach the
implant surface.

IMPLANT SURFACE TECHNOLOGY

Development of the implant-bone interface is com-
plex and involves numerous factors. These include
not only implant-related factors, such as material,
shape, topography, and surface chemistry, but also
mechanical loading, surgical technique, and patient
variables such as bone quality and quantity.18 The
original studies on osseointegration were performed
using turned (machined) surface implants. Efforts to
enhance implant surface technology have focused
on improving the predictability, rate, and degree of
osseointegration. Commonly, modifications to the
implant surface have been made through the use of
additive or subtractive techniques. To date, there is
no consensus concerning the most appropriate
implant surface topography, other than to say that
turned surfaces on implants have generally given
way to surfaces that are roughened using additive or
subtractive processes.
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Implant Surface Topography
Creating topographic variation from the mean sur-
face plane of the implant can be achieved by addi-
tive methods such as titanium plasma spraying,
hydroxyapatite (HA) coating, coating with plasma, or
magnetron sputter coating. Coatings of calcium
phosphate and/or apatites, as well  as various
attempts to coat an implant surface with biologic
molecules, have also been described. Subtractive
methods of surface modification include abrasion
through blasting with titanium oxides or other solu-
ble or resorbable biomaterials, grit or sandblasting
with aluminous oxides, and blasting and acid-attack-
ing or etching (with a hydrogen sulfate or hydrogen
chloride). Other surface treatments include anodiz-
ing, cold working (dimpling), sintering, and bead
compaction. The surface energy, composition, topog-
raphy, and roughness of an implant are thought to
affect bone formation and apposition.10,12,19–33 Three
articles were found that reported no apparent differ-
ence between altered implant surface textures34–36;
however, in 2 of these studies, HA-coated surfaces
demonstrated loss of coating thickness.

Some important advantages have been attributed
to increased surface roughness. These include
increased surface area of the implant adjacent to
bone, improved cell attachment to the implant sur-
face, increased bone present at the implant surface,
and increased biomechanical interaction of the
implant with bone.37 In a survey comparing the sur-
face topography and industrial processing of 4
implant systems, Szmukler-Moncler and colleagues38

showed that treating titanium surfaces with acid
does not create a standard topography. Each implant
system tested had a specific topography that could
not be mistaken. The authors further concluded that
industrial processing is not fully reproducible and
that clinical implications based on roughness data
alone cannot be extrapolated from one surface to
another. Acid treatment, for example, varies accord-
ing to prior treatment, acid mixture composition,
temperature, and duration of acid treatment.

Implant Surface Chemistry 
The energy at the surface of a biomaterial is defined
by the general charge density and is either positive,
negative, or neutral. Charge, in turn, affects the
hydrophilic or hydrophobic characteristics of the sur-
face.8 A hydrophilic, or easily wettable, implant sur-
face is assumed to be advantageous during the ini-
tial phase of wound healing and the cascade of
events that occurs during osseointegration. In a
recent publication, Buser and coworkers examined
the effect of altering the surface chemistry and
charge of a sandblasted, acid-etched (SLA) titanium

implant surface (Straumann, Waldenburg, Switzer-
land) on the rate of osseointegration in miniature
pigs.39 They attempted to avoid contamination of
the implant surface from the atmosphere by immers-
ing the implant into an isotonic saline solution
immediately after acid etching. Their results demon-
strated significantly increased amounts of bone-to-
implant contact (BIC) at 2, 4, and 8 weeks. At 2 weeks,
the modified SLA surface demonstrated a mean of
49.3% BIC, while the conventional SLA surface
showed a mean of 29.4% BIC. The authors speculated
that the creation of a hydroxylated oxide surface
enhances surface reactivity with surrounding ions,
amino acids, and proteins in tissue fluid.

When the surface topography of an implant is
altered, its surface chemistry is also altered. Cell
behavior is not dependent on topography alone; sur-
face topography and chemistry are inseparable.
Morra and associates40 compared the chemical
effects of surface treatments using 3 types of rough-
ened surfaces and a machined surface. They found
that turned surfaces contained significantly more
carbon and significantly less titanium than rough-
ened surfaces. Acid etching removes most of the car-
bon contaminant introduced onto the implant sur-
face by machining, together with the outer layer of
titanium. Thus, acid-etched and plasma-sprayed sur-
faces are generally cleaner and more reproducible
than turned and sandblasted surfaces. In an in vitro
study, Cassinelli and colleagues41 compared 3 varia-
tions of acid cleaning on turned implants. They con-
cluded that the effect of surface chemistry was inde-
pendent of topography and that chemical effects
operate over and above the commonly invoked
topographic effects. However, Perrin and his group42

found that surface topography (not the surface com-
position) alters the bone response to roughened
implant surfaces. In a study investigating bone tissue
reactions to various surface oxide properties, Sul43

concluded that, either separately or together, surface
chemistry and topography play important roles of
bone response to the implant surface.

Implant Surface Roughness and 
Bone Formation
A number of in vitro and in vivo studies have been
conducted to compare the effect of implant surfaces
on bone formation. Novaes and colleagues,44 com-
paring HA, titanium plasma-sprayed ( TPS), sand-
blasted, and machined implants, found that in rela-
tion to BIC, the sandblasted surface was statistically
superior to the turned surface and showed greater
BIC than the HA and TPS surfaces after 90 days in
place without loading. In an extensive review article,
Cochran45 assessed publications that evaluated
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implant use in patients to determine whether differ-
ences existed in success rates of implants with rela-
tively smooth surfaces compared to implants having
roughened surfaces. He concluded that rough-sur-
faced implants had significantly higher success rates
compared to implants with turned surfaces. Human
histologic findings have demonstrated improved BIC
on rough surfaced implants compared to turned sur-
faced implants.24,25

The surface roughness of titanium is one factor
that helps in determining the balance between bone
formation and remodeling at the bone-implant inter-
face when comparing TPS and machined implants.46

Buser and coworkers19 reported that the extent of the
bone-implant interface is positively correlated with
increasing roughness of the implant surface.
Chehroudi and colleagues20 reported that surface
topography influenced the frequency and amount of
bone deposited adjacent to micromachined grooved
or pitted-surface implants. Perrin and associates
showed that the osteophilic properties of rough tita-
nium surfaces appear to be related to surface topog-
raphy rather than specific surface composition.42 In
their in vivo study in Land Race pigs, an SLA surface,
which normally contains 20% to 30% titanium
hydride, was compared to a mechanically altered SLA
surface and one from which the titanium hydride was
removed. No significant differences in BIC were seen
between any of the surfaces. Other authors have pub-
lished similar reports on the apparent benefit of a
rough surface.19–25,37,47,48 Gotfredsen and colleagues23

demonstrated that a clear relationship exists between
surface roughness and implant anchorage, which was
assessed by removal torque measurements.

In addition to animal studies and human clinical tri-
als documenting the superiority of rough implant sur-
faces to turned surfaces in regard to survival, there is
clear evidence that rough-surfaced implants decrease
the integration time and may decrease overall treat-
ment time appreciably.22 The topic of immediate load-
ing of dental implants is outside the scope of this
review, but it should at least be stated that implants
with rough surfaces are more likely to be successful
when used in immediate loading situations.45,49,50

TIMELINE OF OSSEOINTEGRATION 

Schwartz and Boyan10 described the events involved in
bone apposition in humans as occurring in a series of dis-
crete but overlapping stages. Immediately after implan-
tation, serum proteins adhere to the implant. During the
first 3 days,mesenchymal cells attach and proliferate.By 6
days, osteoid is produced. By 2 weeks, matrix calcification
is complete.At 3 weeks,remodeling is well under way.

One of the most critical (perhaps the most critical)
factors in successful osseointegration of an implant
is stability in the bone at the time of placement. Rela-
tive motion between the implant body and the sur-
rounding bone during the early healing phase is con-
sidered to be a high risk factor for early implant loss
as failure of osseointegration occurs. Following the
placement of an endosseous implant, primary
mechanical stability is gradually replaced by biologic
stability. The transition from primary mechanical sta-
bility, provided by the implant design, to biologic sta-
bility provided by newly formed bone as osseointe-
gration occurs takes place during early wound
healing.15 Therefore, presumably, there is a period of
time during healing in which osteoclastic activity has
decreased the initial mechanical stability of the
implant but the formation of new bone has not yet
occurred to the level required to maintain implant
stability. During this critical period, a loaded implant
would be at greatest risk of relative motion and
would theoretically be most susceptible to failure of
osseointegration. Only by bone remodeling will
there be a gradual replacement of peri-implant
bone, with the possibility of de novo bone formation
at the implant surface.13

A series of cellular events contributes to this
change. Osteogenesis in vivo must find a balance
between achieving adequate coverage of an implant
material with osteogenic cells and the ability of
those cells to differentiate into competent
osteoblasts in a timely manner.12 Berglundh and
coworkers,15 in an in vivo study of de novo alveolar
bone formation adjacent to endosseous implants,
described a novel model to investigate different tem-
poral phases of wound healing that result in osseoin-
tegration. Specially designed implants with a desig-
nated wound chamber were placed in Labrador dog
mandibles. Within 2 hours the wound chamber was
occupied by a coagulum of erythrocytes, neutrophils,
and macrophages in a fibrin network. At 4 days,
along the cut surface, osteoclasts were observed and
mesenchymal cells (fibroblast-like cells), vascular
structures, and densely packed connective tissue
cells were found within the wound chamber. At 7
days, woven bone was first seen along the implant
surface and along vascular units. Trabeculae were
lined with osteoblasts and a provisional matrix which
had collagen fibrils and vasculature. At 2 weeks,
newly formed bone appeared to be extending from
parent bone. At 4 weeks, marked formation of woven
bone combined with lamellar bone was seen. Finally,
at 8 and 12 weeks, there were marked signs of
remodeling within the wound chamber. In this ani-
mal model, osteoclastic activity was seen as early as 4
days following implant placement, and new bone
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formation was noted at 1 week postplacement.
Replacement of the original bone that was responsi-
ble for the initial stability of the implant at place-
ment was well underway at the 2-week mark.

Correlating the findings in the canine model of
Berglundh and associates15 with the timeline of the
same events in human bone formation is difficult. A
rough estimate of comparative healing rates
between dogs and humans would suggest that the
events of wound healing and bone remodeling hap-
pen approximately 1.5 times sooner in dogs than
would occur in the human (personal communication,
DL Cochran, September 2003). Assuming this to be
true, the critical time frame for implant healing in
humans would be 2 to 3 weeks postplacement, at
least for the surface utilized in the Berglundh study.

The effect of immediate loading is not clearly
understood as it relates to the timeline of osseointe-
gration. However, it is clear that the processes of
osseous remodeling and osseointegration occur
simultaneously with functional loading. Interaction
of these biologic and mechanical forces would seem
to be critical to the successful integration of the
implant (Fig 2). It appears that initial stability and
continued stability during the healing phase is nec-
essary for osseointegration to occur and that splint-
ing of implants improves the likelihood of success.49,50

CONCLUSION
The recent literature was reviewed in an attempt to
present the current state of knowledge of early wound
healing adjacent to endosseous of dental implants.
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Fig 2 Changeover from primary stability
created at the time of implant placement to
secondary stability created by deposition of
new bone (osseointegration) in humans.
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