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Improved Retention and Bone-to-Implant Contact
with Fluoride-Modified Titanium Implants

Jan Eirik Ellingsen, DDS, PhD1/Carina B. Johansson, PhD2/Ann Wennerberg, DDS, PhD3/Anders Holmén, DDS4

Purpose: The purpose of the present study was to investigate whether a fluoride modification of the
titanium surface would have an effect on bone response after implantation. Materials and Methods:
Titanium-oxide–blasted titanium implants with and without fluoride modification were investigated in a
rabbit tibia model. Quantitative analysis of surface roughness, biomechanical interlocking, and in vivo
tissue reactions in rabbit bone at 1 and 3 months after placement were compared. Results: The fluo-
ride-modified test implants had a slightly smoother surface (Sa: 0.91 ± 0.14 µm) than the unmodified
control implants (Sa: 1.12 ± 0.24 µm). Significantly higher removal torque values (85 ± 16 Ncm vs 54 ±
12 Ncm) and shear strength between bone and implants (23 ± 9 N/mm2 vs 15 ± 5 N/mm2) were mea-
sured for the fluoride-modified implants after 3 months. The histomorphometric evaluations demon-
strated higher bone-to-implant contact for test implants at 1 month (35% ± 14% vs 26% ± 8%) and 3
months (39% ± 11% vs 31% ± 6%) after placement. Discussion: Implant surface modification with flu-
oride may result in morphologic and physiochemical phenomena that are of significance for the bone
response. Another possible explanation for the findings in the present study is that a surface modifica-
tion changes the surface chemical structures to be more suitable for bone bonding. Conclusion:
Based on the biomechanical and histomorphometric data, the fluoride-modified titanium implants
demonstrated a firmer bone anchorage than the unmodified titanium implants. These implants
achieved greater bone integration than unmodified titanium implants after a shorter healing time.
(More than 50 references.) INT J ORAL MAXILLOFAC IMPLANTS 2004;19:659–666
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Commercially pure titanium has been used for
several years as the material of choice for den-

tal and noncemented orthopedic implants. As docu-
mented in a number of animal experiments, this
material has a high degree of biocompatibility.1–6

Clinical success has also been reported when treat-

ing single and multiple tooth loss with dental
implants made of commercially pure titanium.7–10

In these reports the use of titanium dental implants
most often refers to treatment protocols with rela-
tively long healing periods of 3 to 6 months. During
the healing period the patient has reduced comfort
and, in many cases, severe problems with wearing a
temporary prosthesis. For orthopedic use, a 3- to 6-
month healing period is unacceptable and limits the
potential use of noncemented titanium implants.

To improve the favorable biologic response to
titanium, different implant surface modifications
have been introduced. These include modifications
of the chemistry and topography of the implant sur-
face, such as hydroxyapatite (HA) coating, and
modifications of just the surface topography, such as
blasting and acid-etching. Significant results have
been obtained through these modifications of the
surface topography. The great majority of published
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articles have reported increased bone fixation and
increased bone-to-implant contact for rougher
implant surfaces compared to polished, milled, or
turned surfaces.11,12 However, very rough surfaces
seem to have a negative effect on the bone-to-
implant contact, which indicate that there is an
optimal surface topography for a favorable bone
response.13–16 Excellent clinical outcomes after 5
years of loading were reported in a study of
enlarged implants whose surfaces had been modi-
fied by with abrasive blasting with titanium oxide
(TiO2) particles (TiOblast; Astra Tech, Mölndal,
Sweden).10,17–19 Although in vitro and in vivo stud-
ies claim improved results with an increased surface
roughness, the mechanisms behind these findings
still have not been verified.

A tight relation between bone and titanium
implant surfaces has been reported.20–23 Tissue
reactions following implantation are influenced by
the physiochemical properties of the implant sur-
face. Modifications of the surface oxide layer may
thus influence the biologic response following
implantation, which may enhance the quality and
speed of the bone-to-implant healing process.24 It
has been reported that surface modification with
fluoride significantly increased the retention of con-
ical titanium implants in rabbits after 4- and 8-week
healing periods.25 When observed using light
microscopy, the fluoride-modified implant surfaces
appeared more firmly attached to bone than
unmodified surfaces. In an in vitro study, fluoride-
modified titanium surfaces adsorbed calcium phos-
phate (CaP) crystals from a calcium- and phos-
phate-saturated solution.26 This phenomenon could
not be observed for unmodified surfaces. These
observations indicate that fluoride-modified sur-
faces have properties that may be beneficial for
bone healing after implant placement.

The aim of the present study was to compare
TiO2-blasted titanium implants with and without
fluoride-modified surfaces with respect to bone-to-
implant contact, bone area in threads, and removal
torque resistance in rabbit tibia 1 and 3 months
after placement.

MATERIALS AND METHODS

Implants
Screw-type implants (n = 80) with an external diam-
eter of 3.5 mm and a total length of 8 mm were
turned from commercially pure titanium (grade 4).
The implant surfaces were blasted with TiO2 parti-
cles. All implants went through a cleaning process
in an ultrasonic bath. The test implants (n = 40)

went through an additional cleaning process includ-
ing diluted hydrofluoric acid. 

Surface Analysis
Three test and 3 control implants were subjected to
surface analysis with optical profilometry (Top-
Scan3D; Heidelberg Instruments, Heidelberg, Ger-
many). The instrument and evaluation method has
previously been described by Wennerberg and col-
leagues.27 All measurements were performed on an
area 245 � 245 pm, and 9 areas on each implant
were analyzed (3 top, 3 valley, and 3 flank areas).
Mean values of the measurements performed were
calculated for each implant surface. Removal of
errors in form and waviness was performed with a
50 � 50-µm Gaussian filter. The parameters evalu-
ated were the average height deviation from the
mean plane (Sa), measured in µm; the average dis-
tance between surface irregularities (Scx) in spatial
direction, measured in µm; and the surface devel-
oped area ratio (Sdr), ie, 3D/2D, expressed as a ratio
or a percentage.

Animals and Anesthesia
The animal ethics committee at Göteborg Univer-
sity approved this study. Twenty male New Zealand
white rabbits (mean age 9 months) were included in
the study. Anesthesia was administered via intramus-
cular injections of Hypnorm (Johnson & Johnson/
Janssen-Cilag, Saunderton, England) at a dose of 0.5
mL/kg/animal and intraperitoneal injections of 0.5
mL/animal of diazepam (Stesolid Novum, A/S
Dumex, København, Denmark). Additional injec-
tions were given when needed. Xylocaine (l0
mg/mL, AstraZeneca, Södertälje, Sweden) was
administrated for local anesthesia. The animals were
euthanized through an intravenous overdose of Pen-
tobarbitalium (Apoteksbolaget, Uppsala, Sweden).

Surgery
Following anesthesia, the skin was shaved and
cleaned with chlorhexidine. A local anesthetic agent
was then injected. The skin, fascia, and periosteum
were opened separately and gently pulled aside to
expose the implantation areas. Preparations of
monocortical implant sites were made through a
sequential drilling procedure according to the Astra
Tech protocol. Under aseptic conditions, 2 test
implants were placed in the tuberosity of one tibia
and 2 control implants were placed in the other.
The implants were placed 5 mm apart, with 1 or 2
threads above the bone margin. The fascia was
sutured with silk 3-0 and the skin with Vicryl 5-0
(Ethicon, Somerville, NJ). The periosteum was not
replaced or sutured.
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The animals were divided into 2 groups of 10,
group A and group B. Animals in group A were
given a healing period of 1 month following implant
placement, whereas animals in group B were given a
3-month healing period.

Quantitative Tests and Specimen Preparation
One implant in each leg was subjected to removal
torque tests.28 The square-headed implants were
connected to the removal torque jig via a special
adapter, and the torque necessary to loosen the
implant was measured in Ncm. The removal torque
test was performed with electronically controlled
equipment (involving a strain gauge transducer) to
limit the influence of human error. Since 1994, this
method has been used routinely at the Handicap
Research Institute at Göteborg University.29–33 The
remaining implants were retrieved en bloc with sur-
rounding tissue followed by immersion in 4% neu-
tral buffered formaldehyde. After a decalcification
process, the samples were cut and ground sections
made in the long axis of the implant.34,35 Ten-µm-
thick undecalcified and toluidine blue–stained sec-
tions were made.28,35 Computer-based histomorpho-
metric quantification was carried out in a Leitz
Aristoplan light microscope (Wetzlar, Germany)
with a 10� objective and a zoom of 2.5�, which
allowed the investigator to perform all measure-
ments directly in the eyepiece of the microscope.
The quantifications involved bone-to-metal contact
and bone area evaluations for all threads as well as
for the 3 best consecutive threads in the cortical
region (ie, the 3 threads with the most bone-to-
implant contact). Based on removal torque value,
length of the implant in cortical bone, and the bone-
to-metal contact ratio, interfacial shear strength in
N/mm2 was calculated for the 3-month samples.36,37

Length of the implant in cortical bone was measured
on radiographs taken from cut-and-ground sections
of the removal torque tested implants, whereas the
bone-to-metal contact was deduced from the histo-
morphometric results of the implants that were not
unscrewed. The following formula was used:

Interfacial shear strength = T
� � d � rl � l � bmc

where T = loosening torque in Nmm, d = mean
diameter of the implant, rl = lever arm, l = length of
the implant in cortical bone in mm, and bmc =
bone-to-metal contact ratio.

Statistics
The statistical evaluations of biomechanical and his-
tomorphometric data were tested with the
Wilcoxon signed rank test. Data were considered
significant if P was less than or equal to .05.

RESULTS

Surface Characterization
The fluoride-modified and control surfaces both
demonstrated isotropic properties, ie, they lacked
any dominant direction of the structure (Fig 1). The
fluoride-modified implant surfaces had reduced
peak heights compared to the control surfaces, ie,
they were slightly smoother (Sa was 1.12 ± 0.24 µm
for unmodified implants vs 0.91 ± 0.14 µm for fluo-
ride-modified implants). Furthermore, the control
surface had an increased surface area of 34% com-
pared with a totally flat plane; whereas the corre-
sponding value for the test surface was 21%. Fur-
thermore, a slightly longer average wavelength (Scx)
was found on the test surface (Table 1).
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Fig 1 Digital images showing the struc-
tures of the flank areas of control (left) and
test (right) titanium implant surfaces. Both
the control and the test implants had TiO2-
blasted surfaces; the test surfaces were also
modified with fluoride. The images were pro-
duced by TopScan 3D. Each red or white sec-
tion of the bars along the edges represents
10 µm.

Table 1 Surface Characterization of the
Implants (Mean ± SD)

Implant Sa (µm) Scx (µm) Sdr

Fluoride-modified 0.91 ± 0.14 11.71 ± 0.83 1.21 ± 0.04
Control 1.12 ± 0.24 11.33 ± 1.00 1.34 ± 0.08

Sa = average height deviation from the mean plane; Scx = average dis-
tance between surface irregularities; Sdr = surface developed area ratio.
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Removal Torque and Interface Shear Strength
Implants in group A demonstrated a mean removal
torque of 31 ± 11 Ncm for the fluoride-modified
implants compared to 27 ± 8.5 Ncm for the control
implants. The difference between the 2 groups was
not statistically significant. The removal torques for
the implants in group B (3 months) demonstrated
increased retention. The fluoride-modified implants
had a mean removal torque of 85 ± 16 Ncm, which
was significantly higher (P = .005) than that of the
control group (54 ± 12 Ncm).

The mean shear strength calculated for the fluo-
ride-modified group (23 ± 9 N/mm2) was signifi-
cantly greater than that calculated for the control
group (15 ± 5 N/mm2; P = .019) (Table 2).

Histomorphometry
Group A. The bone-to-metal contact for all threads
following a 1-month healing period was a mean of
35% ± 14% for the fluoride-modified implants and
26% ± 8% for the control implants. This difference
was statistically significant (P = .037). The mean
bone contact for the 3 best consecutive threads in
the cortical region was 55% ± 15% for the fluoride-
modified implants and 47% ± 10% for the control
implants; this difference was not statistically signifi-
cant (Table 3).

Comparisons of the bone area in all threads, as
well as in the 3 best consecutive threads, revealed
similar mean percentages (Table 4).

Group B. The bone-to-metal contact for all
threads following a 3-month healing period was a

Table 2 Removal Torque and Shear Strength, Mean ± SD
(Range)

Removal torque Shear strength

Group Ncm P N/mm2 P

1-month healing period
Fluoride-modified 31 ± 11 (14–55) NS — —
Control 27 ± 8.5 (14–42) —

3-month healing period
Fluoride-modified 85 ± 16 (60–114) .005 23 ± 9 (11–49) .019
Control 54 ± 12 (41–79) 15 ± 5 (8–23)

NS = not significant.

Table 3 Percentage of Bone-to-Metal Contact, Mean ± SD
(Range)

Fluoride-modified Control
Group implants implants P

1-month healing period
All threads 35 ± 14 (15–52) 26 ± 8 (9–36) .04
3 best 55 ± 15 (34–80) 47 ± 10 (24–59) NS

3-month healing period
All threads 39 ± 11 (16–65) 31 ± 6 (22–41) .05
3 best 70 ± 11 (51–82) 53 ± 10 (34–67) .005

NS = not significant; 3 best = the 3 consecutive threads with the most bone-to-metal con-
tact.

Table 4 Percentage of Bone Area, Mean ± SD (Range)

Fluoride-modified Control
Group implants implants P

1-month healing period
All threads 29 ± 4 (24–36) 29 ± 5 (21–38) NS
3 best 55 ± 9 (40–67) 56 ± 11 (37–73)             NS

3-month healing period
All threads 31 ± 8 (20–47) 39 ± 15 (22–69) .03
3 best 54 ± 13 (35–71) 68 ± 13 (42–84) .04

NS = not significant; 3 best = the 3 consecutive threads with the most bone-to-metal con-
tact.
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mean of 39% ± 11% for the fluoride-modified group,
which was significantly greater (P = .049) than that of
the control group (31% ± 6%). The mean percentage
as calculated using the 3 best consecutive threads in
the cortical region was 70% ± 11% for the fluoride-
modified samples compared to 53% ± 10% for the
control group (P = .005) (Table 3).

The mean percentage of bone area in all threads
was 31% ± 8% for the fluoride-modified samples
compared to 39% ± 15% for the control samples 
(P = .028). The mean percentage of bone area in the
3 best consecutive threads in the cortical region was
54% ± 13% for the fluoride-modified samples com-
pared to 68% ± 13% for the control samples 
(P = .036) (Table 4).

Qualitative Observation
For most of the implants with fluoride-modified
surfaces in group B, a rather loud clicking sound
was heard when the implants were loosened to test

removal torque. This was not demonstrated for the
control group, nor was it demonstrated after 1
month of healing (ie, for group A).

The 1-month samples revealed a callus formation
in the periosteal region, and newly formed bone
could be observed in the endosteal part. There was
a clear demarcation line between the old cortical
bone and the newly remodeled bone inside the
threads for both test and control sections. No quali-
tative differences could be observed.

The 3-month samples revealed the presence of
more mature bone compared to the 1-month group
(Figs 2 and 3). Periosteal bone tissue formation
could be observed on the nonthreaded part toward
the implant head on both the fluoride-modified and
control implants. The fluoride-modified implants
seemed to be covered by a thin collar of bone, out-
side of which there were marrow spaces, whereas in
the control sections a larger amount of the threads
were filled with mature bone. Irrespective of the

Fig 2 Stained, undecalcified cut-and-
ground 10-µm-thick sections of (left) an
unmodified titanium implant blasted with
TiO2 particles 1 month after placement in
rabbit cortical bone and (right) an implant
with a TiO2-blasted and fluoride-modified sur-
face 1 month after placement in rabbit corti-
cal bone. The newly formed and immature
bone being formed in the periosteal and
endosteal areas appears darker than the old
cortical bone. Bone remodeling activity can
be observed in the bone inside the threads.
The distance between the threads is 600 µm
(toluidine blue mixed with pyronin G). 

Fig 3 Stained, undecalcified cut-and-
ground 10-µm-thick sections of (left) an
unmodified titanium implant blasted with
TiO2 particles 3 months after placement in
rabbit cortical bone and (right) an implant
with a TiO2-blasted and fluoride-modified sur-
face 3 months after placement in rabbit cor-
tical bone. The newly formed and immature
bone being formed in the periosteal and
endosteal areas appears darker than the old
cortical bone. Bone remodeling activity can
be observed in the bone inside the threads.
The distance between the threads is 600 µm
(toluidine blue mixed with pyronin G).
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type of implant surface, one could observe multinu-
cleated giant cells.

DISCUSSION

A significant increase in the retention of implants in
bone has been observed in favor of TiO2 grit–blasted
implants compared to turned implants12,17,38,39

Ellingsen demonstrated improved retention for fluo-
ride-treated turned titanium implants compared to
untreated turned implants.25 Significantly greater
retention has also been reported for TiO2-blasted
implants with a fluoride-modified oxide surface
layer.40 In this study, bone was attached to the
implant surface after the removal torque of the
implants had been tested. In the present study TiO2-
blasted implants, treated in diluted hydrofluoric acid,
demonstrated a significantly better bone response
than TiO2-blasted implants not exposed to the
diluted hydrofluoric acid treatment. Fluoride-modi-
fied implants demonstrated greater shear strength
and an increased bone-to-metal contact ratio. 

The fluoride-modified implants revealed slightly
smoother surfaces with respect to height deviation as
compared to the control samples. However, the aver-
age wavelength increased for the fluoride-modified
implants. This was interesting since for most surfaces,
a decrease in Sa is often followed by a decrease in
Scx.13,41 Several experimental studies have shown a
positive correlation between an increased height devi-
ation and bone fixation11,16,42,43; also within in the
range observed in the present study.27,41,44,45 How-
ever, in this study it was not possible to confirm such
a finding, indicating that other surface properties of
the fluoride-modified implants may play more impor-
tant roles in bone-to-implant retention than surface
roughness as demonstrated by the Sa parameter alone.
One possibility may be that the wavelength also is an
important factor when characterizing the surface
roughness and its role in bone-implant integration.
Other surface morphologic and physiochemical phe-
nomena, which were not identified by the methods
used in the present study, may also be of significance.

Another possible explanation for the findings in
the present study is that surface modification with
fluoride changes the surface chemical structures,
making them more suitable for bone bonding. The
formation of fluoridated HA and fluoroapatite in
calcified tissues has been documented.46,47 An
increased seeding rate of apatite crystals, stimulation
of osteoprogenitor cells, elevation of the alkaline
phosphatase activity, and enhancement of the incor-
poration of newly formed collagen into the bone
matrix are all reported effects of fluoride in calcified

tissue.48–50 These factors may help improve the
bone-to-implant interface. Incorporation of fluoride
in the surface oxide layer may then aid the bonding
of bone cells and calcified tissue to the implant sur-
face.51 Increased nucleation activity by CaP on the
surfaces of titanium implants with a fluoride-modi-
fied oxide layer has been demonstrated in vitro; such
an effect with increased affinity for calcium and
phosphate ions may also be true in an in vivo situa-
tion.26 It could also well be that the small morpho-
logic surface changes that were observed on the flu-
oride-modified implants compared to the control
implants had a beneficial effect on the bone healing.
Even though the fluoride-modified surface had
lower Sa values, this minor change in morphology,
as detected with these techniques, may have had a
major biologic input. 

Although a significantly higher bone-to-metal
contact was recorded after 1 month, this was not
reflected by a significant increase in removal torque.
This can be explained by the fact that the newly
formed bone was not mature and may thus not have
enough strength to retain the implants in bone
when the torque forces were applied. Three months
after placement, the new bone formed around the
implants in the test group was more organized and
matured, and thus had a higher capacity to with-
stand the removal torque force. This could explain
the significantly higher removal torque values
recorded for the fluoride-modified group after a 3-
month healing period.

No significant difference in percentage of bone
area in the threads was found at 1 month, but after
3 months the control samples had a significantly
higher percentage of bone in the threads. Since
these implants had less bone-to-implant contact,
the increased bone mass at a distance from the
implant surface may be explained as a biomechani-
cally regulated compensation in bone support.

CONCLUSION

In the present study, titanium implants with a fluo-
ride-modified TiO2 surface had improved biomechan-
ical anchorage in bone compared to titanium implants
with an unmodified TiO2 surface. Fluoride-modified
implants also achieved greater bone integration than
unmodified titanium implants after a shorter healing
time. The continuous demand to reduce the period
between implant placement and loading, as well as as
widened indications for implant operations with
regard to bone quality, require improved implants.
Fluoride-modified titanium implants have promising
prospects for improved clinical results.
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