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Early Tissue Reaction at the Interface of 
Immediately Loaded Dental Implants

Ulrich Meyer, MD, DMD, PhD1/Hans-Peter Wiesmann, Phys1/
Thomas Fillies, MD, DMD2/Ulrich Joos, MD, DMD, PhD3

Purpose: The treatment of patients with early or immediately loaded dental implants has renewed
interest in the behavior of osteoblasts at the implant surface under load. A newly designed dental
implant indicated for immediate loading was tested in vivo for early stages of osteoblast behavior at
the implant surface. Materials and Methods: Thirty-two implants were placed in the mandibles of 8
minipigs. Half of the implants (n = 16) were immediately loaded under occlusal contacts, and implants
placed in non-occlusal relations served as a control. Results: All implants, except 1 that showed signs
of tissue infection, healed uneventfully and were stable throughout the experimental period. Ultrastruc-
tural analysis of mandibular specimens revealed an intimate attachment of osteoblasts to the material
surface beginning as early as day 1. Application of either occlusal or non-occlusal load did not alter
the phenotypic morphology of the attached osteoblasts. Transmission electron microscopy and x-ray
diffraction analysis demonstrated a direct contact of bone-like minerals over the whole implant sur-
face with no signs of crestal hard tissue alteration. Electron diffraction analysis showed a slight
release of titanium from the implant side. Discussion: These results indicate that immediate loading of
specially designed dental implants can be performed without disruption of the titanium/bone interface
or disturbance of osteoblast physiology in the early loading phase. Conclusion: Immediate loading pro-
tocols can be performed without disturbance of normal bone biology. (INT J ORAL MAXILLOFAC

IMPLANTS 2003;18:489–499)
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The long-term success of osseointegrated
implants in the treatment of completely and

partially edentulous patients with a sufficient
amount and quality of bone has been well docu-
mented in the literature.1–3 It has generally been
thought in implant dentistry that osseointegration

requires a healing period of at least 3 months in the
mandible and 5 to 6 months in the maxilla.4–7 The
rationale for choosing a delayed loading period was
that premature loading resulted in fibrous tissue
encapsulation rather than direct bone apposition.7,8

It has been hypothesized that necrotic bone at the
implant bed border is not capable of load bearing
and should first be replaced by new bone.4,7,9

Roberts and coworkers assumed that rapid remodel-
ing of the dead bone layer compromises the
strength of the osseous tissue supporting the bone-
implant interface and that the integrity of the
periosteal margin may be threatened by undermin-
ing of the remodeling process of adjacent bone dur-
ing the healing period.10,11 The release of material
particles is another factor that has been suggested to
impair bone physiology in the early remodeling
stage.12,13

Therefore, experimental work was performed to
investigate the hypothesis that osseointegration can
be achieved when healing occurs under mechanical
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load. This issue has been addressed by several
authors,14–21 and a review of such evidence was
given by Szmukler-Moncler and associates.22 In
addition, retrieved human samples of immediately
loaded implants18,20,23 substantiate the hypothesis
that osseointegration can be achieved. Recent stud-
ies have indicated that although premature loading
has been interpreted as inducing fibrous tissue
interposition, immediate loading per se is not nec-
essarily responsible for fibrous encapsulation. It is
the excess of micromotion during the healing phase
that interferes with bone repair.

At present, much is known about the impact of
loading on peri-implant bone.24–27 Some in vivo
studies have indicated that load over a certain
threshold may cause marginal bone loss28,29 or even
loss of implants,30,31 while others have suggested
that certain loads may increase the amount of min-
eralized bone at the interface and in the peri-
implant bone.10,32–34 Recent research has confirmed
that the impact of loading on bone depends on
motion in the microenvironment of the bone tissue.
Lanyon demonstrated that bone remodeling results
from strains in the microenvironment of bone tis-
sue.35 It has been shown that bone remodeling and
collagen mineralization are directly related to the
strains applied.36 Frost proposed a minimum effec-
tive strain (500 µ�) necessary for bone maintenance
from hyperphysiologic strains (� 4,000 µ�) leading
to long-term bone failure.37 Strain is defined as the
relative elongation of cells and is calculated by the
ratio between the initial cell length and the final
length obtained. Therefore, the aim of this study
was to investigate early osteoblast reactions at tita-

nium implants designed to elicit homogeneous
physiologic strains at the implant surface. Special
emphasis was placed on the ultrastructural features
of osteoblasts and the extent of mineral formation at
early stages of cell/implant interactions under dif-
ferent loading conditions. 

MATERIALS AND METHODS 

Implant Design
The implants used in this study were newly devel-
oped conical screw-type implants with a length of
10 mm and a diameter of 4.1 mm at the shoulder of
the implant (Fig 1a). The implants were made of
pure titanium with a characteristic progressive
thread design. The threads, as well as the curvature
of the implant, provided a homogeneous strain dis-
tribution38 over the whole implant surface under
vertical loading conditions (Fig 1b). A numeric
model was generated as a guideline for micromo-
tion assessment under masticatory load. The gross
morphology of the implants was designed with the
help of finite element analysis (FEA). For these cal-
culations, the exact size of the implant placement
and the anatomy of the mandible were taken into
account (Fig 2a). Previous investigations using FE
models demonstrated that such an implant design
leads to micromovement of a magnitude of 2,000 to
3,000 µ� in the bone layer adjacent to the implant
surface (boundary conditions: 300 N vertical load,
normal bone density, direct implant/bone con-
tact).39,40 Microgrooves (depth 20 µm, width 40 µm)
were created at the bottom and shoulder of the

Fig 1a (Left) SEM of the implant used in this study (length 10
mm, shoulder diameter 4.1 mm). Microgrooves were located at
the shoulder and tip of the implant.

Fig 1b (Below) Finite element model of strain distribution
under vertical load. The model corresponds to the implant and
bone anatomy at the implant site.
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implant to allow for osteoblast ingrowth. Cell cul-
tures of osteoblasts were carried out as previously
described.41

Experimental Animals
Eight male Göttinger minipigs, 14 to 16 months of
age and with an average body weight of 35 kg, were
used in this study. Minipigs were selected to ensure
adequate alveolar ridge size and height for implant
placement.42 Both second premolars of the porcine
mandible were extracted, and the extraction sites
were allowed to heal for 3 months before implant
placement. A total of 32 implants were placed into
the mandibles of the minipigs. In accordance with
the experimental design, 2 treatment groups were
tested in each animal: 2 immediately loaded
implants (test group) placed in occlusal contact (sec-
ond premolar position) and 2 implants (control
group) placed in a non-occlusal relation (primate
gap) (Fig 2b). This study was approved by the Ani-
mal Ethics Committee of the University of Münster
under the reference number G 90/99.

Surgical Procedure
All surgery was performed under sterile conditions
in a veterinary operating theater. The animals were
sedated with an intramuscular injection of ketamine
(10 mg/kg), atropine (0.06 mL/kg), and stresnil
(0.03 mL/kg). Tooth debris and calculus of the
residual dentition were systematically removed
before implant placement. A mucosa punch was
used to expose the bone area, and bone sockets were
made with a bur using continuous external sterile
saline irrigation to minimize bone damage caused
by overheating. Bone preparation was carried out
with standard instruments provided in the implant
kit according to the manufacturer’s instructions for
placement of 10-mm-long implants. The screw-
type implants were carefully placed by manual tap-
ping until they were fully embedded in the bone.
After placement, the shoulder of each implant was 1
mm below the ridge crest to allow circumferential
bone growth. Healing caps were inserted to allow
soft tissue healing. Special care was taken to load
implants vertically by a 1-point contact and to avoid
transversal overload. The occlusion was tested by

Fig 2b Scheme of implant placement. The distal implant was
placed under occlusal contact and the mesial implant under non-
occlusal contact. 

Fig 2a Three-dimensional computed tomogram of the skull.
Bony dimensions at the implantation site approximated the bone
anatomy modeled in the FEA model. 

Fig 2c Alveolar specimen after 14 days of load application. Fig 2d Probe processing by separation of the sample with a
blade. 
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occlusal foil and, if necessary, refined by a diamond
bur. 

The animals were inspected after the first few
postoperative days for signs of wound dehiscence or
infection and weekly thereafter to assess general
health. A systematic oral health care regimen was
performed during the experimental period. The
minipigs were fed a normal diet. On days 1, 3, 7,
and 14 of implant loading, 2 animals each were sac-
rificed with an overdose of T61 given intravenously.
Following euthanasia, mandibular block specimens
containing the implants and surrounding tissues
were dissected from all of the animals. The block
samples were sectioned by a saw to remove unnec-
essary portions of bone and soft tissue (Fig 2c).
Block samples containing the implants were first
divided into 2 halves, and then each sample was fur-
ther dissected with a blade (Fig 2d) to obtain a sam-
ple containing the implant embedded in the alveolar
bone and the corresponding bone sample detached
from the implant. Samples containing the implant
were used for scanning electron microscopic (SEM)
investigations, whereas the bone sections without
implant were prepared for element analysis, trans-
mission electron microscopy (TEM), and electron
diffraction analysis. 

SEM and TEM
For TEM, samples were harvested adjacent to the
shoulder, the body, and the tip of the implant. Tis-
sue samples were fixed in 100 mmol/L phosphate
buffer containing 2.5% glutaraldehyde (pH 7.4).
Specimens were dehydrated in a graded series of
alcohols and embedded in Araldite resin (EB Sci-
ences, Agawam, MA), and ultrathin sections of
about 80 nm were cut. The sections were stained
for 1 hour with 2% uranyl acetate followed by incu-
bation in Reynold’s lead citrate for 10 minutes. Sec-
tions were examined under a Philips CM10 electron
microscope (Amsterdam, The Netherlands) with an
acceleration voltage of 60 kV.

For SEM, glutaraldehyde-fixed specimens were
critical point–dried. Additionally, samples were
fixed in liquid nitrogen–cooled propane and cryo-
dried at –80°C. Samples were sputter-coated with
gold for histologic analysis and with carbon for ele-
ment determination. Specimens were examined
under a field-emission SEM (LEO 1530 VP,
Oberkochen, Germany) equipped with an EDX
analyzer (Ince Energy 200, Oxford, United King-
dom). Because of the technical problems involved in
assessing the mineralization process after chemical
fixation, cryofixed specimens were prepared.43 Ele-
ment analysis was performed in the bone layer adja-
cent to the bone/implant interface. 

Electron Diffraction Analysis
Electron diffraction analysis was carried out with a
Philips CM10 transmission electron microscope
using an acceleration voltage of 80 kV. For diffrac-
tion analysis, ultrathin sections were used. The con-
tact time of the ultrathin sections with the water in
the microtome was reduced to only a few seconds to
avoid dissolution of the crystals. Three positions
from each implant were used to investigate the min-
eral formation.

RESULTS

Clinical and Histologic Results
All but 1 of the implants healed uneventfully. At
placement and during loading, the implants
remained clinically immobile. One implant showed
signs of soft tissue infection related to a gingival
dehiscence occurring on day 3 after surgery. This
implant was, therefore, not considered in the analy-
sis. All implants were anchored monocortically. Dis-
section of the implant-containing bone by a blade
confirmed the clinical finding that the implants
were osseointegrated. There was intimate bone
contact over the whole length of the implant (Fig
3a). Typically, endosteal bone covered the implant
surface. Collagen fibers and osteoblasts made up the
bulk of the adjacent tissue layer, and the collagen
fibers appeared to be predominantly oriented per-
pendicular to the implant surface in the bulk bony
tissue (Fig 3b). Cells, extracellular matrix proteins,
and mineralized bone tissue were in direct contact
with the implant (Fig 3c). In contrast to the colla-
gen fibers in the original bone, which were oriented
perpendicular to the implant, newly synthesized
collagen in the vicinity of the surface appeared to
form a felt-like matrix parallel to the surface.

The histologic appearance of the occlusal loaded
implants (Figs 3a to 3c) and non-occlusal loaded
implants (Figs 3d to 3f) was comparable. Intimate
bone contact was present at the necks of implants.
Bone was interspersed in the microgrooves at the
shoulders and tips of the implants (Fig 3d). Typi-
cally, the cells were able to accommodate their
whole cell bodies in the microgrooves (Figs 3e and
3f). Probe processing by sample fracturing for the
electron microscopic investigations suggested that
the bond between the implant and the adjacent
bone layer seemed to mimic the bond in the bone
tissue itself. On the implant surface, cells and extra-
cellular matrix remained attached following separa-
tion from the enveloping bone (Figs 3b to 3f). 
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Cell Adhesion
SEM examinations revealed the stable attachment of
osteoblasts spread over the implant surface.
Osteoblasts at implant surfaces maintained their
typical morphology. Figure 4a shows a monolayer of
osteoblasts seeded onto the implant surface under
cell culture conditions, while cells attached to poly-
styrene served as a control (Fig 4b). Immunohisto-
chemistry of cells at the implant surface demon-
strated the synthesis of osteocalcin and osteonectin,
indicating the differentiated state of cells. Because of
the smooth implant surface, most cells expressed a
flattened morphology, which was seen also in the
samples harvested from the porcine mandibles. Cells
produced extracellular matrix proteins and remained
in intimate contact with the implant (Fig 5a). A firm
attachment of osteoblasts to the underlying implant

surface was observed and was evident at higher mag-
nifications. The cells usually exhibited a flat and
polygonal configuration, in an apparent attempt to
spread their cell body over the underlying surface.
From the beginning of occlusal loading, cells
attached directly to the titanium surface (Fig 5b) via
cell extensions surrounded by extracellular matrix
proteins. The surface of the implant was coated with
a network of proteins (Fig 5c). Some of the red
blood cells were extravasated and attached to the
proteins at the implant surface. At the implant sur-
face, extracellular fibrils (Fig 5c) with an organiza-
tion suggestive of a collagenous matrix were
observed. No difference was found between cell
adhesion to the implants in the test and control
groups. A disruption between the titanium surface
and the cell/matrix layer was not observed.

Figs 3a to 3f SEMs of implantation sites in porcine mandibular specimens at different magnifications. Bone-implant interfaces are
shown after 14 days of occlusal (Figs 3a to 3c) or non-occlusal loading (Figs 3d to 3f). 

Figs 4a and 4b SEMs of early osteoblast
adhesion (a) at the implant surface and (b)
on a polystyrene surface under cell culture
conditions. Seeded cells were cultured for
24 hours. Cell culture experiments were
performed as described by Meyer and
coworkers.41

a b c

d e f

a b



Patterns of Matrix Mineralization
In all bone samples, collagen fibers made up the
bulk of the extracellular space, as judged by TEM.
The assembly of collagen bundles seemed to be
directed predominantly toward the implant surface.
In specimens obtained from the implant surface,
cells were embedded in a mineralized collagen-rich
extracellular matrix (Figs 6a and 6b). Osteoblasts

located adjacent to the implant surface displayed all
signs of active cell function, including multiple
mitochondria and an extended rough endoplasmic
reticulum (Fig 6c). Figures 6d and 6e show charac-
teristic TEM features and electron diffraction
analysis patterns of mandibular specimens obtained
directly from the implant neck (Fig 6d) or the adja-
cent tissue layer (Fig 6e). There was mature crystal
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Fig 5a SEM of cell morphology on day 3
of load application in porcine mandibular
bone. 

Fig 5b Extracellular matrix deposition
resembled collagen assembly at the tita-
nium surface. 

Fig 5c An intimate bond between the cell
and the implant was visible at higher mag-
nifications. 

Figs 6a to 6f TEMs of the interfacial area (day 3 of occlusal load application).

Fig 6a Semithin section of the bone layer
adjacent to the implant shoulder.  I  =
implant. 

FIg 6b Extracellular mineral formation
(magnification �3,000). I = implant.

Fig 6c Ultrastructure of an osteoblast in
the layer adjacent to the implant surface
(magnification �6,300). 

Fig 6d Unstained section of collagen min-
eralization at the implant surface (magnifi-
cation �6,300).  I = implant.

Fig 6e Unstained section of collagen min-
eralization in the microenvironment of the
implant (magnification �6,300). 

Fig 6f Electron diffraction pattern of min-
eral formation adjacent to the implant sur-
face.
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formation at the implant surface (Fig 6f), as
detected by a typical diffraction pattern. No differ-
ence in the extent and nature of mineral formation
was seen between the test and control groups. On
an ultrastructural level, minerals displayed features
of complete extracellular matrix mineralization over
the whole experimental period at the entire implant
surface (shoulder, body, tip). In search of titanium
particles in the tissue layer adjacent to the implant
surface, the authors found only a slight release of
titanium from the implant (Figs 7a to 7c). High res-
olution of tissue morphology and element distribu-
tions in the layer adjacent to the implant confirmed
that cells and mineralized extracellular matrix com-
ponents at the implant surface lacked the presence
of morphologically detectable titanium particles
(Fig 7c). The ratio of calcium and phosphorus
reflected the composition of hydroxyapatite in the
bony tissue (Fig 7b). 

DISCUSSION

Insights into cellular processes occurring at the
implant/bone interface have contributed much to an
understanding of biocompatibility and will provide

a challenge to produce biomaterials with specific
and desired biologic responses.44,45 In this study, a
dental implant that was engineered to maintain nor-
mal osteoblast physiology and mineral deposition at
the implant surface under load was used. Given a
primary bond between the implant material and the
bony tissue, masticatory forces can be transmitted
directly to the underlying bone, thereby preventing
bone deformations that could result in adverse
motions between the implant and the bone. The
implant used in this study was designed to have a
homogeneous and physiologic strain distribution
(1,000 to 4,000 µ�) over the whole implant surface
under a vertical occlusal load of 300 N. Some
assumptions and limitations have been made in this
FE model with regard to the material properties
and model generation.39,40 Bone tissue (cortical and
trabecular bone) was assigned uniform isotropic
elastic properties, although in vivo, bone probably
exhibits a more complex situation. A number of in
vitro studies including FEA have reported peak
stress and strain magnitudes to occur in the mar-
ginal peri-implant bone after peak load
applications.46–50 It is tempting to extrapolate these
findings to explain peri-implant bone loss in vivo.
FEA used for the assessment of strains in the

Figs 7a to 7c EDX analysis of element composition in the bone layer adjacent to the implant surface. 

Fig 7a Tissue morphology after implant
removal.  

Fig 7c SEM and element distribution at higher resolution. The element distribution corresponded to the scan-
ning electron micrograph on the left. Cellular elements as well as mineralized extracellular matrix were visible at
the surface. 

Fig 7b Element composition as determined over the image
area (corresponding to Fig 7a). 
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microenvironment of bone is based on assumptions
that may not describe the in vitro strains accurately
in a mathematical sense. However, it has been pre-
viously demonstrated by in vivo strain gauge mea-
surements that FEA is, in principle, suitable for the
measurement of strain magnitudes under mechani-
cal loading.51,52

The behavior of osteoblasts and mineral forma-
tion at implant surfaces has been studied by various
groups, with the main focus on the biocompatibility
of these materials. However, these materials have
only rarely been subjected to mechanical loading,
and there is some debate as to the tolerable amount
of strain and the mechanical factors that govern the
process of bone remodeling. Research on bone for-
mation in orthopedic implants offered first insights
into osteoblast physiology and mineralization under
load, and a large amount of general research has
identified some of the critical steps of osteoblast
reactions in response to mechanical load.35,37,53,54 A
threshold of tolerated micromotion has been identi-
fied, somewhere between 500 and 3,000 µ�,37 that
leads to anabolic bone regeneration.

The results of the present study indicate that
immediate loading of specially designed screw-type
implants does not lead to disruption of the
implant/bone interface. There is a lack of agree-
ment as to why bone loss occurs during the early
healing phase and during function.55 Surgical
trauma has been regarded as one of the most com-
monly suspected etiologies proposed for early
implant failure,56 but signs of bone loss are not
commonly observed after implant surgery.14 In
1984, Eriksson and Albrektsson reported that the
critical temperature for implant site preparation was
47°C for 1 minute or 40°C for 7 minutes.57 When
the bone is overheated, risk of implant failure is sig-
nificantly increased. Overheating may be generated
by excessive pressure at the crestal region during
implant surgery. Matthews and Hirsch demon-
strated that temperature elevation was influenced
more by the force applied than drill speed.58 How-
ever, it was found that when both drill speed and
applied force were increased, no significant increase
in temperature was observed due to efficient cut-
ting.58,59 Some studies indicate that screw-type
implants placed using a modified minimally trauma-
tizing technique60 have been osseointegrated.61

Signs of tissue necrosis were not observed in the
present study by SEM and TEM. An atraumatic
surgical technique (high-speed bur, moderate pres-
sure) may be responsible for the observed results. A
screw-type implant design, as in the case of
osteosynthesis screws, enhanced a direct primary
bone/implant contact over the whole implant sur-

face. The present results are in agreement with the
findings of Rubin and McLeod, who demonstrated
that exposure to low-amplitude mechanical strains
can enhance the biologic fixation of implants.62

Additionally, the success of functionally stable
osteosynthesis systems indicates that load can be
transferred immediately to osteosynthesis screws
without loosening the screw/bone interface. In this
study, osteoblasts were found to be intimately
attached to the implant surface even when occlusal
loads were applied. Stable bone/implant contacts
were observed at the implant surface over a 14-day
loading period in both groups. The firm attachment
of osteoblasts to the implant surface was a character-
istic finding observed from the first day following
exposure to the artificial substrate. Osteoblasts were
able to accommodate their cell bodies in the mini-
grooves placed in the neck and tip area of the
implants. Minigrooves were manufactured in these
areas in an attempt to improve bone formation and
to enhance the overall surface area of implants. That
minigrooves have the ability to enhance formation
of bone-like tissue in vivo and in vitro has been
demonstrated by Chehroudi and coworkers.63,64

The present study revealed that osteoblast adhe-
sion to the implant surface was unimpaired, even
when implants were loaded by vertical occlusal
forces. At the ultrastructural level, the attached cells
displayed all features of active cell function. The
bony tissue, which consisted of both cells and min-
eralized extracellular matrix, was not detached from
the implant material, indicating a direct bond with-
out adverse motions between bone and implant. 

Most studies on bone deformation have
described micromotion in terms of a distance (µm)
and not in the biologic term µ�. The term micro-
movement is widely used in the literature, but has
not been well described. Only a few studies have
tried to measure micromovement directly in the
bony layer adjacent to the implant side, while most
studies on this issue have assessed micromotion at a
nearer or further distance from the implant place-
ment site.  

Cameron and associates found that limited
micromotion does not prevent bone ingrowth; on
the other hand, motions of approximately 200 µm
resulted in fibrous tissue integration instead of
bone ingrowth.65,66 Tolerance to micromotion was
also observed by Maniatopoulos and coworkers.67

Mastication following implantation was allowed
immediately and led to implant micromotions via
the periodontal ligament estimated to be in the 30-
µm range.68 The authors found that after 3 months,
porous cylinders were osseointegrated, while
screws were encapsulated by a fibrous membrane.



Their observations suggest that micromotion does
not systematically lead to fibrous tissue interposi-
tion and that tolerance to micromotion is design-
and/or surface-dependent. In a controlled micro-
motion model in the dog mandible, Pilliar and col-
leagues showed that micromotions of up to 50 µm
were tolerated for porous conical cylinders.69 The
threshold of tolerated micromotion was found to
be higher than 30 µm, the previously assumed
threshold.68 In a different controlled micromotion
model, Soballe and coworkers showed that micro-
motions of 150 µm were tolerated by calcium phos-
phate (CaP) –coated titanium alloy (TiAIV)
implants.70,71 Under the same loading conditions,
plasma-sprayed TiAIV implants (without the CaP
layer) were encapsulated in fibrous tissue. When
submitted to 500-µm micromotion, the CaP-coated
and non-coated TiAIV implants failed to osseointe-
grate.70 The authors showed that the threshold
level of tolerated micromotion lies between 50 and
150 µm for roughened bioinert surfaces. This and
other studies have suggested that the presence of a
CaP layer appeared to enhance tolerance toward
micromotion.16,71–75

In the case of dental implants, it is of major
importance for the bone-forming osteoblasts to not
only attach to the surface, but also to rapidly
deposit mineralized matrix on the surface of (or in
close apposition to) newly implanted material. This
swift deposition of bone is assumed to supply
mechanical stability to the implant, thus minimizing
motion-induced damage to the tissue at the implan-
tation site. 

The present study demonstrated formation of a
bone-like mineral over the whole length of the
implant. SEM and TEM investigations revealed a
direct bond between regularly mineralized collagen
fibers and the titanium surface. A fracturing of the
implant-containing alveolar bone showed that the
strength of the implant/bone bond seemed to be in
the same range as the bone matrix bond itself.
These findings are in accordance with the results of
Rubin and McLeod, who found a promotion of
bony ingrowth in titanium alloy cylinders by fre-
quency-specific, low-amplitude mechanical strain.62

A theoretical model for the role of strain energy
density in the initial mineralization of collagen tis-
sues was presented by Harrigan and Reuben and
used to derive a limit for the allowable strain mag-
nitudes in tissue-engineered biomaterials.76 Their
model incorporated the mechanical energy in calci-
fied tissue as time-varying loads introduced in ener-
getic arguments for mineralization. This approach
has ameliorated the prediction of strains critical for
the mineralization of calcifying biologic tissues.

Mineral formation at the implant site, as found
in the present study, may result from a low strain
level at the implant surface. Implant healing is often
compared to bone fracture healing. This is because
micromotions are known to positively influence
bone fracture healing, and the same may be relevant
for implant healing. It has been reported by Joos
and associates that optimal healing is achieved not
in the total absence of micromotion but in a distinct
mechanical environment that accelerates the
process of fracture healing.77 Bone submitted to
cyclic micromovements elicits a more physiologic
pattern of tissue regeneration than bone not being
stimulated mechanically. Thus, the early loading of
dental implants seems to function as a mechanical
stimulus for osteoblasts.78

CONCLUSIONS

The results of this study indicate that immediate
loading of biomimetically designed implants can be
performed without disturbance of the early osseoin-
tegration process in the minipig model. Cell adhe-
sion and direct mineral apposition were present at
the whole implant surface under estimated bone
strains lower than 5,000 µ�. Bone formation at the
implant surface may directly reflect the micromove-
ment below the critical strain level. Further studies
are necessary to evaluate quantitatively the bone
response at implant surfaces under various load
applications and to investigate the long-term out-
come of immediate loaded dental implants in a clin-
ical setting.
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