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Two Dental Implants Designed for 
Immediate Loading: A Finite Element Analysis

Laurent Pierrisnard, DDS1/Guy Hure, DDS2/Michel Barquins, DSc3/Daniel Chappard, Dr Med4

Purpose: The aim of this study was to evaluate by finite element analysis the influence of the design of
3 different dental implants on micromovements, cervical shearing stress intensity, and stress distribu-
tion after occlusal loading. Materials and Methods: The first investigated implant was a classical cylin-
der, the second was reinforced by 2 bicortical locking pins, and the third was an expanding dental
implant. The parameters analyzed were the implant’s geometry, the quality of the cancellous bone,
and the orientation of occlusal loading. Results: It was found that initial stability of the locking pin
implant was greater than the initial stability of the other investigated implant designs, regardless of the
quality of cancellous bone and orientation of occlusal loading; in low-rigidity cancellous bone, under a
horizontal load (500 N), decreasing displacement compared to those of the other investigated
implants was 16 µm. The apical expansion and locking pin implants exhibited favorable behavior
regarding the distribution and intensity of cervical shearing stresses; in low-rigidity cancellous bone,
under horizontal load, decreasing cervical stresses compared with those of the cylindric implant were
10 MPa for the apical expansion implant and 150 MPa for the locking pin implant. Discussion: For the
cylindric implant, stresses were concentrated in the neck region; for the apical expansion implant,
stresses were evenly distributed from the neck to the apex of the implant. For the locking pin implant,
stresses around the neck were moderate and appeared concentrated around the pins. Conclusions:
Initial stability of the pin implant was greater than that of the expanding implant, but the expanding
implant showed the most favorable stress distribution. (INT J ORAL MAXILLOFAC IMPLANTS 2002;17:
353–362)

Key words: biomechanics, dental implants, dental stress analysis, finite element analysis

Success with dental implant procedures largely
depends on the presence of osseointegration.

Brånemark’s protocol includes 2 separate proce-
dures. First, the implant is placed and submerged
under a hermetically sutured mucosa to permit
proper healing without risk of bacteremia in the
absence of any functional solicitation. Second, the

implant is uncovered, an abutment is attached, and
if osseointegration has occurred, a restoration can
be placed on the abutment. Several factors are
involved in achieving osseointegration. They
include metal composition,1–3 suitable implant
geometry,1,4–6 absence of overheating during site
preparation,1,7–9 adequate bone quality,10–12 and
absence of loading during the healing period.1,13

To eliminate the important psychologic and
functional handicap related to a 6- to 12-month
healing period,14 a 1-step surgical technique was
proposed by the ITI International Team for Oral
Implantology (Waldenburg, Switzerland) and has
achieved comparable success rates.10,15–19 This tech-
nique involves nonsubmerged implants, and loading
usually starts earlier than in the Brånemark tech-
nique. However, immediate loading raises the prob-
lem of micromovement, which when it exceeds 100
µm20,21 can induce fibrous tissue formation at the
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bone-implant interface instead of the desired bone
regeneration. Control of these micromovements is
possible in long-span prosthodontic designs where
several different implant abutments are rigidly
bound together.22–27 Adequate control is more haz-
ardous with single-tooth replacements, which have
been used more frequently in regular clinical prac-
tice.28,29 This comparative mechanical study by
finite element analysis (FEA) (linear elasticity) was
intended to evaluate 2 commercially pure (cp) tita-
nium implant systems designed to control micro-
movements after immediate loading, and to analyze
the stress intensity and distribution generated
throughout their structure. The 2 configurations
investigated in the present study were an implant
with a bicortical locking pin system and an expand-
ing implant. A classical threaded cylindric implant
served as a reference. 

MATERIALS AND METHODS

Implants
All implants were made of cp titanium grade 230

(Table 1) and their dimensions were similar (diame-
ter = 3.75 mm and length = 11.5 mm). A classical
cylindric implant served as reference (Figs 1a and
1b). Two new configurations were investigated in
the present study: (1) an implant with a bicortical
locking pin system (Figs 2a and 2b), and (2) an
expanding implant (Figs 3a and 3b). Design data
were obtained from Euroteknika (Paris, France).
Both configurations were designed to reduce micro-
movements generated through occlusal loading.

Finite Element Analysis
Calculation and visualization of stress, deformation,
and displacement of complex structures under simu-
lated forces were evaluated by FEA. Eight-nodal
isoparametric brick elements (tridimensional mod-
els) were constructed by use of Cadsap-Algor
(CADLM, Gif-sur-Yvette, France). In this study, all
materials that were isotropic and reacted with linear

elasticity were considered. This study did not take
into account viscoelastic response of the bony struc-
tures to occlusal efforts. Nevertheless, the finite ele-
ment method permits comparison of the influence
of various parameters, such as geometric configura-
tions of the implants.

The classical threaded cylindric implant served as
a reference model (Figs 1a and 1b) and was com-
pared to both the bicortical locking pin implant
(Figs 2a and 2b) and the expanding implant (Figs 3a
and 3b). To preserve simplicity, the prosthetic
crown was not modeled. The abutment, screwed
onto the implants, was identical for the 3 investi-
gated designs and was put under 500-N loads. This
intensity was chosen because it is the mean maximal
force that the stomatognathic device is able to
develop in the molar region.31 The 3 modeled
implants were placed in an osseous base (fragment
of mandibular arch) made of a cortical bone enve-
lope around cancellous bone (Figs 4a to 4c). The
osseous base was considered to be totally embedded
(boundary conditions). The link between the
implant neck and the cortical bone can simulate
clinical reality only if it is assumed that osseointe-
gration (interfacial rigidity) has occurred in the
region of the threads at the neck of the implant.
Therefore, a virtual membrane (with a negligible
width) was assumed around the implant neck, so as
to limit interfacial rigidity while keeping the neck of
the implant in intimate contact with the cortical
bone (Fig 5). 

The results were to be moderated given that it is
impossible to quantify the difference, from a strictly
mechanical point of view, between osseointegration
and the immediate stability observed clinically. The
investigated parameters were: geometry of the
implant, quality of cancellous bone, and orientation
of the occlusal load (axial force, oblique force at an
angle of 45 degrees, and horizontal force at a right
angle to the axial force). Concerning the locking pin
implant, oblique and horizontal forces were applied
following the buccolingual (BL) direction (ie, paral-
lel to the pins), then following the mesiodistal (MD)
direction (at a right angle to the pins). The method
required that physical properties of the materials
under study be introduced in the model: E, Young’s
modulus, and �, Poisson’s ratio. For titanium, the
parameters have been validated in the literature
(Table 2).32 However, for bony structures, different
values are available, but the most commonly used in
the literature were inserted in the model.33,34 The
characteristics of cancellous bone are known to be
dependent on bone micro-architecture, an impor-
tant factor in bone quality, and bone quality stands
out as the single greatest determinant in implant

Table 1 Composition of the 3 implants

Element Percent composition

Titanium 99.739
Iron 0.100
Oxygen 0.130
Carbon 0.020
Nitrogen 0.008
Hydrogen 0.003
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Fig 1a Cylindric implant. Fig 1b Finite element model of the cylindric implant, diameter
= 3.75 mm, length = 11.5 mm.

Fig 2a Implant with a locking pin system (Secure, Euroteknika). Fig 2b Finite element model of the locking pin implant, diame-
ter = 3.75 mm, length = 11.5 mm.

Fig 3a (Left) Expanding implant in the non-expanded position
(Diagnose, Euroteknika).

Fig 3b Finite element model of the expanding implant, cervical
diameter = 3.75 mm, length = 11.5 mm, apical diameter = 6 mm.
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Fig 4a Cylindric implant (5,000 ele-
ments).

Fig 4b Locking pin implant (5,568 ele-
ments).

Fig 4c Expanding implant (7,008 ele-
ments).

Figs 4a to 4c Buccolingual section view of the different types of implants.

Fig 5 View of the bone-implant interface in the cervical region.
Osseointegration (interfacial rigidity) is effective only in the initial
part of the threading (a). A virtual membrane (b) limits interfacial
rigidity. 

Table 2 Mechanical Properties Used in the Study

Cancellous bone 

Titanium Cb1 Cb2 Cb3 Cortical bone

Young’s modulus 140 2.50 1.5 0.5 14
(E)(GPa)

Poisson’s ratio 0.3 0.3 0.3 0.3 0.35
(�)



C
O

P
Y

R
IG

H
T

 ©
 2002 B

Y
 Q

U
IN

T
E

S
S

E
N

C
E

 P
U

B
LIS

H
IN

G
 C

O
, IN

C
.P

R
IN

T
IN

G
 O

F
 T

H
IS

 D
O

C
U

M
E

N
T

 IS
 R

E
S

T
R

IC
T

E
D

 TO
 P

E
R

S
O

N
A

L U
S

E
 O

N
LY.N

O
 PA

R
T

 O
F

 T
H

IS
 A

R
T

IC
LE

 M
AY

 B
E

R
E

P
R

O
D

U
C

E
D

 O
R

 T
R

A
N

S
M

IT
T

E
D

 IN
 A

N
Y

 F
O

R
M

 W
IT

H
O

U
T

 W
R

IT
T

E
N

 P
E

R
M

IS
S

IO
N

 F
R

O
M

 T
H

E
 P

U
B

LIS
H

E
R

.

The International Journal of Oral & Maxillofacial Implants 357

PIERRISNARD ET AL

loss. Types I, II, and III bone provide good mechan-
ical strength. Type IV bone has a thin cortex and
poor medullary strength with low trabecular den-
sity.35 Depending on the bone rigidity (high or low),
the data exhibited are those of extreme maximal
(cancellous bone 1 [Cb1], E = 2.5 GPa) or minimal
(Cb3, 0.5 GPa) values. An intermediate value was
also chosen (Cb2, E = 1.4 GPa). For all 3 bone
types, Poisson’s ratio = 0.3.36,37 The program dis-
played displacements in all 3 directions of an ortho-
normal space (dy, dx, dz). Resultants of the displace-
ments (ds) were collected for all 3 models at an
arbitrarily chosen point at the neck of the implant.
The von Mises stress intensities were recorded in
the neck region of the implant.

RESULTS 

For each implant design, the loading process gener-
ated immediate movement. The amplitude and
direction of this movement depended on the direc-
tion of the load and the rigidity of the osseous base
receiving the implant. The method previously
described assumes that the implant is intimately in
contact with the bone, thereby simulating osseoin-
tegration or the immediate stability clinically
observed. Results appear in Table 3. 

Relationship Between Implant Displacement
and Cancellous Bone Quality
Under an axial load, and compared to the implant
displacement in high-rigidity bone (E = 2.5 GPa)

used as a reference, the displacement of implants set
in intermediate-rigidity bone (E = 1.4 GPa)
increased by 25.8% for the cylindric implant, by
20.4% for the apical expansion implant, and by
14.9% for the locking pin implant design. When
bone rigidity was set to lowest values (E = 0.5 GPa),
implant displacement increased by 91.4% for the
cylindric implant, 73.8% for the expanding design,
and by 19.9% for the locking pin design. Under
oblique and horizontal loads, the influence was
clearly weaker (Table 4).

Relationship Between Implant Displacement
and Orientation of Applied Load
Implant displacement increased considerably as the
direction of the load moved farther away from the
implant main axis (Figs 6a to 6c). The influence of
load orientation was stronger when bone rigidity
was greater (E = 2.5 GPa). When compared to
implant displacement under axial loads, the implant
displacement under oblique loads (45 degrees)
increased by 614% for the cylindric implant, by
669% for the apical expansion implant, and by
700% for the locking pin implant system. Again
with the displacement under axial loads as a refer-
ence, the displacement under horizontal loads
increased by 840% for the cylindric model, by
909% for the apical expansion model, and by 965%
for the locking pin implant design. As bone rigidity
decreased, implant displacement increased in the
same order of magnitude. This indicates that dis-
placement was greater when the load was applied
horizontally. 

Table 3 Displacements (in µm) for the 3
Implant Designs Under Different Load 
Directions, Related to the Cancellous Bone
Characteristics

Load/
implant type Cb1 Cb2 Cb3

Axial load
Cylinder 4.187 5.269 8.013
Expanding 3.885 4.679 6.752
Locking pin 3.584 4.119 4.269

Oblique load (45 degrees)
Cylinder 29.93 32.25 36.31
Expanding 29.89 32.07 35.65
Locking pin 28.82 (20.08) 30.55 (21.76) 30.60 (24.13)

Horizontal load
Cylinder 39.38 41.96 45.81
Expanding 39.23 41.81 45.79
Locking pin 38.20 (28.17) 40.32 (29.00) 40.60 (29.99)

Parentheses indicate displacements for a horizontal load (at a right
angle to the pins) following the mesiodistal direction.

Table 4 Percent Increases in the Implant 
Displacements Related to Bone Quality

Load/
implant type Cb1 Cb2 Cb3

Cylinder
Axial — +25.8% +91.4%
45 degrees — +7.7% +21.3%
90 degrees — +6.5% +16.0%

Expanding
Axial — +20.4% +73.8%
45 degrees — +7.2% +19.2%
90 degrees — +6.5% +16.7%

Locking pin
Axial — +14.9% +19.9%
45 degrees BL — +6.0% +6.1%
45 degrees MD — +8.4% +20.0%
90 degrees BL — +5.5% +6.2%
90 degrees MD — +2.9% +6.4%

BL = buccolingual; MD = mesiodistal.



Relationship Between Displacement 
and Implant Design
When the load was applied parallel to the implant
axis, initial stability of the pin implant was clearly
superior (Fig 7a). These displacements, when put
under axial loads, compared to those recorded for
the cylindric implant, decreased by 14% (0.6 µm) in
high-rigidity bone (E = 2.5 GPa), 22% (1.15 µm) in
intermediate-rigidity bone (E = 1.4 GPa), and 47%
(3.7 µm) in low-rigidity bone (E = 0.5 GPa). With
the cylindric threaded implant as a reference, the

initial stability of the apical expansion implant was
superior, but the difference was less important. The
displacement under axial load decreased by 7% (0.3
µm) in rigid bone, 11% (0.6 µm) in intermediate-
rigidity bone, and 16% (1.26 µm) in low-rigidity
cancellous bone. When the load was oblique (at a
45-degree angle) (Fig 7b), the initial stability of the
pin implant was clearly better, especially following
the MD direction (perpendicular to the pins). Its
displacements when put under oblique loads follow-
ing the MD direction, compared to those of the
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Fig 6a Displacement of the cylindric implant.

Figs 6a to 6c Amount of displacement related to the load orientation. 
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Fig 6b Displacement of the expanding implant.
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Fig 6c Displacement of the locking pin
implant. 



C
O

P
Y

R
IG

H
T

 ©
 2002 B

Y
 Q

U
IN

T
E

S
S

E
N

C
E

 P
U

B
LIS

H
IN

G
 C

O
, IN

C
.P

R
IN

T
IN

G
 O

F
 T

H
IS

 D
O

C
U

M
E

N
T

 IS
 R

E
S

T
R

IC
T

E
D

 TO
 P

E
R

S
O

N
A

L U
S

E
 O

N
LY.N

O
 PA

R
T

 O
F

 T
H

IS
 A

R
T

IC
LE

 M
AY

 B
E

R
E

P
R

O
D

U
C

E
D

 O
R

 T
R

A
N

S
M

IT
T

E
D

 IN
 A

N
Y

 F
O

R
M

 W
IT

H
O

U
T

 W
R

IT
T

E
N

 P
E

R
M

IS
S

IO
N

 F
R

O
M

 T
H

E
 P

U
B

LIS
H

E
R

.

The International Journal of Oral & Maxillofacial Implants 359

PIERRISNARD ET AL

cylindric implant, were reduced by 33% (9.85 µm) in
rigid cancellous bone, 36% (10.5 µm) in intermedi-
ate-rigidity bone, and 16% (1.26 µm) in low-rigidity
cancellous bone. With the same cylindric implant as
a reference, the initial stability of the apical expan-
sion implant was superior, but the difference was
very weak. The displacement under oblique loads
(identical in the BL and MD directions) decreased
by only 0.1% (0.04 µm) in the high-rigidity bone, by
0.5% (0.18 µm) in the medium-rigidity bone, and by
2% (0.6 µm) in the low-rigidity bone. When the
load was horizontal (Fig 7c), initial stability of the
locking pin implant was clearly better, particularly
following the MD direction (perpendicular to pins).
The displacement under horizontal loads, following
the MD direction, compared to that recorded in
cylindric implants, decreased by 28% (11.21 µm) in
high-rigidity bone, by 31% (12.96 µm) in intermedi-
ate-rigidity bone, and by 35% (15.82 µm) in low-
rigidity bone. With the cylindric threaded implant as
a reference, the initial stability of the apical expan-
sion implant was not clearly superior, regardless of
the cancellous bone quality. 

Relationship Between Cervical Stresses 
and Load Orientation
For each implant configuration investigated and
regardless of the bone rigidity, the highest recorded
stresses were those generated by horizontal forces.
Figure 8 illustrates data obtained with low rigidity
applied to the bone model. 

Relationship Between Stress Distribution 
and Implant Design
Figures 9a to 9c represent the models put under an
axial load. Iso-stress intensity ranges are repre-

sented in red and yellow. With the conventional
cylindric threaded implant, results matched those of
the literature and confirmed the importance of cer-
vical stress. With the apical expansion implant (Fig
9b), stress distribution was less concentrated;
stresses spread out evenly from neck to apex. With
the pin implant (Fig 9c), stresses appeared concen-
trated around the pins. 

Relationship Between Intensity of Cervical
Stresses and Implant Design
In both configurations studied, reduction in the
intensity of cervical shearing stresses (comparable to
von Mises stresses) was measured. Whatever the
load orientation, the conventional cylindric implant
transmitted the highest stresses to the neck region
of the implant. Under axial loads, stresses decreased
by 75% (24 MPa) for the apical expansion implant
and by 69% (22 MPa) for the pin implant. Under
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Figs 7a to 7c Histograms of the displacements for each implant under the different load directions in cancellous bone. Displacements
are given in meters. Cb1: E = 2.5 GPa; Cb2: E = 1.4 GPa; Cb3: E = 0.5 GPa.
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oblique loads, stresses decreased by 11.7% (40
MPa) for the apical expansion implant and by 41%
(140 MPa) for the pin implant. Under horizontal
loads, stresses generated in the 2 investigated
implants decreased by 2.2% (10 MPa) for the apical
expansion implant and by 35% (150 MPa) for the
pin implant. 

DISCUSSION

The aims of this study were to evaluate the influ-
ence of 2 implant designs compared to a standard
cylindric implant in their control of micromove-
ments and to determine the intensity and distribu-
tion of stresses after immediate loading by FEA.
FEA is a computer-based numeric technique for
calculating the strength and behavior of engineer-
ing structures. It can be used to calculate deflection,
stress, vibration, buckling behavior, and many other
phenomena. It can analyze elastic deformation or

plastic deformation. The computer is required
because of the considerable number of calculations
needed to analyze a structure. 

In the finite element method, a structure is bro-
ken down into many small simple blocks or ele-
ments. The behavior of an individual element can
be described with a relatively simple set of equa-
tions. Just as the set of elements would be joined
together to build the whole structure, the equations
describing the behaviors of the individual elements
are joined into an extremely large set of equations
that describe the behavior of the whole structure.
From the solution, the computer extracts the behav-
ior of the individual elements. From this, it can cal-
culate the stress and deflection of all the parts of the
structure. The technique has been widely used in
orthopedics for the design of hip prostheses. 

The lack of initial postoperative implant stability
(primary stability) is recognized as an important
determinant in the loosening failure process of
implants.1,13 Physiologic loads giving rise to bone-
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Fig 8 Shearing stresses (von Mises) increase
related to the load orientation, as modeled in
low-density cancellous bone (E = 0.5 GPa).

Fig 9a View of the shearing stresses on a
cross section of cylindric implant set in the
bony base. 

Fig 9b View of the shearing stresses on a
cross section of the expanding implant set
in the bony base.

Fig 9c View of the shearing stresses on a
cross section of the locking pin implant set
in the bony base.



implant relative micromovements of the order of
100 or 200 µm may inhibit bone ingrowth, resulting
in the formation of a fibrous tissue layer, which then
promotes loosening of the implant.38,39 An accurate
evaluation of the bone-implant relative micromo-
tion is becoming important both in preclinical and
clinical contexts. The preclinical validation of new
prosthetic designs often involves evaluation of the
primary stability by means of in vitro measure-
ments, and FEA may be of considerable interest. In
clinical practice, primary stability can be assessed
intraoperatively by resonance frequency analysis, as
proposed by Meredith and associates.40

The quality of cancellous bone strongly influ-
ences implant displacement, which increases as bone
rigidity decreases. Under axial loads, the influence
of cancellous bone rigidity is more important. How-
ever, the 2 implant configurations evaluated here—
and more particularly the locking pin implant—
minimized this influence. Under an axial load, the
displacement of implants in bone with an intermedi-
ate rigidity increased by 25.8% for the cylindric
implant and by 14.9% for the locking pin implant
design (when compared to values obtained in bone
with high rigidity). The displacement of implants in
bone with the lowest rigidity increased by 91.4% for
the cylindric implant and by 19.9% for the locking
pin design. Whatever the implant type, this influ-
ence decreases as the direction of the load moves
farther away from the main axis of the implant. The
load orientation is a crucial parameter according to
statements by several authors,41–43 and it should be
applied as closely as possible to the main axis of the
implant. Whatever the bone rigidity, the pin
implant exhibited more favorable behavior regard-
ing changes in load orientation. 

Results reported in the literature concerning the
localization of stresses on an implant are very similar
to the present data. Using FEA, several authors have
found that the highest risk of bone resorption occurs
in the neck region of an implant.44–51 In comparison
to the cylindric implant, it appears that the 2 investi-
gated configurations would reduce the intensity of
cervical stress. In the present study, stress intensities
were decreased by 75% for the apical expansion
implant under axial loads and by 11.7% under
oblique loads. Stress intensities were decreased by
69% for the pin implant under axial loads and by
41% under oblique loads. Longitudinal MD sections
(following the Y-Z plane) of the bone base, isolated
from the rest of the model, demonstrated that both
designs also modify the distribution of shearing
stresses. In this study, it was found that stress distrib-
ution was less concentrated in the neck region with
the apical expansion implant and the pin implant. 

CONCLUSIONS

The first model tested was a bicortical pin implant
and the second was an apical expansion implant.
Regardless of the quality of the cancellous bone and
the load orientation, initial stability of the pin
implant was greater than that of the other investi-
gated design. Initial stability of the apical expansion
implant was higher than that of the reference cylin-
dric implant, though the difference was small. What-
ever the implant design and the cancellous bone
quality, the highest stresses were observed when the
load was imposed in the horizontal direction. The
investigated configurations strongly influenced the
distribution and the intensity of cervical shear
stresses. The reference cylindric implant transmitted
the highest stresses to the neck region of the implant.
With the expanding implant, stress location was most
favorable; the stresses were spread out evenly from
the neck to the apical region. In contrast, cervical
stresses appeared weaker with the pin implant, with
the higher stresses concentrated around the pins. 
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