Crestal Bone Changes Around Titanium Implants: A Methodologic Study Comparing Linear Radiographic with Histometric Measurements

Joachim S. Hermann, DMD, Dr Med Dent, FICOI/John D. Schoolfield, MS/
Pirkka V. Nummikoski, DDS, MS/Daniel Buser, DMD, Prof Dr Med Dent/
Robert K. Schenk, MD, Prof Dr Med/David L. Cochran, DDS, PhD, MS, MMSci, FACD, FICO

Generally, endosseous implants can be placed according to a nonsubmerged or a submerged technique and in 1-piece or 2-piece configurations. Recently, it has been shown that peri-implant crestal bone reactions differ significantly radiographically as well as histometrically under such conditions and are dependent on a rough/smooth implant border in 1-piece implants and on the location of a microgap (interface) between the implant and the abutment/restoration in 2-piece configurations. The purpose of this study was to evaluate whether standardized radiography as a noninvasive clinical diagnostic method correlates with peri-implant crestal bone levels as determined by histometric analysis. Fifty-nine implants were placed in edentulous mandibular areas of 5 foxhounds in a side-by-side comparison in both submerged and nonsubmerged techniques. Three months after implant placement, abutment connection was performed in the submerged implant sites. At 6 months, all animals were sacrificed, and evaluations of the first bone-to-implant contact (fBIC), determined on standardized periapical radiographs, were compared to similar analyses made from nondecalcified histology. It was shown that both techniques provide the same information (Pearson correlation coefficient = 0.993; P < .001). The precision of the radiographs was within 0.1 mm of the histometry in 73.4% of the evaluations, while the level of agreement fell to between 0.1 and 0.2 mm in 15.9% of the cases. These data demonstrate in an experimental study that standardized periapical radiography can evaluate crestal bone levels around implants clinically accurately (within 0.2 mm) in a high percentage (89%) of cases. These findings are significant because crestal bone levels can be determined using a noninvasive technique, and block sectioning or sacrifice of the animal subject is not required. In addition, longitudinal evaluations can be made accurately such that bone changes over various time periods can be assessed. Such analyses may prove beneficial when trying to distinguish physiologic changes from pathologic changes or when trying to determine causes and effects of bone changes around dental implants. (Int J Oral Maxillofac Implants 2001;16:475–485)

Key words: animal study, crestal bone loss, endosseous implants, histometry, standardized radiography

Periodontitis¹ and peri-implantitis,² among other signs and symptoms, are associated with crestal bone loss. In an attempt to diagnose bone loss in inflammatory conditions as soon as possible and to possibly prevent further bone loss from occurring, reliable diagnostic methods are required. In addition, biologic principles governing crestal bone levels around dental implants facilitate a distinction between a physiologic degree of crestal bone remodeling and a pathologic condition resulting in continuing or more advanced peri-implant crestal bone loss. The accumulated evidence from side-by-side comparisons of different implant designs demonstrated that under healthy conditions, crestal bone levels significantly remodel apically for 2-piece implant designs dependent on the location of the
microgap ([MG]/interface [IF]), while minimal to no such resorption occurs for 1-piece implants, dependent on the location of a rough/smooth border and its relation to the original bone crest level.

Radiography has been widely used during the last century as a noninvasive diagnostic method to help define whether loss of alveolar bone has occurred around teeth and/or implants. Early on, the bisecting angle technique for taking radiographs was introduced as a freehand technique that is still in use as of today. A major problem involved with this technique, however, is a significant degree of distortion because of disproportional shrinkage or enlargement of the radiographically imaged tooth. This distortion then creates problems in the evaluation of small changes in the level of the bony crest. In the late 1950s, Benkow suggested for the first time the use of a beam-aiming device made up of a bite block connected to an indicator arm, which itself was attached to a beam-aiming ring. Thus, projection errors could be decreased to a significant extent. Through this setup, the plane of the film (attached to the bite block) and the plane of the x-ray beams were perpendicular to each other (right-angle technique). However, this did not automatically allow alignment of the plane of the film parallel to the long axis of the tooth (paralleling technique). With the advent of beam-aiming devices rigidly connected to an intraoral radiographic template, projection errors related to rotation and angulation could be further decreased by using a right-angle technique; however, this was still in combination with a short x-ray cone and a more or less parallel orientation of the film to the long axis of the tooth. As a further development, Larheim and Eggen showed for the first time in implant dentistry that standardized periapical radiography can be significantly improved if a customized bite record is additionally used in combination with a bite block and a long-cone technique.

The purpose of this study was to combine these techniques and to develop an improved standardized radiographic technique that would allow a precise determination of peri-implant crestal bone levels. Since conventional periapical radiography always represents cumulative data of the whole width of the jaw with potential under- and/or over-estimation of true crestal bone levels, the radiographic data were compared to histologic evaluations of identical bone levels.

MATERIALS AND METHODS

Implant design and surfaces (Figs 1a and 1b), animals and surgical procedures/study design used in this study (Fig 2), and a detailed description of the radiographic and histologic analyses utilized (Fig 3) have been published recently. Briefly, study protocols were as follows. Six different cylindric titanium implants (A to F) with a full-body screw design were chosen (Figs 1a and 1b). All were made from cold-worked, grade IV commercially pure titanium (Insti-
tut Straumann AG, Waldenburg, Switzerland). The total length was 9 mm, and the outer diameter measured 4.1 mm. All implants had a relatively smooth coronal portion consisting of a machined titanium surface. The rough apical part of each implant had a sandblasted (large-grit) and hydrochloric acid/sulfuric acid–(HCl/H₂SO₄) etched surface (SLA) exhibiting 2 levels of roughness, one at 20 to 40 µm peak to peak, and a superimposed second level at 2 to 4 µm peak to peak. For type A implants, the SLA surface was 6.0 mm in length, with the rough/smooth implant border at the alveolar crest. For all other implants (types B to F), the rough implant surface (SLA) was 4.5 mm in vertical dimension, with the rough/smooth implant border located 1.5 mm below the crest. Type A and B implants were 1-piece implants, meaning there was no microgap (IF) present. Implant types C to F consisted of 2 pieces, with a microgap (IF) of about 50 µm between the implant and the secondary component, the abutment (Fig 3). The location of the microgap (IF) was defined to be at the bone crest level for types C and D; for types E and F, the microgap (IF) was located 1 mm above and 1 mm below the crest, respectively. Implant types A to C were placed according to a nonsubmerged approach, whereas types D to F were placed using a submerged approach.

Five lab-bred, male American foxhounds (approximately 2 years old, weighing 30 to 35 kg) were used for this study. All procedures were approved by the Institutional Animal Care and Use Committee of the University of Texas Health Science Center at San Antonio. First, all 4 premolars (P1–P4) and the first molar (M1) were extracted. After a period of 7 to 10 days, the sutures were removed. After a healing period of 6 months, non-submerged and submerged implants (types A to F) were placed (Fig 2). Implant types A to C were placed according to a nonsubmerged approach (Fig 1a), and implant types D to F were placed according to a submerged technique (Fig 1b). Finally, 1 of each kind of test implant was placed per side in a randomized fashion. Thus, no implant type had a biased position in the arch. Sutures were removed 7 to 10 days later.

Second-stage surgery was performed 3 months after implant placement (Fig 2), and abutments were connected for submerged implant types D to F. Abutments on all 2-piece implants (types C to F) were loosened and immediately tightened afterward at 4, 8, and 10 weeks after second-stage surgery to imitate the placement of another healing abutment, impression taking, and the placement of the final prosthetic component.

All dogs were sacrificed 3 months after abutment connection of the submerged implants or 6 months after implant placement, respectively (Fig 2). Mandibles were block-resected with an oscillating autopsy saw (Stryker, Kalamazoo, MI). The recovered segments with the implants were immersed in a solution of formaldehyde 4% combined with calcium chloride 1% for histologic preparation and analysis.
Fabrication of the Radiographic Template

At the time of implant placement, an individual impression was made (President, Coltène/Whaledent, Mahwah, NJ) using customized trays fabricated from light-polymerizing acrylic resin material (Triad, Dentsply International, York, PA). A master cast (Fig 4) was made using die stone (Silky-Rock, Whip-Mix, Louisville, KY). Grooves were made on the lingual side of each edentulous ridge (soft mouth floor area), allowing accurate positioning of the periapical radiograph (Ultra-speed film, size 3, Eastman-Kodak, Rochester, NY) mounted on an x-ray bite block (XCP, Rinn, Dentsply International). The two ideally placed bite blocks were rigidly connected through a horseshoe-shaped acrylic resin bar (Instant Tray Mix, Lang Dental, Wheeling, IL) and individual acrylic resin inverse U-shaped attachments (Triad, Dentsply International; Fig 5), providing space for a tape for final fixation. At both the mesial and distal ends of either side, customized soft polyvinyl siloxane records (President) from the cusps of the canine and second molar, respectively, were attached to the acrylic resin bar to allow for precise repositioning and stabilization of the radiographic template. A reversible adhesive tape (Velcro Tape, Velcro USA, Manchester, NH) was used to firmly attach the template to the dog’s mandible (Figs 5 and 6). Finally, the ring of the beam-aiming devices was customized with some autopolymerizing acrylic resin material (Instant Tray Mix, Lang Dental) for an even better and more reproducible fit and alignment of the extension x-ray cone to minimize errors of angulation and distortion.

Statistical Analysis

The distance from the top of the implant (Fig 3) to the first bone-to-implant contact (fBIC) was evaluated by examining mesial and distal sites in 59 implants using both standardized radiographs and histologic sections (Figs 7 to 10; Tables 1 and 2). Two implants had undetectable fBIC for both the mesial and the distal sites, and 1 implant had a readable fBIC for the mesial site only, resulting in a total of 113 sites for which the distance of Top-fBIC could be observed. Pearson correlation and least-squares regression were used to determine how closely the distances measured using standardized radiographs corresponded to the dimensions observed using...
Fig 7a Histometric results: schematic (true to scale) of hard tissues around nonsubmerged implants types A to C at the time of sacrifice in relation to the rough/smooth border (solid black line) or the location of the microgap/interface (dashed black line) where appropriate. Arrows indicate the level of the crest of the bone at the time of implant placement.

Fig 7b Histometric results: schematic (true to scale) of hard tissues around submerged implants types D to F at time of sacrifice in relation to the rough/smooth border (solid black line) as well as the location of the microgap/interface (dashed black line). Arrows indicate the level of the crest of the bone at the time of implant placement.

Fig 8a (Left) Overview of a mesiodistal histologic section (left = distal) of a type A implant (1-piece, nonsubmerged) with original inner/outer implant diameter = 3.5 mm/4.1 mm. The original cover screw was removed and replaced with a smaller-diameter transocclusal screw to facilitate histologic processing (toluidine blue and basic fuchsin stain; original magnification ×2.5). Bar = 1.0 mm.

Fig 8b (Right) Detail of a standardized radiograph (left = distal) of the identical site shown in Fig 8a at the exact same time point (sacrifice).

Fig 9a (Left) Overview of a mesiodistal histologic section (left = mesial) of a type E implant (2-piece, submerged) with original inner/outer implant diameter = 3.5 mm/4.1 mm. Note that the relatively short abutment is missing because of histologic processing; however, the transocclusal abutment screw is still in place (toluidine blue and basic fuchsin stain; original magnification ×2.5). Bar = 1.0 mm.

Fig 9b (Right) Detail of a standardized radiograph (left = mesial) of the identical site shown in Fig 9a at the exact same time point (sacrifice).
histometry (Figs 11a to 11c). If the Pearson correlation coefficient was significant \(P < .01\) and the regression line obtained using the method of least-squares had a slope estimate not different from 1 and an intercept estimate not different from 0 by the Student \(t\) test \(P > .10\), then the distances measured using standardized radiographs can be used to approximate the distances observed using histologies. This analysis was carried out for all sites together, as well as for mesial and distal sites separately.

Comparisons using paired Student \(t\) tests were made between mesial and distal sites within implant types to ascertain differences in the dimension Top-fBIC. Analyses of variance were performed to check for differences among implant types, dog, and positions in the arch. An unpaired Student \(t\) test was used to compare the left with the right side of the mandible. For all testing, probabilities less than .05 were considered significant.
RESULTS

Clinical Data
Fifty-nine of the possible 60 implants could be placed. One implant could not be placed because of anatomic limitations, since the bone at this particular site was too soft and, therefore, primary stability could not be achieved. Healing occurred without any complications after implant placement in all animals. At the time of abutment connection, 3 months after implant placement (Fig 2), all 59 implants showed successful hard tissue integration exhibiting ankylotic stability. No continuous peri-implant radiolucencies were apparent on the radiographs for all implants, as reported elsewhere. Therefore, all 30 abutments of the submerged implant types D through F could be connected. After second-stage surgery, all implants maintained ankylotic stability and demonstrated a complication-free follow-up period. Type A and B implants (1-piece, nonsubmerged) showed no clinical symptoms of peri-implant inflammation. However, type C implants (2-piece, nonsubmerged) showed moderate to severe signs of peri-implantitis at the crestal part of the implants. Although meticulous chemical and mechanical plaque control was carried out 3 times per week, different degrees of peri-implant inflammation were detected until sacrifice for all 2-piece implants (types C through F). Around types C through F implants, this response ranged from moderate inflammation to severely inflamed peri-implant tissue that was hyperplastic in nature. These results will be described in detail in another clinical/histomorphometric article based on this data set.

Statistical Data
When all 113 sites were evaluated together (Tables 1 and 2; Figs 11a to 11c), the resulting Pearson correlation coefficient was 0.993 ($P < .001$), and the regression line had a slope estimate of 0.993 ± 0.011 (standard error) ($P > .90$) and an intercept estimate...
of 0.013 ± 0.051 (P > .80). This suggests that the two methods were approximately equal. In fact, 83 sites (73.4%) had a radiographic Top−fBIC distance that was within 0.1 mm of the value obtained histometrically. In 18 sites (15.9%), the measurements for standardized radiography were between 0.1 mm and 0.2 mm smaller than for nondecalcified histometry, and in 9 sites (8.0%), values for standardized radiography were between 0.1 mm and 0.2 mm larger than for the histometry. Only 3 sites (2.7%) differed by more than 0.2 mm. Each of these 3 was smaller for the standardized radiography than for the histometry, with a maximum difference of 0.38 mm.

Similar results were obtained when mesial and distal sites were analyzed separately. For the 57 mesial sites (Fig 11b), the resulting Pearson correlation coefficient was 0.994 (P < .001), and the regression line had a slope estimate of 1.001 ± 0.015 (P > .90) and an intercept estimate of –0.008 ± 0.069 (P > .90). Forty-four of the 57 mesial sites (77.2%) had a radiographic Top−fBIC dimension that was within 0.1 mm of the histometric value. Five sites (8.8%) were between 0.1 mm and 0.2 mm lower for the standardized radiographs, while 6 sites (10.5%) were between 0.1 mm and 0.2 mm lower for the histometry. Two sites (3.5%) were more than 0.2 mm lower for the standardized radiographs than for the histometry, with a maximum difference of 0.34 mm.

For the 56 distal sites (Fig 11c), the resulting Pearson correlation coefficient was 0.992 (P < .001), and the regression line had a slope estimate of 0.983 ± 0.017 (P > .40) and an intercept estimate of 0.046 ± 0.074 (P > .50). Thirty-nine of the 56 distal sites (69.6%) had a radiographic Top−fBIC dimension that was within 0.1 mm of the histometric value. Thirteen sites (23.2%) were between 0.1 mm and 0.2 mm lower for the standardized radiographs, while 3 sites (5.4%) were between 0.1 mm and 0.2 mm lower for the histometry. One site (1.8%) was 0.38 mm lower for the radiographs than the histometry.

For each combination of mesial and distal sites and standardized radiographic and histometric methods, the F test comparing Top−fBIC dimensions across implant types was highly significant (P < .001). The F tests for the comparisons among dogs (P > .50) and positions in the arch (P > .80) indicated no significant differences. Left and right sides of the mandible were also not significantly different (P > .70).

DISCUSSION

In this study, endosseous titanium implants were randomly placed in a side-by-side comparison according to a nonsubmerged or a submerged technique and in 1- or 2-piece configurations. The radiographic and histometric results demonstrated that a rough/smooth border on the surface of 1-piece, nonsubmerged implants determines the crestal bone level adjacent to such implants. However, in all 2-piece implants, which exhibited a microgap (interface) between the implant and the secondary component (abutment) at different levels in relation to the crest of the bone, distinct crestal bone resorption occurred around these implants. This was independent of whether 2-piece implants were placed according to a nonsubmerged or a submerged technique. Overall, submerged implants placed with their top (microgap/interface) below the alveolar crest experienced the greatest amount of crestal bone loss. Furthermore, the crestal bone resorption took place rapidly and without loading of the implants at an early time point of healing.

The purpose of the present study was to compare evaluations of crestal bone loss patterns around endosseous implants as determined by standardized linear radiography with evaluations made directly on nondecalcified histologies. Histometry of soft and hard tissues around implants can be carried out with high precision (± 0.2 mm) if nondecalcified histology of the bone and implant is used.20 This technique permits a direct and precise identification of soft and hard tissue reference points in relation to visible, definite landmarks on an implant (eg, a microgap/interface). With a decalcified “fracture technique,”20 however, in which the implant is removed, only the outline of an implant but not the implant itself can be identified on the histology.21–26 Another invasive technique to determine crestal bone levels is a re-entry clinical procedure wherein a full-thickness flap is reflected prior to and after completion of an experiment to allow direct measurements of crestal bone levels with a periodontal probe. However, Toback and coworkers recently showed that the precision of this method does not come close to that of evaluations made from nondecalcified histologies, as described above.5,7,11 Thus, histometry serves as a “gold standard,” representing the most accurate assessment of the crestal bone level.

Histometry can only be performed if block sections can be taken from humans or animals, or if animals are sacrificed at the completion of an experiment. The cost/benefit ratio in these situations is high and often unfeasible. Periapical radiography, as a noninvasive technique, only allows examination of crestal bone levels precisely at mesial and distal sites of an implant if proper projection geometry is applied.29–34 Such precision
cannot be achieved if a bisecting-angle geometry technique is used. With the advent of the right-angle technique, the paralleling technique, and customized occlusal records combined with a long-cone technique, projection errors related to rotation and angulation can be significantly decreased. In this study, all of the above-mentioned aspects were carefully controlled. In addition, a new rigid connection of the long cone with the beam-aiming device, as well as a firm fixation of the radiographic template to the dog’s mandible during exposure, was introduced. This resulted in a modified, new technique for standardized periapical radiography in the canine.

If the outcome of standardized periapical radiography, with a correlation coefficient of 0.94. These numbers were improved in the present attempt should be made to perfectly align the radiographic film with the long axis of the implant to evaluate crestal bone loss patterns (right-angle technique combined with paralleling technique and a customized bite record). Even though it might not be possible to apply such a template design in humans using appropriate attachments, a technique similar to that suggested first by Benkow should allow the achievement of similar precision of some 0.1 mm, which, in a clinical setting, still would permit clinicians to distinguish healthy peri-implant conditions from pathologic peri-implant crestal bone resorption.

Several authors have reported that the results of periapical radiography, with respect to the degree of crestal bone loss, underestimated the results of histometric analyses. One reason for this phenomenon might be that even though a right-angle technique was used in those studies, a parallel orientation of the bite block (film plane) to the long axis of the tooth (parallel technique) could not always be achieved. This happens most often in the maxilla because of the strong inclination of the palate and/or a low palate. Another reason might be the fact that periapical radiographic data show in a cumulative way the whole width of the jaw, making it more difficult to identify fBIC as a result of superimposition, with calcified structures of the jaw itself resulting in a distinct underestimation of the degree of crestal bone loss. This problem does not occur when evaluating histologic specimens, since the width of the sections ranges between 10 and 80 µm, thereby allowing detection of only bone that is in direct contact to the implant. Thus, the evaluation of radiographs has more potential error than the analysis of histologic specimens.

CONCLUSION

It can be noted that this modified clinical laboratory technique for standardized periapical radiography in the canine model allows for a highly precise evaluation of mesial and distal peri-implant crestal bone levels. This finding is significant because of the fact that crestal bone levels can be determined using a noninvasive technique (standardized radiography, as described above), and block sectioning or sacrifice of experimental animals is not required. In addition, longitudinal evaluations can be made accurately such that precise bone changes can be assessed over various time periods. Such evaluations may prove beneficial in clinicians’ attempts to distinguish physiologic changes from pathology or determine the cause and effect of bone changes around dental implants.
ACKNOWLEDGMENTS

The authors would like to thank Sonja A. Bustamante, HT (ASCP), University of Texas Health Science Center at San Antonio (UTHSCSA), for her continuous and valuable support throughout the study. Richard J. Haines, DVM, Clinical Veterinarian, and his team, Laboratory Animal Resources, UTHSCSA, are greatly acknowledged for exemplary care of the animals. In addition, the authors would like to express their gratitude to J. P. Simpson, BSc (Eng), PhD, and Institut Straumann AG, Waldenburg, Switzerland, for manufacturing the test implants. Last but not least, we would like to express our appreciation for the outstanding work by Britt Hoffmann, HT, University of Bern School of Dental Medicine, in preparing the histologic sections. This study has been supported by two grants from the ITI (International Team for Oral Implantology) Foundation for the Promotion of Oral Implantology (#02-94/061, #20-97/134), Waldenburg, Switzerland; and by stipends from the Swiss National Science Foundation, Basel, Switzerland; the Swiss Society of Periodontology, Bern, Switzerland; the Swiss Foundation for Medical and Biological Stipends, Bern, Switzerland; and the University of Basel Committee for the Promotion of Philosophiae Doctor Candidates, Basel, Switzerland.

REFERENCES