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Recently, treatment with implant-supported fixed
partial prostheses has been established as an

option for partially edentulous patients. Clinical
studies conducted for various implant types have
reported high rates of success and survival, but also
variable rates of implant failures.1–5 The most fre-
quently cited reasons for implant failure are poor oral
hygiene and biomechanical factors.2,5–10 Infection
and traumatic occlusion were confirmed as causes of
implant failure by histopathologic and microbiologic
studies.11–13 Animal experiments and clinical studies
have shown that bone loss around implants, in the

absence of plaque-related gingivitis, was associated
with unfavorable loading conditions.1,7,10,14–16

Because of intimate contact at the bone-implant
interface, loads applied to the implant will be directly
transmitted to the bone, and the bone’s biologic reac-
tion is linked with implant longevity.17–20 Although a
minimum amount of stress is considered to be neces-
sary for bone remodeling,21,22 very high amounts of
stress could lead to microdamage and induce resorp-
tive modeling and mechanical failure by exceeding
the limits that the bone can tolerate.19,22,23

Implants themselves have to withstand stress
induced by intraoral forces. Increased or abnormal
loading, as well as fatigue under physiologic loads,
could lead to fractures of the implant system compo-
nents.5,9,24,25

Theoretical considerations23 and an in vitro exper-
iment26 suggest that, under conditions of impact
loading, acrylic resin occlusal surfaces of the prosthe-
sis will protect the connection between implant and
bone. However, clinically, when acrylic or composite
resin is used on the occlusal surface, many complica-
tions are reported during the follow-up period of
implants, including resin fracture, esthetic defects,
occlusal screw loosening or fracture, abutment screw
and implant fractures, and resin wear.5,6,9,27,28 On the
other hand, when porcelain is used instead of resin,
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better esthetics, far fewer prosthetic complica-
tions,1,28 and no statistically significant difference in
marginal bone loss are found.1 High resistance to
fracture of metal-ceramic restorations has also been
demonstrated in a mechanical failure test.29

The influence of different prosthesis materials on
the stress in bone and implant components was also
investigated by means of finite element analysis.
Ismail et al30 analyzed the influence of the occlusal
material (porcelain, precious and non-precious alloy,
acrylic or composite resin) on the stress in bone and
implant, and they reported similar results for all the
investigated materials. In models of single
implant–supported prostheses31 and implant-
supported complete arch prostheses,32 occlusal mate-
rial did not influence bone stress, but in the model of
the implant-supported complete arch prosthesis, it
did influence retaining screw stress.32,33 For fixed
partial dentures, such data are lacking.

The present study used a 3-dimensional finite ele-
ment analysis (3-D FEA) to investigate the stress
generated in both bone and implant-abutment units
when different materials were used for a 3-unit pros-
thesis supported at both ends by implants.

Materials and Methods

Model Design. A mandibular segment containing 2
implant-abutment units and a fixed prosthesis were
modeled on a PC-H98 model V105 computer (NEC,
Tokyo, Japan) using finite element software (ANSYS
5.0, Swanson Analysis System, Houston, PA). The
bone was modeled as a cancellous core surrounded
by a 1.5-mm cortical layer. The mesial and distal sec-
tion planes were not covered by cortical bone (Figs
1a and 1b).

Two titanium implant-abutment units were mod-
eled using a solid cylinder 16.5 mm long and 4 mm in
diameter. Each implant-abutment unit was designed
with 10 mm of embedment depth, 3 mm of neck, and
a 3.5-mm abutment. These dimensions corresponded
to the height of the middle-sized ITI implant and
abutment, respectively,34 but the shape was simplified
to a cylinder. To simulate a fixed prosthesis, a super-
structure was overlapped over the titanium abutments.
This superstructure was in the shape of a block 22 mm
long, 8 mm wide, and 6 mm high (Figs 1a and 1b).
These dimensions were chosen to roughly correspond
to the size of the posterior teeth, which were replaced

Figs 1a and 1b Mesiodistal (above) and buccolingual (right)
views of the 3-dimensional finite element model. Two implants
placed in a cancellous bone core surrounded by cortical bone
support a 3-unit fixed partial prosthesis. All measurements in
millimeters.
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by the implant-supported prosthesis.35,36 A symmetri-
cal model was designed to reduce the factors that
could influence the outcome of the stress analysis. For
the same reason, the geometry of the prosthesis was
simplified to a block shape. The stiffness of the pros-
thesis was varied by changing the material from gold
alloy to porcelain or to resin (acrylic and composite).

Material Properties. All materials used in the
models were considered to be isotropic, homoge-
neous, and linearly elastic. Since in many cases the
literature provides different values for the elastic
properties of the same material, average values were
chosen for this study. These values and the refer-
ences consulted are listed in Table 1.

Interface Condition. To simulate ideal osseoin-
tegration, the implants were rigidly anchored in the
bone model along their entire interface. The same
type of contact was provided at the abutment-
prosthesis interface.

Elements and Nodes. Because of its mesiodistal
symmetry, only half of the model was meshed with 8-
node hexahedron elements (Fig 2). A finer mesh was
generated around the implant. Altogether, 3,328 ele-
ments and 3,846 nodes were created.

Constraints. Models were constrained in all
directions at the nodes on the inferior border of the
bone surface on one-fifth of the bone height. Since
only half of the model was meshed, symmetry bound-
ary conditions were prescribed at the nodes on the
symmetry plane.

Loads. Unit static loads (1 N) were applied axially
(AX) and buccolingually (BL), separately, to the
occlusal key point corresponding to the center of the
pontic (Fig 2). Since symmetry boundary conditions
were prescribed to the model, each input load was
doubled during the computations.

Solution. The analysis was performed for each
load by means of the ANSYS software program,
which was run on the aforementioned personal com-
puter. The Von Mises stress (equivalent stress
[EQV]) was used to display the stress in the bone and
implant-abutment unit.

Results

Since only slight differences were found in the bone
stress distributions with the 4 prosthesis materials,
only the results from the acrylic resin prosthesis are
presented (Figs 3 to 6).

EQV distribution in cortical bone is shown in Figs
3 and 4 for AX and BL loads, respectively. For conve-
nience in presentation, the meshed half of the model
corresponds to the mesial half when viewed antero-
posteriorly. Regardless of prosthesis material and
load direction, the highest stress in the cortical bone

was located buccally and lingually around the implant
neck. Under AX load, moderate stress was also found
between the implants in the resin models (the green
area on the crest, in Fig 3), but not in the porcelain
and gold models.

Figures 5 and 6 display the EQV in a buccolingual
section of the cancellous bone under AX and BL
loads, respectively. Stress distribution in cancellous
bone was significantly influenced by load direction,
but it was not affected by prosthesis material. Under
AX load, the highest stress was concentrated around
the apical one-third of the implant and extended ver-
tically beyond the end of the implant (Fig 5). Under
BL load, the highest stress was concentrated buccally
and lingually below the implant neck (Fig 6).
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Table 1 Elastic Properties Ascribed to the Materials in
the Models

Young’s modulus
Material (GPa) Poisson ratio

Cortical bone23,37–40 15 0.3
Cancellous bone37,41 1.5 0.3
Titanium37,38,42 110 0.35
Gold alloy37,43–45 90 0.3
Porcelain46 70 0.19
Acrylic resin45,47–49 2.4 0.35
Composite resin48,50,51 16.6 0.24

Fig 2 Half of the model was meshed and unit forces (1 N)
were separately applied axially and buccolingually to the cen-
ter of the pontic.

DistalMesial



Although the areas of high stress shown appear larger
under AX load than under BL load, the values were
much higher in the latter.

In the implant-abutment unit, stress distribution
in the gold alloy prosthesis model was similar to that
in the porcelain restoration model, but it was differ-
ent from the stress distribution in the resin prosthesis
model. Since the stress pattern in the composite
resin model fell between those in the porcelain and
acrylic resin models, only the results for the porcelain
and the acrylic resin are presented in Figs 7 and 8.

Under AX load, stress was concentrated on the
pontic side (Figs 7a and 7b) of the models. The high-
est stress in the porcelain prosthesis model was con-
centrated in a relatively small area which was located
between the cortical bone surface and the lower bor-
der of the superstructure (Fig 7a). In the acrylic resin
prosthesis this stress increased greatly in magnitude
and extended over a very large area from the bone
surface to the top of the abutment (Fig 7b). The area
of highest stress in the composite resin prosthesis
model was larger than in the porcelain model, but it
did not extend to the abutment, as it did in the
acrylic resin model. Under BL load, the highest

stress was concentrated buccally and lingually, at the
bone surface and above (Figs 8a and 8b). Although
this stress was slightly lower in the resin models than
in the porcelain and gold alloy models, it concen-
trated over a more extended area.

Maximum equivalent stress (max EQV) in cortical
bone, cancellous bone, and implant-abutment units is
shown in Tables 2 and 3 and in Fig 9, respectively.
Each of these stresses was similar in the gold alloy
and porcelain prostheses. Stress in every part of the
models was much higher under BL load than under
AX load.

Max EQV in cortical bone is detailed in Table 2.
Under AX load, the lowest max EQV was found in the
gold alloy and the porcelain models. In the composite
resin model, max EQV was slightly higher, and in the
acrylic resin model, it was about 10% higher than the
max EQV in the gold prosthesis. Under BL load, max
EQV was similar for all prosthesis materials.

For each loading condition, max EQV in cancellous
bone (Table 3) was almost identical regardless of the
prosthesis material. The stresses between max EQV in
cancellous bone and that in cortical bone were 1:7 and
1:15 under AX and BL load, respectively.
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Fig 3 Close-up view of equivalent
stress distribution in cortical bone in the
acrylic resin prosthesis model under
axial load.

Fig 5 Distal view of a buccolingual
section showing equivalent stress distri-
bution in cancellous bone in the acrylic
resin prosthesis model under axial load.

Fig 6 Distal view of a buccolingual
section showing equivalent stress distri-
bution in cancellous bone in the acrylic
resin prosthesis model under buccolin-
gual load.

Fig 4 Close-up view of equivalent
stress distribution in cortical bone in the
acrylic resin prosthesis model under buc-
colingual load.
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Figs 7a and 7b Equivalent stress distribution in the implant-abutment unit under axial load (left) in the
porcelain prosthesis model and (right) in the acrylic resin prosthesis model. Higher stress was concen-
trated over larger areas in the acrylic resin prosthesis model.

Figs 8a and 8b Equivalent stress distribution in the implant-abutment unit under buccolingual load
(left) in the porcelain prosthesis model and (right) in the acrylic resin prosthesis model. Slightly higher
stress was observed in the model with the porcelain prosthesis, but the areas of high stress were larger
in the model with the resin prosthesis.

Table 2 Maximum Equivalent Stress (in MPa) in
Cortical Bone

Buccolingual 
Prosthesis material Axial load load

Acrylic resin 0.111 0.734
Composite resin 0.104 0.728
Porcelain 0.100 0.729
Gold alloy 0.100 0.729

Table 3 Maximum Equivalent Stress (in MPa) in
Cancellous Bone

Buccolingual 
Prosthesis material Axial load load

Acrylic resin 0.0151 0.0471
Composite resin 0.0149 0.0468
Porcelain 0.0149 0.0468
Gold alloy 0.0148 0.0468



Max EQV reached in the implant-abutment unit is
shown in Fig 9. Under AX load, max EQV in the
acrylic resin prosthesis model was about 65% higher
than in the gold alloy model; in the composite resin
prosthesis model, max EQV was about 36% higher
than in the gold alloy model. Under BL load, max
EQV decreased by about 8% with the resin prosthe-
ses. Only in this case max EQV in the resin prosthesis
was slightly lower than in the other two prostheses.

Discussion

This study used the 3-D FEA method to investigate
the influence of different prosthesis materials on the
stress in bone and implant-abutment units in a
mandibular posterior segment model.

Various studies have reported similar results
using the FEA and other experimental methods,
such as in vivo strain-gauge measurements,37 histo-
logic studies,14,21 and in vitro experiments.52 FEA
was considered to be an appropriate method for
internal stress investigation and was used in the pre-
sent study.

There are 2 types of FEA: static analyses and
dynamic analyses. The estimates for the maximum
closure speed of the mandible relative to the maxilla
vary depending on the methods used for its measure-
ments between 85 and 140 mm/s.19,53,54 If higher
mandibular velocities are involved, for example, dur-
ing inadvertent biting of a hard object, a dynamic
analysis may be required. A static analysis is consid-
ered suitable to simulate clenching, grinding, and
most mastication conditions. Since bruxism is
reported to be one of the main factors that can
potentially damage bone and implants,7,8,15,24 static

loads were considered to be sufficient for the pur-
pose of this study.

In each situation investigated, the present study
focused on the locations and values of the highest
stress—those that could put bone, implant, and abut-
ment at risk. Thus the Von Mises stress, which esti-
mates quantitatively the stress of a point in nonuniax-
ial stress state, was chosen to display the results of
the computations.

Since all materials were considered to be linearly
elastic, the stress in the model will increase propor-
tionally with the force applied. Thus, knowing the
EQV for unit loads, the stress generated by loads in
the range of the occlusal forces can be deduced. How-
ever, a computer simulation operates with several sim-
plifications related to material properties, geometry,
load, and interface conditions. For this reason, when
applying the results to clinical practice, a qualitative
comparison between models is recommended, rather
than focusing on quantitative data from FEA.55,56

Ratios between stress values remain the same, no
matter the magnitude of the force, as long as the load
applied allows only elastic deformation of the materi-
als in the model. Thus, no attempt was made to use a
particular bite force matching one of the various
occlusal loads reported in the literature.17 However,
for very large loads, which produce plastic deforma-
tions, mechanical behavior of the model cannot be
predicted by this method.

At the mesial end of the model, a low gradient of
stress was observed. In a longer bone segment this
stress would gradually decrease to the point of disap-
pearing. However, since this stress was low, it is con-
sidered that its effect on the region of interest is
negligible.
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Fig 9 Maximum equivalent stress (max EQV) in the implant-abutment unit in all the models under
(left) axial (AX) and (right) buccolingual (BL) load.
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The highest bone stress was concentrated in the
cortical bone in the region of the implant neck. The
same tendency was also reported in other FEA of
loaded implants with or without superstruc-
ture.14,43,55–61 This location is consistent with findings
from experiments and clinical studies that demon-
strated that bone loss begins around the implant
neck.7,9,14,16,24,62 These results support the theory that
high stress from inadvertent loading could lead to
bone resorption around the implant neck.1,7,10,14–16

AX load generated a vertical displacement of the
prosthesis and implant-abutment units in the
mesiodistal plane. This led to high stress in the corti-
cal bone, located in the thin bone plates buccally and
lingually to the implant. Similar results were reported
in other studies.43,63 AX loading also produced a
bending of the prosthesis in the mesiodistal plane.
Consequently, the implants were bent toward the
pontic, which produced a moderate stress in the cor-
tical bone between the implant-abutment units. In
the cancellous bone, this produced high stress
around the apical one third of the implants, espe-
cially on the distal side. The high stress in cancellous
bone buccally and lingually to the implant, which
extended beyond its apical end, is a combined result
of the bending and vertical displacement of the
implant-abutment units. The lower elastic modulus
of both resins, compared to gold and porcelain, pro-
duced a larger bending of the prosthesis and conse-
quently greater bending of the implants toward the
pontic. In the acrylic and composite resin models,
this led to higher stress and larger areas of concen-
trated stress in the implant-abutment unit and, to a
lesser extent, in the cortical bone. The geometry of
the model (a slender implant-abutment unit rigidly
fixed in a sizable bone mass) allowed bending rather
than tilting of the implant-abutment units. Thus, the
deformation was located mainly in the abutment por-
tion, and it decreased toward the implant portion
that corresponded to the bone level. Therefore, the
stress differences were much larger in the implant-
abutment unit than in the cortical bone, and they
were absent in the cancellous bone.

BL load produced a tipping of the prosthesis in
the buccolingual plane, which caused tilting of the
implant-abutment units and bone toward the lingual
plane. This led to lingual compression and buccal
tension in the neck region of the implant and the
cortical bone. The cancellous bone was under a com-
bined stress state with compressive and tensile
components.

The BL load also produced prosthesis bending in
the horizontal plane, which led to a tendency of the
implant-abutment unit to twist around the longitudi-
nal axis. The degree of prosthesis bending, and thus

the stress in the implant-abutment unit and the sur-
rounding bone, would increase with a reduction in
prosthesis stiffness. However, since the application
point of the load was 3 mm above the longitudinal
axis of the superstructure, a torque with the potential
of twisting the prosthesis was also generated. Gold
alloy and porcelain have high shear moduli, so almost
no twisting occurred in these pontics, and most of the
torque dissipated to the implant-abutment units and
bone. On the contrary, since resin’s low shear modu-
lus allowed prosthesis twisting, less of the torque was
transmitted to the implant-abutment units and bone.
Thus, the stress from the prosthesis twisting would
decrease in a less rigid prosthesis. As a combined
effect of prosthesis bending and twisting tendencies
under BL load, only a slight decrease in max EQV of
the implant-abutment unit was found in the acrylic
and composite resin prostheses and no difference in
the bone stress was observed.

Bone stress was higher under BL load than
under axial load in all the investigated situations.
Similar results were reported in other studies23,57

and are consistent with the findings of an in vivo
experiment that demonstrated the damaging poten-
tial of lateral loads that are applied to implants.10

However, intraorally,  vertical components of
occlusal forces are much larger than horizontal
components.17,64,65 Since in this study equal loads
were applied axially and laterally, the ratio of stress
from AX load to stress from BL load may be altered
in clinical situations with higher stresses from axial
force components.

Prosthesis design is considered to be one of the
factors that influence the stress distribution in the
bone around implants.57,66 A previous 3-D FEA
study57 showed that the prosthesis design (namely,
the presence or absence of a pontic and its location
between the implants or as a cantilever extension)
would significantly alter the bone stress. Other pros-
thesis features, such as the geometry of the super-
structure, the type of connection between prosthesis
and abutment, and the prosthesis material, are also
believed to influence bone stress. In the present
study, the prosthesis was simplified to a block whose
size corresponded roughly to that of the posterior
mandibular tooth crown. The prosthesis was rigidly
connected to the abutments without allowing a sepa-
ration between the contacting surfaces. This corre-
sponds to the most severe conditions of load trans-
mission, when no stress relief is allowed between the
prosthetic components.

In a theoretical model23 and an in vitro experi-
ment,26 acrylic resin was found to absorb shock when
an impact force was applied to the occlusal material
of a single implant–supported crown. While in the
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former study it was suggested that impact forces may
occur during inadvertent biting of hard food, the lat-
ter study left the question about impact force in clini-
cal situations unanswered.

In a static 3-D FEA, Ismail et al30 could not
demonstrate the assumed protective role of resin,
since different occlusal materials did not influence
the stress in bone and implants. In their abstract,
however, no details were given about superstructure
type, including the presence or absence of a metal
framework. Since Sertgöz32 found similar bone stress,
regardless of framework and veneer material, it could
be concluded that a framework would lessen any dif-
ferences in the stiffness of various occlusal materials.
Therefore, as a first step in investigating the influ-
ence of prosthesis materials on the stress in bone and
the implant-abutment unit, no framework was mod-
eled in the present study.

However, even in the absence of a metal frame-
work, the use of acrylic or composite resin instead of
gold or porcelain did not decrease the stress values in
bone. On the contrary, a small increase in cortical bone
max EQV was found under AX load. Therefore, the
protective role of resin for the implant-bone interface
could not be demonstrated in the conditions of this
static analysis. This result concurs with those obtained
in similar analyses for other prosthesis types.31,32

Since most of the load-related failures and signifi-
cantly more bone loss occur in the early stages of
loading,1,5,67,68 acrylic-resin provisional prostheses are
recommended during this period for testing the
bone-implant interface (they may also be used to test
esthetics and hygiene).69 However, as the results of
the present study show, acrylic resin prostheses could
not be expected to lower the stress in the bone
around implants.

Under AX load, using resin instead of porcelain or
gold left open the possibility of bending the implant
and abutment, which would consequently increase
the stress in these components. This could be a
potential problem with a provisional resin prosthesis
in function over an extended period of time.

The stress distribution in the implant-abutment
unit concurs with clinical studies that have reported
that implant fractures were located mostly at the
bone surface.1,9,24,25 In those studies, fractures were
often reported in conjunction with bone loss around
implants, especially when this bone loss reached the
implant’s point of low resistance to bending, ie, the
level of the abutment screw end. However, in the
present study, no attempt was made to simulate these
aggravating factors of implant biomechanics.

Since the load was applied to the pontic center,
maximum prosthesis deformation was obtained. A
load applied to any other point of the prosthesis or to

an additional supporting implant would allow less
bending and thus lower implant-abutment stress
would be expected.

Furthermore, clinical studies show similar or even
better results with a porcelain veneer on a gold
framework than with a resin veneer on the same kind
of framework.1,28 Porcelain and gold alloy have com-
parable Young’s moduli, which explain why similar
stress was found in these 2 materials. Also, it may be
inferred from this study that a model with gold
framework and porcelain veneer would show stresses
similar to a model with a gold alloy prosthesis. The
stress values found in the porcelain and resin models
may encourage the use of porcelain as an occlusal
material, when occlusal forces are in the porcelain
elastic range.

Conclusions

Similar stress was found in bone and the implant-
abutment units in the gold alloy and porcelain pros-
thesis models. The protective role of resin for the
implant-bone interface could not be demonstrated
under the conditions of this analysis. Considering the
intraoral predominance of axial loads, the use of
acrylic or composite resin instead of porcelain or gold
may increase stress in the implant and the abutment,
in the absence of a metal framework.
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