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Implant placement in bone is presently associated
with defined expectations of success based on

defined clinical and radiographic endpoints.1 This

successful outcome has been correlated to the histo-
logically represented bone-implant interface and is
commonly referred to as “osseointegration.”2,3

Albrektsson and Sennerby4 suggest that the experi-
mental definitions are based on either biomechanical
or structural considerations. A meaningful definition
must also reflect the processes that produce and
maintain bone at alloplastic interfaces. With regard to
process, the actual determinants of osseointegration
are not well defined. Attaining the result of osseoin-
tegration requires a prescribed surgical procedure
that has been successfully applied using several spe-
cific implant designs and materials. It is presently
unclear to what extent the surgical process of implant
placement contributes to osteogenesis at implant sur-
faces; however, the bone’s response to surgery may
be a common determinant of success using different
implants.5

It is also not known precisely how implant surfaces
contribute to or modify the process of bone formation.
Ceramic and metallic implant materials are not truly
osteogenic—that is, capable of inducing bone forma-
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The clinical success of endosseous implants is associated with the formation and maintenance of bone at implant
surfaces. Histologic analyses have indicated that bone formation at a variety of implant surfaces is a continuous
process that supports long-term functional integration. Based on in vivo observations, several generalizations
have been derived regarding the nature of the interface. Experimental descriptions indicate that the implant-
bone interface may be characterized in spatial and temporal terms as discontinuous. Biomechanical tests of the
bone associations with implants demonstrate that the chemical composition and the surface topography of the
implant influence the rate and extent of bone formation at implant surfaces. The precise character and functional
attributes of this interface are the focus of this investigation. Many technical difficulties are associated with its
structural and chemical characterization in vivo. Despite the technically difficult nature of this type of analysis
and the limitations of current histologic examinations and biomechanical tests, in vivo models of osseointegration
are necessary experimental tools for the continued empirical development of clinical implant applications.
(INT J ORAL MAXILLOFAC IMPLANTS 1998;13:17–29)
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tion at ectopic sites by recruitment or stimulation of
precursor osteoblasts. Current implant surfaces may
not display the property of osteoinduction, a process
that supports the mitogenesis of undifferentiated mes-
enchymal cells, leading to the formation of osteopro-
genitor cells to create new bone.6 Implant material
surfaces may differ considerably in their capacity to
support osteoconduction, a process that involves the
ingrowth of sprouting capillaries, perivascular tissues,
and osteoprogenitor cells from the recipient host bed
into an implant or graft.6 Can implant surfaces be cus-
tom-tailored for osteoblasts or bone?

To begin to address this question, the endosseous
implant literature has been reviewed with the goal of
allowing specific generalizations to be made regard-
ing (a) the process of bone formation at various
implant surfaces, and (b) the morphology and charac-
ter of the bone-implant interface that is a hallmark of
osseointegration. Part I of this report features a com-
prehensive review of published observations from in
vivo studies of the bone-implant interface. Several
generalizations regarding the structure and biome-

chanical attributes of the bone-implant interface have
been derived. This review reiterates the observation
that many in vivo models for the assessment of bone’s
response to implants reflect static measures of healed
tissues that fail to identify many of the initial deter-
minants of bone formation at implants.7 In Part II of
this review, in vitro studies that seek to define the
interaction of cells at implant surfaces and the com-
position of an osteoblast-formed interface on implant
surfaces have been reviewed. Together, this body of
literature demonstrates that the precise molecular
nature of the interface and the cellular process of
bone formation at an artificial surface is still relatively
undefined. Continued attempts to improve the appli-
cation of osseointegration require careful attention to
the molecular and cellular details that may represent
critical determinants of the rate, extent, and mainte-
nance of bone formed at implants.

Materials and Methods

This review is based on a survey of the current liter-
ature using the MEDLINE database (Fig 1), avail-
able through the Health Sciences Library at the Uni-
versity of North Carolina. The text word “osseointe-
gration” and the text phrases “dental implantation”
and “bone-implant interface” were used to search
the database. The results indicate that an early inter-
est in clinical “implantology” has been supplanted by
a biologic interest in osseointegration and the nature
of the bone-implant interface (Figs 2a and 2b). In
addition to the information found in the MEDLINE
database, the authors have identified and reviewed
relevant symposium textbooks and monographs pub-
lished since 1985.

A number of general features of the result termed
“osseointegration” can be derived from representa-
tive in vivo studies (Table 1); these can be catego-

Fig 2a Indications of a vital, biologic relationship between the
implant and bone.

Fig 2b Indications of a dynamic, functional interface between
the implant and bone.
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Fig 1 Implant-related literature, 1969 to 1997.



rized as either structural or biomechanical. The
structural analyses have been conducted at macro-
scopic, microscopic, and ultrastructural levels.
Biomechanical examinations of the physical character
of the bone-implant connection have used mechani-
cal means (pull off, push out/pull out, torque) to
induce and measure bone-implant connection fail-
ure. To date, there have been few biochemical or
molecular analyses of forming bone at endosseous
implanted surfaces. Within this category of studies
are a series of investigations using osteoblast matrix
vessicle formation and content to examine implant
effects on bone marrow ablation–related osteo-
genesis7,8 and the measurement of bone alkaline
phosphatase activity and calcium present in tissue
surrounding healed implants in rat tibia.9

Light Microscopic Investigations and
Interpretations

The most striking common characteristic of osseoin-
tegration is that bone opposes the implant surface
without an intervening organized collagenous and
fibroblastic matrix. This is the light microscopic his-
tologic result classically associated with the clinical
result of osseointegration.10 This result has been
observed in a wide variety of animal models, which
all provide for the formation of bone at different
types of implant surfaces (Table 1). The extent to
which the surface is opposed by mineralized matrix is
variable, depending on the implant surface
character,10 the time at which the sample was evalu-
ated, and, perhaps, the animal model.
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Table 1 Summary of In Vivo Investigations of the Implant-Bone Interface

Site Species Duration Materials Observations Reference

Mandible Baboon 12 weeks–6 months Ti, aTi LM, SEM, TEM, biomech 52

Dog 2 days–5 years Ti, aTi, HA, AIO LM, SEM, TEM, biomech 16,32,33,36,39,50,77,82,93,95,106,109,117

7–122

Ti, HA
Goat 2–4 weeks HA LM, biomech 51

Monkey 2 weeks–16 months Ti LM 27,28,107,123,124

Pig 6, 18 months Ti, HA SEM 45

Human 1–7 years LM, SEM, TEM, laser scan 11,13,15,113,125

Maxilla Baboon 12 weeks–6 months Ti, aTi LM, SEM, TEM, biomech 52

Dog 2–5 months Ti LM 46,119

Goat 2–24 weeks Ti LM, biomech 51,118

Monkey 1–3 months HA LM 123,124

Rat 2–6 weeks Ti, HA LM, SEM, TEM 60,86

Human 15 months HA LM, TEM 88

Femur Cat 6 weeks Ti, Gl LM 126

Dog 4–32 weeks Ti, HA, AIO, LM, SEM, biomech 12,30,53,68

PMMA, Carbon
Rabbit 8 weeks–6 months Ti, aTi, HA LM, laser scan, biomech 25,35,43,49,70,115,127

Rat 3 days–6 months HA LM, SEM, TEM, 87,96,97,100,116

Pig 3–6 weeks Ti, HA LM 34

Tibia Rabbit 3 days–11 months Ti, aTi, TiO, SS, LM, SEM, TEM, biomech 37,40–42,44,49,70,84,85,92,97,112,128,129

CoCr, HA 81,83,124

Rat 1 day–5 months Ti, SS, GI LM, SEM, TEM 34,113,130,131

Pig 3 weeks–4 months Ti, HA LM 111

Mouse 1–18 months Ti LM

Mastoid Human 89–175 days Ti LM, biomech 17

process

Hip Human 2–18 months Ti, aTi, HA LM, SEM, TEM, 20

prosthesis

Knee joint Dog 16 weeks Ti, HA LM, biomech 99

Rabbit 6 months Ti, HA biomech 49,69,78

Pig 12 weeks Ti, aTi, HA LM, biomech 38

Human 6–131 weeks Ti, aTi, HA LM 5,19

Site-specific experimentation listed according to species (columns 1 and 2). The duration of experiments and various materials investigated (Ti = titanium,
aTi = titanium alloy, HA = hydroxyapatite, SS = stainless steel, CoCr = chromium cobalt alloy, Gl = glass, AIO = alumina) are listed in columns 3 and 4.
The histologic methods used (LM = light microscopy, SEM = scanning electron microscopy, TEM = transmission electron microscopy) or biomechanical
testing are indicated in column 5. References are provided in column 6.



Light microscopic analysis of the bone-implant
interface traditionally has focused on the relative
presence of mineralized versus fibrous connective tis-
sue opposing the implant surface. Ground sections (5
to 10 µm) provide ample demonstration of bone,
osteoid, and fibrous connective tissues using stains
that include toluidine blue with or without basic
fuchsin11–13 or hematoxylin and eosin. Osteoblastic
cells, osteoclastic cells, multinucleate giant cells,
eosinophils, monocytes, vascular elements, collage-
nous matrix, and mineralized matrix are identifiable.
Morphometric analysis of the various cellular compo-
nents within bone at implants could provide valuable
insight into ongoing activities at measured interfaces.
Many of these key aspects of the bone-implant inter-
face are illustrated in Figs 2a and 2b.

Implants have been placed in a range of animals,
including mouse, rat, cat, dog, pig, goat, and monkey
(references summarized in Table 1). Osseointe-
gration is achieved in diverse osseous locations. To
study the bone-implant interface in vivo, implants
have been placed transcortically in the mandible,
maxilla, and in long bones. Cheng et al14 quantified
the relative amount of bone formed at rabbit
periosteal, endosteal, and marrow stromal regions at
commercially pure titanium implants (periosteal >
endosteal >> marrow). Comparing results among
many different models requires consideration of site
selection. Many studies involve two-stage surgeries,
while a few offer single-stage intraoral models.
Generally, cortical fixation has been a goal of experi-
mental surgeries. Human data have also been
obtained through the retrieval of integrated and
failed implants from human jaws,11,13,15,16 mastoid
process,17 knees,18,19 and hips.20

While there are clear similarities among the
reported findings from this broad range of in vivo
studies, some differences exist among these repre-
sentations of osseointegration. The differences may
represent variables among studies involving the char-
acteristics of the implant and surgery, the temporal
extent of healing, the location of the implant (anat-
omy of supporting bone), and the relative health and
functional state of the implant at the time of analysis.
Regarding the temporal ranges used in these investi-
gations, the analytic endpoint appears to be some-
what arbitrary and suited to the animal model under
investigation. This issue of time frame is important in
that it may confuse the interpretation of data among
studies. The temporal changes of bone at osseointe-
grated implants were examined in the rat tibia at 28
and 730 days. The rapid accumulation of bone (43%
bone-implant contact) apparent at 28 days was fol-
lowed by progressive bone apposition to 730 days
(89% bone-implant contact).21 The extent of healing

as a function of time has not been standardized to a
biologic endpoint. A uniform molecular or cellular
endpoint common to all animal models has not been
identified or selected. Furthermore, healing at
implant surfaces has not been standardized to a bio-
logic control, such as the critical size defect used in
bone regeneration studies.22

Local anatomic considerations affect outcomes;
the relative contribution of cortical versus cancellous
bone is one such detail.18 These major issues, which
affect our interpretation of data and our hypotheses
concerning the process of osseointegration, may not
be reconciled by this attempt to review the literature
concerning in vivo experimental techniques that
employ different animals, different implants (materi-
als, shapes, surfaces), different surgical and retrieval
techniques, and varying types of analyses. Finally, age
may be another variable worthy of consideration.
Bone formation at implants in young rats was greater
than in mature rats. Bone contact at implants in
young rats was mediated by a thick amorphous zone,
while a well-developed connective tissue was seen at
the implant surface of mature rats.23,24

The histomorphometric analytic methods analyses
based on “best thread” data, often reflecting a pre-
dominant contribution of cortical bone, are meaning-
ful, but require careful comparison to less-defined
data. A cell-based index (osteocytes/unit area)17,112

has not been adopted or further developed. Included
are measures of total bone-metal contact (as percent-
age of total surface), bone-metal contact at the three
best consecutive threads in the cortical passage, and
the total bone area within the threads, or a “mirror-
image” analysis25 used to compare bone area occupy-
ing the “inside” of a thread to that “outside” the
thread. Noninvasive methods of quantifying the
amount of bone at the implant-bone interface are
advantageous. Hollister et al24 have demonstrated
that computed tomography (CT) provides a clear rep-
resentation of trabecular bone architecture adjacent
to transcortical implants. Additional development of
three-dimensional analyses26–28 may contribute to a
definition of a minimal value for bone formation at
implants. In addition to the histomorphometric analy-
sis of bone surrounding cylindrical implants, bone
ingrowth models utilize bone harvest chambers29 and
ingrowth coupons.30 Such models may prove to be
suitable for quantifying rates of bone formation.

It can be concluded from many investigations that
bone formation at titanium implant surfaces in exper-
imental models is less than 100% and can vary con-
siderably among test surfaces. A recent comparison
of bone-implant contact at niobium, commercially
pure titanium (cpTi), Vitallium, and titanium-alu-
minum-vanadium (Ti-6A1-4V) surfaces in rabbit
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bone indicated that there was 18.5 to 78% contact.10

Other studies in experimental animals support the
observation that less than 100% contact is typically
achieved. Values of 60 to 85% bone apposition (best
thread analysis) at functioning implant surfaces were
obtained for functioning implants removed from
humans. On the basis of this preliminary evaluation
limited to anterior edentulous jaws, it was tentatively
suggested that “osseointegration” corresponds to 60%
or more bony contact and 70% or more bone filling
of individual threads at the cortical passage.31

Bone formation at implant surfaces is not a
dichotomous phenomenon. This appears to be true
even for the osteoconductive hydroxyapatite surfaces.
While de Lange and de Putter,32 de Lange and
Donath,33 and Cook et al12 claimed 100% interface,
several others, including Buser et al,34 Piatelli et al,35

Kohri et al,36 Jansen et al,37 and Wong et al,38 have
demonstrated that the interface of integrated
hydroxyapatite cylindrical implants is in contact with
bone from 60 to 85%. “Discontinuous” may be a bet-
ter description of the interface than “incomplete”
and may be interpreted in both temporal and spatial
terms, thus reflecting a bias toward an understanding
of osseointegration as a process and not as a result.

While qualitative assessments at the light micro-
scopic level indicate that many implants achieve a
direct bone-to-implant contact, quantitative assess-
ments continue to demonstrate differences in the
amount of interfacial bone at different implant sur-
faces. Albrektsson and Johansson10 indicate that the
proportion of direct bone-to-metal contact varies
with the material and design of the implant, as well
as the state of the host, the surgical technique, the
loading conditions, and time.4,39–46

Relationship of Histologic Findings and
Biomechanical Attributes of Implants

The amount of bone formed at surfaces may be related
to biomechanical attributes of the implant. The scope
of this review cannot include the biomechanical theo-
ry of bone and the bone-implant interface; however,
it is important to review the biomechanical findings
in relation to histologic interpretations of the bone-
implant interface. How do the biomechanical attrib-
utes reflect the histologic attributes of the bone-
implant interface?

The physical association of implants with envelop-
ing bone has been measured for various implant
types, and the existing data have recently been
reviewed (see Thomas47 and Brunski48). While some
data suggest that integrated surface area is well cor-
related with biomechanical behavior,25,38,49 other data
demonstrate that the strength of association does not

increase with increased bone apposition.50 That is,
the amount of bone at a surface does not fully char-
acterize the biomechanical attributes of the interface.
More sophisticated assessment of the relationship of
histology to function is presently required. The bio-
mechanical analyses are also difficult to interpret, in
part because the relative contributions of cortical ver-
sus cancellous bone to the biomechanical parameters
measured have not been fully evaluated.49,51,52

Although specific conclusions are difficult to
derive, several general features of osseointegration
have been illustrated by these biomechanical studies.
First, the strength of interaction is significantly higher
for osseointegrated implants than for fibrous encap-
sulated implants. Second, the strength of interaction
between the implant and enveloping bone increases
shortly after implant placement (0 to 12 weeks).46,53

The initial processes of woven bone formation and its
replacement of fibrous connective tissue may take
place during this period. This initial rate of increasing
strength of association is greater for hydroxyapatite
(HA) surfaces than for titanium surfaces. Further
gains in the strength of interaction continue over a
minimal follow-up period of 1 year.54 In humans,
measured increases in bone-implant interactions
occur for at least 3 years.55 Thus, a threshold value
for this interaction is only achieved following a pro-
tracted healing period. The temporally defined
changes in biomechanical attributes of bone around
implants suggest that modeling and remodeling of
bone contribute to both the formation and the main-
tenance of osseointegration.56 The direct application
of biophysical stimuli to transcortical cylindrical
implants conclusively demonstrated the significance
of biophysical stimulation to the process of bony
ingrowth at implants.57

The strength of association or connection of
implants to surrounding bone may reflect the amount
of bone at implant surfaces. This appealing hypothe-
sis has received some support, but direct, concise
proof has been difficult to attain. The rat model has
yielded compelling support for this hypothesis.58 The
type of bone may further influence the biomechani-
cal behavior of implants. For example, the relative
value of cortical bone may confound simple interpre-
tations of implant design.59

Interfacial strengths may reflect an adhesive para-
meter that should be related to the degree of surface
attachment to bone. Studies of the tensile strength of
titanium implants to bone suggest the importance of
adhesive phenomenon to the physical connection of
implants with bone.60,61 When rabbit bone at
transcortical implants was detached by an Instron-
type device, detaching failure loads at titanium
implants were virtually 0 kg at 8 weeks, and increased
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to 2.85 kg at 25 weeks. Corresponding light
microscopy and scanning electron microscopy (SEM)
analysis revealed an equal amount of direct bone-
implant contact at both 8 and 25 weeks. Techniques
for assessing the physical quality of bone and attach-
ment at implants are therefore required. In compari-
son, tensile failure at surface active bioglass and
hydroxyapatite implant surfaces at 8 weeks was equal
to or severalfold greater than that measured at 25
weeks for titanium implants.56 Any adhesive interac-
tion is dependent on bone formation at the implant
surface and is affected by both implant surface chem-
istry and time.

Both macrostructural features, such as threads and
grooves, as well as microstructural features imparted
through plasma spraying, grit blasting, acid etching,
machining, and polishing can significantly alter the
biomechanical behavior of transcortical implants. The
resulting microenvironment is now recognized as a
key determinant of cell behavior at implants.62

Nanostructural changes, such as intentional alteration
of the oxide layer, affect bone responses to
implants.63,64 Surface properties, such as topography
and roughness, oxide thickness, composition (purity),
and microstructure, vary considerably among implants
in use. For example, modification of implant oxide
layers altered oxide thickness and surface roughness,
which improved the interaction of implants with
bone.65 Current indications from animal studies sug-
gest that these properties influence bone formation
and bone adaptation to physical strain.

Surface roughness has been considered in the
context of bony ingrowth, appositional bone forma-
tion, and tensile or torsional shear strength effects.
For surface variables significantly larger than a cell
(eg, 100 µm), bone ingrowth might be a significant
parameter affecting osseointegration.66 This magni-
tude of surface character, for example, as imparted
by plasma spraying, provides a mechanical interlock-
ing of bone and enhances tensile shear strength of
the bone-implant interface.67

Great interest in the roughness and topography
associated with grit-blasted or acid-etched substrates
is presently demonstrated in the dental implant mar-
ketplace. Surface roughness imparted by pits ranging
in magnitude from approximately 1.0 to 10.0 µm in
diameter and depth has been shown to improve bone
formation and torsional shear strength of the bone-
implant interface.38,68–70 Hansson71 has described an
ideal implant surface in mathematical terms that
model the ideal topographic form to resist shear stress
separated from bone by an interface of defined
dimension. Imparting a surface topography related to
this topographic ideal by titanium dioxide grit-blasting
was shown to increase bone adaptation and bone fixa-

tion when compared with turned titanium
implants.50,72 Wennerberg et al70 applied mathemati-
cal characterization of surface topography and rough-
ness to examine surface roughness parameters on cpTi
implant osseointegration. In a series of detailed and
well-controlled studies, a surface created by alu-
minum oxide blasting with an average surface rough-
ness of 1 to 1.5 µm and an ideal peak spacing of 9.6 to
11.1 µm displayed the greatest torsional shear
strength in rabbit bone. In summarizing this work,
Wennerberg et al indicated that superior bone fixation
was obtained for blasted implants compared with as-
machined implants. This work demonstrated that an
optimal range of surface roughness exists; an implant
surface may be too rough. The ideal surface may rep-
resent a balance of increased surface area, altered Ti
ion release, and relative homogeneity of surface struc-
ture, resulting in improved load transfer and better
mechanical interlocking.70,72–75 The nanostructural
attributes of these different surfaces were recognized
as additional features for further investigation.

Surface roughness may have direct effects on the
strength of interaction or may indirectly increase the
strength of interaction by supporting greater bone
formation or subsequent adaptation at implant sur-
faces.38,69 Buser et al34 indicated that, following HA-
coated implants, grit-blasted surfaces supported
more appositional bone formation than plasma-
sprayed, machined, or electropolished materials. The
biomechanical attributes were not defined. In anoth-
er study of grit-based versus machined titanium
implants, parallel histomorphometric analyses indi-
cated that the amount of bone at the interface did
not correlate with biomechanical behavior.38,50,76–78

The delayed responses associated with bone adapta-
tion must be added to the list of potential mecha-
nisms by which surface roughness evokes favorable
responses from bone at implants. Speculative caution
regarding implants bearing rough surfaces has to do
with the potential for the associated increased sur-
face areas to lead to increased ionic leakage.79 Prom-
ising data support the notion that engineering of
implant surfaces positively affects bone formation
and/or the biomechanical response of bone at
implant surfaces.

Ultrastructural Characterization of Bone
Formation at Implants: The Interface

The interface at metallic implants is a histologically
distinct and significant structure, described as an
organic layer interposed between the alloplastic sur-
face and mineralized bone matrix.80 Based on ultra-
structural analyses, the interface is defined as distinct
from mineralizing bone matrix or osteoid.81 While
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the composition of this interface has not been fully
defined in biochemical terms, histologic evidence
from in vivo and in vitro studies suggests that it is
enriched in proteoglycans and glycoproteins. Much
of this analysis has been performed at the morpho-
logic level in dog,32,82 rat,83 and rabbit84,85 models.
Molecular analyses have recently been derived using
immunologic probes in rat models.60 The presence of
osteopontin and α2HS-glycoprotein clearly demon-
strate the contribution of osteoblastic matrix proteins
to the formation of the interface.81,86 This electron-
dense interfacial zone is proposed to represent a
glycoprotein-rich, collagen-free region of extracellu-
lar matrix that resembles cement lines of bone.82,87,88

A functional analogy to the cement line or reversal
line of bone requires additional investigation.

The interfacial zone of metallic implants may not
be homogenous. There are at least three types of
interfacial morphologies that can be observed during
histologic analysis of metallic implant samples. (For
an excellent graphical comparison of results obtained
from a number of investigations, refer to Albrektsson
et al.89) Linder et al84 suggest that these include (a)
an acellular and amorphous collagen-free zone that is
approximately 500 nm in thickness, (b) a 50-nm zone
of amorphous material separating the implant from
an organized collagenous matrix, and (c) a 500- to
600-nm zone containing a loosely organized filamen-
tous material separating the implant surface from a
collagenous matrix. Most importantly, this distribu-
tion of interfacial morphologies was observed for dif-
ferent metallic implant materials, including cpTi,
stainless steel, and Vitallium.44,84 Osseointegration of
metallic implants involves the formation of an acellu-
lar, amorphous interface interposed between the
implant surface and vital tissue. The observed het-
erogeneity may reflect multiple stages of a continu-
ous process of interface remodeling.56 In addition to
reflecting the age of the interface, variations in the
formed bone-implant interface may also reveal ani-
mal age effects.23,90

Ericson et al91 suggest that a meaningful interpre-
tation of the interface requires dissection of its mole-
cular anatomy using analytic ultrastructural methods.
They recently reviewed the problems and solutions
that allow for careful analysis of metallic implants in
bone. A survey of these methods includes sputter-
coating of plastic plugs,92 fracture techniques,83–85,93

and electrochemical removal of the implant from
embedded sections94: the character of sputtercoated
materials may differ considerably from bulk materi-
als; fracture methods may damage the intact inter-
face; and electrochemical methods can result in de-
mineralization of the interface and potentially alter
the interface.91 Interpretation of any result must

therefore be applied within the limitations of the
sample preparation method.

Interpretation of interface morphologies must
include consideration of the difficulties encountered
in maintaining an intact interface throughout the
processing of the bone-implant interface. Fixation,
dehydration, and embedding of sections for process-
ing have inherent problems that include incomplete
fixation, incomplete dehydration, incomplete resin
penetration, and incomplete polymerization of resins
at the interface. Even if the interface is well fixed and
embedded, sectioning by diamond saw methods can
result in distortion of the interface; titanium is duc-
tile and may be pulled across the interface. When
high-quality, mineralized ground sections are
obtained, their utility is limited because of (a) the
thickness of the section (> 10 µm), and (b) limitations
of various stainings and immunohistochemical analy-
ses to the section. Alternately, implants can be
removed from the bone following fixation to allow for
subsequent sample demineralization and embedding.
More detailed histochemical and immunohistologic
analyses can be obtained. Immunohistochemical
identification of collagen expression represents one
example of biochemical assessment used to define
bone formation in relationship to implants.24

Continued effort must be made to pursue broader
molecular and ultrastructural investigations.

The interface zone at HA implant surfaces is
unique in that a continuity of the mineral phase of
forming bone and the HA surface has been revealed.
This continuity of mineral phases may form the basis
of HA implant “bone bonding.”12,16,95,96 The process
of epitaxic crystal growth has been implicated in
chemically linking the HA implant surface with min-
eralizing matrix.97 This may occur through an organic
phase that contributes to the biochemical control of
mineralization at surfaces. More rapid and direct
mineralization at HA surfaces may reflect surface
reactive phenomena. The osteoconductive behavior
of HA may be related to its protein adhesive charac-
teristics.98 In a single study, a remarkable potential
for osteoconduction was suggested by the preferen-
tial formation of bone at mobile HA-coated implant
surfaces versus titanium implant surfaces.99 Con-
firmation of this phenomenon is needed.

Observations of an electron-dense layer at the
bone-HA interface are somewhat controversial. The
organic interface at HA implants may display a simi-
lar 200- to 1000-nm thick amorphous zone separating
the implant surface from a collagenous matrix.32,100

While an uncalcified region at the interface has been
attributed to demineralization protocols32,86,87 or to a
relatively immature interface, there is sufficient evi-
dence to suggest that an organic interface, derived in
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part from the extracellular matrix produced by
osteoblasts, exists between forming bone and Ti as
well as HA implant surfaces.86,87 Structural differ-
ences in interface composition among Ti and HA sur-
faces could account for the relatively high reactivity
(epitaxy, dissolution) observed at HA surfaces. There
is continued need to seek correlations between sur-
face properties and biologic responses observed in
vivo. Two separate studies have recently reported
that calcium ion modification of cpTI implants
enhanced bone-implant contact, suggesting that a
titanium implant surface may assume osteoconduc-
tive traits through chemical modification.101,102

Based on the present description, several func-
tional attributes have been ascribed to the bone-
implant interface: (a) molecular absorption, (b) cellu-
lar adhesion, (c) adhesion of mineralized matrix to
the implant surface, (d) modulation of bone remodel-
ing and thus maintenance of bone at the implant sur-
face, (e) control of osteoconduction, (f ) control of
epitaxic crystal growth, and (g) modulation of stress
transfer from a loaded implant to the host bone.
Until the structural, biochemical, and dynamic
nature of the interface is more comprehensively
defined, consideration of the significance of these
attributes will remain largely theoretical.

Cell-Implant Relationships

Understanding of both the process and the result of
osseointegration may be improved by consideration
of the relative location of cells in bone forming or
formed at the implant-bone interface. Connectivity of
cells with implants through cell processes contacting
the implant surface have been elegantly demonstrat-
ed.93 While cells have been shown to be in direct con-
tact with implant surfaces in vivo,103 the overwhelm-
ing consensus from light microscopic evaluations of
bone at metallic implants is that such cell-implant
contacts are limited in both number and interaction.
One exception is the recent report of fluoride pre-
treated titanium implants, which displayed new bone
with osteocytes directly lining the implant surface.93

The pretreated implants demonstrated improved
bone adaption and biomechanical attributes. 

Direct and physiologically relevant signaling from
the interface to adherent cells underscores the
importance of the extracellular matrix molecule(s)
that mediate the interaction observed in vivo. In this
context, it is hypothesized that surface-related alter-
ations of local environments may influence mes-
enchymal cell differentiation to osteoblasts.105

However, the process of bone formation at implant
surfaces may not be wholly dependent on or directed
by osteoblast attachment to implant surfaces. Careful

examination of healing bone at HA surfaces did not
reveal osteoblast or precursor cell attachment to the
HA surface as a requisite step in healing.106 That
bone formation occurred toward the implant surface
and not on the surface was demonstrated by the
[3H]-proline autoradiographic results of Clokie and
Warshawsky.83 Linder et al84 indicated that osseointe-
gration represented a gradual mineralization process
directed toward, not initiated at, the implant surface.
Active bone formation proceeds from the surgical
margins of bone toward the implant surface.

One important observation seldom made regard-
ing the formation of the bone-implant interface is the
requisite process of neovascularization. The forma-
tion of new blood vessels at implanted surfaces
occurs from the surgical margins of bone and within
the loose connective tissue formed initially in micro-
gaps along the implant surface. This process has been
revealed by a plastic injection method for histologic
analysis of tissue surrounding implants.107 With
regard to neovascularization after implant placement,
the formation of blood vessels represents an impor-
tant determinant of complete bone formation follow-
ing surgery; new vessels are maintained and not
resorbed during osseous regeneration.108 In fact,
bone formation can be significantly delayed if the
environment is unsuitable for neovascularization (eg,
reinforcement of bone with porous HA granules).109

Another observation made at the histologic level is
the absence of an acute inflammatory process follow-
ing implant placement. While granulocytes and plas-
ma cells have been identified in the associated non-
mineralized connective tissues near implant surfaces,
inflammatory cells are not prevalent. Investigations
of tissue responses to cp titanium implants support
the original observations that a limited inflammatory
response is present surrounding the implant and that
this response typifies a temporally limited wound-
healing response.103,110 The association of immune
cells with implanted surfaces has been considered in
a murine model examining bone marrow–implant
interactions.111 However, the inflammatory responses
must be examined at the earliest stages of osseous
healing at implant surfaces.

An interesting observation regarding cellular
interactions at implant surfaces is the presence of
macrophages, which have been found to adhere to
both Ti and Ha implant surfaces or to surrounding
implant-related debris.18,112,113 Mononuclear cell
control of bone formation and repair has not yet
been considered in the context of osseointegration.
More significant, perhaps, is the known role of
macrophages in mediating fibrotic diseases.70 The
presence of macrophages at implant surfaces should
be considered with respect to both positive and nega-
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tive outcomes for osseointegration. Importantly, the
effect of surface configuration, cleanliness, and com-
position may significantly influence the number and
activity of macrophages in immature extracellular
matrix of bone.

Sennerby et al112 suggest that, in a manner analo-
gous to bone surface preparation by the osteoclasts
during cutting cone resorption and remodeling, the
multinucleate cell on the implant surface may pro-
duce components of the interface that direct future
biologic activity. For example, one major noncollage-
nous protein of bone shown to be a product of the
osteoclast is osteopontin.114 In fact, osteopontin is
presently defined by transmission electron micro-
scope immunohistochemistry to be in relative abun-
dance at the intact bone-implant interface of both Ti
and Ha implants.81,86 The special importance given
to high rates of bone remodeling at implants56 sug-
gests that osteoclasts should be present in this inter-
face region.

The biologic reactivity of any surface must be con-
sidered in terms of both positive and negative conse-
quences; bone mass represents a dynamic state of
formative and resorptive phenomenon mediated by
distinct cell types. The surface of HA and HA-coated
implants is resorbed. This has been demonstrated
repeatedly.18,34,78,113,115,116 The resorption rate of HA
depends on various factors, such as its micro- and
macroporosity, its sintering temperature, the nature of
the resultant amorphous phase or the extent of crys-
tallinity, and the content of ions such as fluoride and
carbonate. Although alterations of the HA-coated sur-
face (such as the use of fluoridated apatites117,118)
may practically limit this degradation, an essential
aspect of this degradation is that the bone-implant
interface is a site of cellular activity.

Summary

In vivo investigations provide evidence for the forma-
tion of bone at implant surfaces. An organic compo-
nent exists between the formed bone and the implant
surface. Both the bone and the interface appear to be
dynamic structures, subject to biologically and bio-
mechanically induced change during the life of the
implant. In addition, implant surfaces are subject to
biologic modification. The current literature hints at
this dynamic state, but has failed to fully demonstrate
the processes that form and then continually main-
tain the bone, the interface, and the alloplastic sur-
face. While the aggregate data indicate that the
amount of bone formed at implant surfaces may be
altered by surface-related factors, the interaction
among fundamental alloplastic and biologic determi-
nants of artificial surfaces is not completely under-

stood. The interfacial zone may represent a key
determinant of the dynamic state of bone formation,
modeling, and remodeling that occurs during the
lifelong process of osseointegration.
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