
INTRODUCTION

The mammalian visual pathway is a model system
for studying activity-dependent mechanisms that reg-
ulate the development and refinement of connections
in the central nervous system. The foundation for this
statement was laid down three decades ago by the ex-
periments of Wiesel and Hubel (1). They first estab-
lished that in kittens, at about 1 month of age, most
cortical neurons respond to stimulation of either eye
with varying degrees of ocular dominance. If the ani-
mal is allowed to develop in a normal visual environ-
ment, these binocular connections are maintained; how-
ever, they also observed that during a critical period

of postnatal life, deprivation of vision in one eye (monoc-
ular deprivation [MD]) causes dramatic changes in oc-
ular dominance, leading the large majority of cortical
neurons to lose responsiveness to the deprived eye.
This selective depression of synaptic transmission is
associated with severely reduced spatial sensitivity,
so that the deprived eye becomes blind, although it is
anatomically intact at reopening (2). Similar forms of
deprivation-induced synaptic depression have been ob-
served in many species, including monkeys (3), rats
(4), and mice (5). In humans, it is well known that al-
tered visual experience during postnatal life, such as
monocular or binocular visual deprivation (i.e., con-
genital cataract, ptosis) or abnormal visual stimulation
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(strabismus, anisometropia), induces a progressive de-
cline of the visual performance of the affected eye.
This neuro-ophthalmologic disease, termed amblyopia,
affects approximately 4% of the world population (6),
accounting for more than all other forms of blindness
considered together. During the last 35 years, many
studies have been devoted to the understanding of the
mechanisms underlying this dramatic change in the
physiology of the visual system, but new insights have
been gained only recently. In this article, we briefly re-
view some of the functional and morphologic changes
induced by MD in the visual system. Particular em-
phasis is given to the recent discovery of the mecha-
nism underlying neuronal cell death caused by MD in
the lateral geniculate nucleus (LGN) because the lat-
ter may open a new venue for studying novel thera-
peutic strategies for the treatment of amblyopia.

Functional characteristics of MD-induced 
plasticity

The sensitivity of the visual system to MD is limit-
ed to a time period, also referred to as the critical pe-
riod, during early postnatal life (7). At the peak of this
time window, brief episodes of monocular vision, as
short as 4 hours, are sufficient to reduce binoculari-
ty and to shift the ocular performance of visual cor-
tical neurons toward the nondeprived eye (8). At the
end of the critical period, ocular preference of corti-
cal neurons is stabilized and no longer will be influ-
enced by manipulation of the visual environment. 

If the eye that was originally deprived is reopened
and the previously open eye is closed (reverse lid su-
ture) the effects of MD are reversible (9). This demon-
strates another degree in the plasticity of the genicu-
locortical pathway. However, the rate and the extent
of the physiologic changes produced by reverse clo-
sure are conditioned by the age of the animal and the
length of the original deprivation (10). Electrophysio-
logic recovery is usually accompanied by an equally
rapid improvement of the visual performance of the
originally closed eye as determined behaviorally.
However, the recovery is often temporary, and frequently
the animals are left with severe bilateral amblyopia af-
ter consecutive periods of reverse occlusion (11). These
findings suggest that the impaired morphology of both
eyes’ pathways after reverse suture may have behav-
ioral consequences that could not be predicted from

the currently documented physiologic changes (12).
MD induces greater synaptic depression than does

binocular deprivation (10) and, as reported, the effects
of MD are more severe than the effects of binocular
deprivation (10). These data support the concept that
the ocular dominance of cortical neurons is established
and retained by a mechanism of activity-mediated com-
petition between the pathways carrying information
from the two eyes. It should be noted, however, that
binocular deprivation produces significant depression
of visual responsiveness with a rapid time course (10),
thus indicating that noncompetitive mechanisms are
also involved in the processes of MD-induced plas-
ticity. Finally, it has been observed that synaptic de-
pression in the visual cortex may also be induced by
other experimental procedures, such as applying a con-
tact lens that alters the visual image projected to the
retina in one eye or deviating the eye (10). 

MD-induces reversible morphologic changes

The LGN is the relay visual station of the visual path-
way that is most affected by MD. Wiesel and Hubel (1)
first observed in kittens that, in the laminae of the LGN
receiving afferents from the deprived eye, the diame-
ter of the neuronal cells is about two-thirds of that of
neurons in the experienced layers. Further studies have
confirmed the occurrence of neuronal cell shrinkage
(13) and, more importantly, the latter has also been
reported postmortem in the LGN of patients with am-
blyopia (14). Interestingly, of the two main classes of
relay cells in the LGN, Y cells seem particularly sen-
sitive to physiologic, metabolic, and morphologic ef-
fects elicited by visual deprivation (13, 15). For instance,
it has been shown that deprived Y cells are 58% as
large as nondeprived Y cells and that lid suture is as-
sociated with a slight reduction in the proportion of Y
cells in deprived laminae (a ratio of Y cells to X cells
of 0.8 versus 1.0 in nondeprived laminae) (16). In ad-
dition, several reports have documented a decrease
in the proportion of physiologically recordable Y cells
in the deprived layers of the LGN (13). 

MD causes apoptotic cell death in the LGN

The electrophysiologic findings described above may
be in part the result of sampling bias arising from the
reduced cell size; it has been proposed that MD may
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render Y cells inactive or may convert them into ele-
ments with electrophysiologic properties similar to those
of X cells. Another possibility is that, besides the anatom-
ic and physiologic changes occurring in some of the
Y cell populations, there may be a loss of neuronal
cells induced by MD. Indeed, we recently reported
that MD causes neuronal cell death in the LGN cells
of newborn rats (17, 18) (Fig. 1). In particular, high
magnification light microscopy analysis of hematoxylin
and eosin (H&E)–stained tissue sections from the brain
of MD rats documented the occurrence of marginal-
ization and condensation of the nuclear matrix (19,
20) (Fig. 1C). The onset of nuclear DNA fragmenta-
tion has also been revealed by the observation in ad-
jacent tissue sections, obtained from rats monocu-
larly deprived for 2, 7, and 14 days, of LGN cells pos-
itive to the terminal transferase-based TUNEL stain-
ing technique (21) (Fig. 1B). Finally, cell death by MD
was accompanied by the appearance in the LGN of
cells that were immunopositive for the tumor suppressor
protein p53 (22), a gene product often associated with
apoptosis, and most of these cells presented pyknotic
nuclei and apoptotic bodies (Fig. 1D). Collectively, these
three criteria support the hypothesis that cell death
caused by MD in the LGN of newborn rat may be of
the apoptotic type (see 19 and 23). The latter deduction

is also supported by the lack of activation/prolifera-
tion of neuroinflammatory cells (e.g., astrocytes or
microglia) in the LGN as shown by immunohistochemical
experiments using the glial fibrillary acid protein (GFAP)
(specific marker for astroglia) (20) and OX-42, a spe-
cific marker for resting and amoeboid microglia (24).
As a consequence of cell death, we observed that the
number of viable cells in the deprived LGN progres-
sively decreases as the interval of deprivation is pro-
longed. In fact, in H&E-stained sections the number
of cells per mm3 in the LGN contralateral to the de-
prived eye was reduced by approximately 10%, 27%,
and 44% after 2, 7, or 14 days of deprivation, respectively. 

These results have been obtained by estimating the
total number of neurons per volume unit using the op-
tical dissector (18). This method is based on the abil-
ity to optically section histologic planes by using mi-
croscope objectives with high numerical apertures that
produce images with relatively shallow depths of fo-
cus. The focal plane (optical section) can be moved
through the thickness of the tissue section, produc-
ing a continuous series of superimposed planes with-
in which cell counting can be carried out with the dis-
sector counting rules. In practice, this consists of count-
ing the number of new objects that come into view
as one focuses through a known tissue volume. The

Fig. 1 - Evidence that monoc-
ular deprivation (MD) triggers
apoptosis in the lateral genic-
ulate nucleus (LGN) of new-
born rats. In situ DNA frag-
mentation (TUNEL-positive
cells) is shown in the LGN of a
brain tissue section obtained
from a monocularly deprived
rat (B). No TUNEL-positive
cells were observed in the
LGN of control rats (A). (C)
Nuclei with condensed (arrow-
heads) and marginalized
(arrows) chromatin are appar-
ent in a haematoxylin and
eosin–stained section from a
newborn rat deprived in one
eye for 7 days. (D )  A cell
immunopositive for the tumor
suppressor protein p53 in a
brain tissue section corre-
sponding to the LGN of a
monocularly deprived rat.
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dissector method permits the researcher to follow cells
or synapses throughout their thickness and this
avoids overestimation of profiles, which often results
from splitting of cells or synapses during the process
of tissue sectioning. Accordingly, it has been demon-
strated that traditional counting techniques based on
counting cell profiles or synapses in a reference area
of two-dimensional probes may give rise to biases by
as much as 40% when compared to an unbiased count-
ing method such as the dissector (25).

Thus, our results indicate that MD is associated with
neuronal cell death that is responsible for a progres-
sive decrease in the total number of viable cells in the
LGN. Incidentally, MD has been shown to reduce the
number of LGN cells immunopositive for Cat-301, a
chondroitin sulphate proteoglycan expressed at the
surface of Y cells in the cat LGN (26); the magnitude
of the reduction increased as the period of depriva-
tion was extended, and these data have been inter-
preted by the authors as representing a genuine de-
crease in the number of Y cells in the LGN. More re-
cently, Bickford et al (27) reported a significant re-
duction of SMI-32-positive neurons in the laminae of
the LGN that received inputs from the deprived eye.
The SMI-31 antibody stains the nonphosphorylated
form of the high molecular weight neurofilament pro-
tein that in the LGN is expressed uniquely by Y cells.
Similar results were obtained in the substantia nigra
from the brain of patients with Parkinson’s disease
(28) and have been interpreted as reflecting an initial
stage of neuronal degeneration in which neurofilaments
are one of the first proteinaceous targets to be de-
graded. The occurrence of apoptotic cell death in the
LGN of MD rats is in apparent contrast with the evi-
dence that during the critical period of postnatal life
the electrophysiologic and functional changes induced
by monocular light deprivation are mostly reversible
if the previously occluded eye is reopened and the
originally opened eye is closed for a proportional pe-
riod of time (10). However, it can be assumed that
functional recovery may reflect the capacity of sur-
viving neurons to compensate for the lost cells. This
resource may also be conditioned by a reduction in
the total number of viable neurons in the contralat-
eral LGN that probably occurs during reverse lid su-
ture. Thus, it can be hypothesized that the normal
binocular vision after reverse lid suture results from
a new equilibrium in the total number of viable neu-

rons in the LGN of either side of the brain. This equi-
librium is likely to be reached when MD is maintained
for a limited period of time during the critical period,
whereas prolonged visual deprivation leads to very
few residual viable cells in the LGN and irreversible
damage to vision.

Excitotoxicity is involved in MD-evoked 
apoptosis

Studies in kittens have demonstrated that residual
activity in the deprived retina is implicated in the func-
tional changes induced by MD in the visual cortex (29,
30). In fact, it has been observed that elimination of
retinal activity by intraocular injection of tetrodotoxin
prevents the synaptic depression induced by MD in
the visual cortex (30). Presynaptic activity is an im-
portant element in maintaining synaptic effectiveness.
It has been proposed (31) that activation of an exci-
tatory input will lead to an increase or decrease in synap-
tic effectiveness depending on whether the coincident
activity of the postsynaptic neuron falls above or be-
low a critical value. The condition required for long-
term synaptic potentiation (LTP) is the pairing of presy-
naptic activity with strong postsynaptic depolariza-
tion, whereas the suggested condition for long-term
synaptic depression (LTD) is presynaptic activity that
consistently fails to evoke or correlate with a postsy-
naptic response large enough to trigger LTP (32). The
occurrence of LTD has been documented in the visu-
al cortex of MD kitten (33) and because during MD the
depression occurs only at the synapses that receive
the presynaptic stimulation, the phenomenon has been
referred to as homosynaptic LTD (30). In accordance
with these data, we have observed that presynaptic
retinal activity is also necessary for the induction of
neuronal death in the LGN of MD rats. In fact, we have
shown that optic nerve transection prevents cell death
in the LGN (18). The importance of retinal activity has
been further confirmed by experiments in which we
injected the tetanus toxin (TeNT), a neurotoxin that
blocks the synaptic release of neurotransmitter (see
34), into the eye. Forty-eight hours after injections—
the approximate time required for the toxin to reach
the LGN via the optic nerve—the right eyelids of new-
born rats were sutured for 48 hours. Interestingly, we
observed that intraocular injections of TeNT 48 hours
prior to MD significantly reduced the number of apop-
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totic cells in the LGN compared to those in uninject-
ed monocularly deprived animals (35). The involvement
of retinal activity in the induction of LTD and cell death
during MD suggests that these two events could be
related. It can be hypothesized that apoptosis repre-
sents a morphologic change consequent to the induction
of LTD, and that the neurochemical modifications re-
sponsible for the induction of LTD in the visual cortex
may retrogradely be involved in the mechanisms of
MD-evoked apoptosis in the LGN. 

The most likely candidate to mediate these events
is glutamate, an excitatory neurotransmitter involved
in the mechanisms of synaptic plasticity that is con-
tinuously released in the LGN by optic nerve termi-
nals. Several studies have documented that N-
methyl-D-aspartate (NMDA) and non-NMDA sub-
types of glutamate receptors, besides their physio-
logic function as mediators of visual transmission, are
also involved in the mechanisms of activity-depen-
dent refinement of visual topography; for example,
during segregation of kitten geniculocortical afferent
into ocular dominance columns (36) or in the main-
tenance of retinotectal topography of frogs during de-
velopment (37). A role for the NMDA subtype of glu-
tamate receptor has also been documented in the mech-
anisms of synaptic plasticity in the visual cortex. In
particular, it has been observed that infusion of the
NMDA receptor antagonist D-2-amino-5-phosphono-
valeric acid (APV) into the visual cortex reduces the
ocular dominance shift and prevents the neuronal shrink-
age induced by MD (38). In agreement with these da-
ta, we documented that the glutamatergic pathway is
also involved in the mechanisms of MD-evoked cell
death in the LGN of newborn rats. In fact, systemic
administration of selective antagonists of the NMDA
(e.g., MK801 and CGP040116) or non-NMDA (GYKI52466)
glutamate receptor subtypes protected against cell
death in the LGN evoked by MD for 7 days. In par-
ticular, administration of MK801 or CGP040116 re-
duced the number of TUNEL-positive cells by 73%
and 79%, respectively, whereas administration of GY-
KI52466 yielded a 91% reduction (18). In addition, we
observed that both NMDA and non-NMDA glutamate
receptor antagonists protected rats from MD-in-
duced cell loss in the LGN. Thus, excessive gluta-
matergic stimulation seems to be involved in the mech-
anisms of cell death evoked by MD (18). 

Transient glutamate stimulation can lead to sustained

opening of NMDA and non-NMDA receptor-gated ion-
ic channels and the subsequent rise in cytosolic Ca2+

can stimulate nitric oxide (NO) production (see 39), a
highly reactive radical species that plays important phys-
iologic roles in the CNS (40) and has also been in-
volved as a downstream mediator in various neu-
rodegenerative processes (41). Interestingly, it has been
reported that NO is necessary for the transmission of
visual input under normal visual stimulation and it is
directly involved in visual information processing at
the level of the LGN (42); in the latter nucleus, NOS
immunoreactive perikarya are observed from birth and
increase until the end of the third postnatal week, when
they achieve the staining observed in adulthood (43).
Interestingly, evidence indicates that NO acts togeth-
er with NMDA receptors in the activity-dependent re-
finement of the visual connections during development.
In particular, in ferret, the formation of ON/OFF sub-
laminae in the retinogeniculate connection is disrupt-
ed in vivo by treating the animals with NMDA recep-
tor antagonists (44) or with inhibitors of NO synthesis
(45). In the chick, transient retinotectal projections are
removed in an activity- and NMDA receptor–depen-
dent manner (46) whereas NOS inhibitors prevent their
removal (47). NO also has been involved in the process
of neuronal plasticity induced by MD because monoc-
ular lid suture in kitten increases the expression of
NADPH-diaphorase in Y cells of the LGN (48). 

To investigate NOS activity in the LGN, we mea-
sured the content of citrulline, a coproduct of NO syn-
thesis, at different times after MD by high performance
liquid chromatography. We observed that citrulline lev-
els increase significantly in the LGN of newborn rats
after 1 and 2 days of MD. This increase was transient;
its levels were again similar to those of age-matched
nondeprived controls after 7 days of MD (49).

Interestingly, the increase in citrulline levels observed
after 1 and 2 days of MD was abolished by treatment
with either the NMDA receptor antagonist MK801 or
the non-NMDA receptor antagonist GYKI (50). In ad-
dition, the prevention of augmented citrulline production
by the NOS inhibitor, L-NAME, confirmed that NOS
becomes active after MD. As control, we used D-NAME
(18), which is structurally similar to L-NAME, but in-
hibits NOS very poorly. Accordingly, D-NAME was in-
effective.

To test whether the observed activation of NOS dur-
ing MD was involved in the induction of neuronal apop-
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tosis, we treated the animals with L-NAME or D-NAME
during 7 days of MD and we observed that adminis-
tration of L-NAME but not D-NAME prevented apop-
tosis in the LGN of deprived rats. 

Collectively, these data suggest that during the ear-
ly period of postnatal life, excessive stimulation of
NMDA and non-NMDA glutamate receptors may ele-
vate NO synthesis and this may be involved in the
mechanism of apoptosis induced by MD. 

Notably, it has been proposed that the activation of
poly(ADP)ribose polymerase (PARP) is a key mecha-

nism for NO toxicity and glutamate toxicity, which re-
quires NOS activation (51). PARP is a nuclear enzyme
that is activated by DNA strand breaks to participate
in DNA repair. However, excessive activation of PARP
can deplete tissue stores of nicotinamide adenine din-
ucleotide, with the resultant depletion of energy and
cell death.

In particular, a role for PARP has been demonstrat-
ed in neuronal death in stroke, in excitotoxin-exposed
cortical neurons, and in substantia nigra of MPP-ex-
posed animals. To investigate PARP in MD-triggered

Fig. 2 - Monocular deprivation
(MD) during early postnatal life
induces excitotoxic, nitric
oxide–mediated cell death in
the lateral geniculate nucleus
(LGN) that appears of the
apoptotic type and requires
poly(ADP)ribose polymerase
(PARP) activation. Blocking
retinal signalling to the LGN by
optic nerve transection or sys-
temic treatments with either
glutamate receptor antagonists
or inhibitors of nitric oxide syn-
thase prevented MD-induced
cell death (as indicated by the
T bars). Also, absence of the
PARP gene seems to confer
significant neuroprotective
properties in the LGN.
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apoptosis, we used mice lacking the PARP gene, which
were donated by Z.Q. Wang (IARC, Lyons, France)
(52). Initial experiments showed that MD in mice caused
neuronal apoptosis in the LGN with features virtual-
ly indistinguishable from those observed in rats. Then,
both wild-type and -/- mice were treated as described
for rats, and apoptosis in the LGN was scored. In-
terestingly, we observed that apoptosis was reduced
in a statistically significant fashion in PARP -/- mice
as compared to wild-type mice (53).

Based on these findings, the most likely sequence
of events triggered by MD during development involves

glutamatergic signals, which lead to NOS activation
with increased NO production, activation of PARP, and
apoptosis (Fig. 2). 
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