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Brain changes in glaucoma
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ABSTRACT. There is evidence that glaucomatous damage extends from retinal ganglion cells
to vision centers in the brain. In the lateral geniculate nucleus (LGN), the major relay cen-
ter between the eye and the visual cortex, neurons should undergo degenerative and/or
neurochemical changes in magno-, parvo-, and koniocellular pathways conveying motion,
red-green, and blue-yellow information, respectively. Furthermore, in both the LGN and vi-
sual cortex in glaucoma, changes in metabolic activity are observed. The study of brain
changes in glaucoma may provide new insights into the pathobiology of glaucomatous dam-
age and disease progression, and may stimulate new detection and therapeutic strategies
to prevent blindness. Eur J Ophthalmol 2003; 13: (Suppl3): S32-S35
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INTRODUCTION

The vast majority of knowledge regarding the
pathobiology of glaucoma derives from ocular stud-
ies. Retinal ganglion cells (RGCs) have been shown
to die by apoptosis in glaucoma (1) and a number of
mechanisms have been implicated (2). In addition to
RGC death in glaucoma, there is recent evidence that
glaucomatous damage extends to the three major vi-
sual pathways in the central nervous system (CNS).
Ninety percent of RGCs project to the LGN, the ma-
jor relay center between the eye and the visual cor-
tex. Here, parallel central visual pathways are segre-
gated into anatomically distinct layers: neurons in mag-
nocellular layers and parvocellular layers convey mo-
tion and red-green information respectively, while ko-
niocellular neurons intercalated between these lay-
ers convey blue-yellow information (3,4).

Central visual pathways in glaucoma

Evidence of cell death in the glaucomatous LGN has
been recently reported (5, 6). There is significant loss
of relay neurons specifically destined for the visual
cortex in both magnocellular and parvocellular layers
following moderate to severe optic nerve fiber loss
(5). The transneuronal degeneration in the LGN fol-
lowing RGC loss in glaucoma is a well known phe-
nomenon of neurodegenerative disorders such as
Alzheimer’s disease (7) and amyotrophic lateral scle-
rosis (8) in which injury spreads from diseased neu-
rons to connected neurons.

In response to injury, neurons may alter their pro-
tein expression, metabolic activity and cell size, and
these changes may promote survival or lead to neu-
ron death. Altered expressions of a structural protein
called neurofilament and of a presynaptic molecule
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called synaptophysin, are observed in both magno-
and parvocellular neurons in the glaucomatous LGN
(9). Relatively reduced metabolic activity detected with
the mitochondrial enzyme cytochrome oxidase is al-
so evident (9,10). Shrinkage of LGN neurons in the
glaucomatous LGN is noted relatively early in the dis-
ease (6, 11) and prior to optic nerve fiber loss (11).
The shrinkage of relay neurons in the LGN increases
with increasing injury to RGC axons (Fig. 1). The lin-
ear relationship between neuron shrinkage and loss
of RGC axons is apparent for both magnocellular and
parvocellular LGN neurons (Fig. 2).

Koniocellular neurons of the LGN make up the third
channel, a more recently discovered visual pathway
conveying blue-ON information (3, 4). These neurons
express a specific marker called calmodulin depen-
dent kinase type Il-a, a post-synaptic density protein
(3). In the glaucomatous LGN, expression of this mol-
ecule is dramatically decreased in monkeys with ocu-
lar hypertension without significant RGC loss and
also following mild, moderate and severe glaucoma-
tous optic nerve damage (12). Thus, degenerative and/or
neurochemical changes are present in all three visu-
al pathways at early as well as late stages of disease.

Changes in the relay neurons projecting to the pri-
mary visual cortex predict changes at this level also.
Indeed, visual cortex ocular dominance columns dri-
ven by the glaucomatous eye show relatively decreased
metabolic activity, observed in cortical sublayers 4Caq,
4Cp, (9,10) and cytochrome oxidase (CO) rich blobs
in layers 2-3 (13). We have observed high contrast CO
staining between ocular dominance columns driven
by glaucoma and non-glaucoma eyes in cases of greater
than 60% optic nerve fiber loss (12). This finding sug-
gests that these cortical changes are related to RGC
loss and not solely to elevated IOP induced activity
changes (14).

Implications

The anatomy and physiology of the primate central
visual system have striking similarities to the human
visual system, and experimental glaucoma closely mim-
ics human disease (15, 16). Quantitative assessment
of the degenerative changes in the glaucomatous pri-
mate brain demonstrates that the major visual path-
ways are affected, and these findings are in keeping
with visual dysfunctions related to magno-, parvo- and

Fig. 1 - Relay neurons of parvocellular LGN layer 4, compared to the
normal control (A), show overall cell body shrinkage in glaucoma
monkeys with 29%, 61%, and 100% optic nerve fiber loss (B,C and
D, respectively) and this increases with increasing optic nerve fiber
loss (Bar=10pm). (This figure has been reprinted from Yiicel YH,
Zhang Q, Weinreb RN, Kaufman PL, Gupta N. Atrophy of relay neu-
rons in magno- and parvocellular layers in lateral geniculate nucleus
in experimental glaucoma. Invest Ophthalmol Vis Sci 2001; 42: 3216-
22. A copyright authorization has been obtained from the Association
for Research in Vision and Ophthalmology.)
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Fig. 2 - Plot of neuronal area % decrease for magnocellular layer 1
and parvocellular layers 4 and 6 as a function of % optic nerve fiber
loss. The linear regression lines are superimposed on the plots. Dot-
ted, dashed and solid lines represent regression lines for layer 1,
layer 4, and layer 6, respectively. Diamonds, circles and triangles
correspond to the mean neuronal area % decrease for layer 1, layer 4,
and layer 6, respectively. (This figure has been reprinted from Ycel
YH, Zhang Q, Weinreb RN, Kaufman PL, Gupta N. Atrophy of relay
neurons in magno- and parvocellular layers in lateral geniculate
nucleus in experimental glaucoma. Invest Ophthalmol Vis Sci 2001;
42: 3216-22. A copyright authorization has been obtained from the
Association for Research in Vision and Ophthalmology.)
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koniocellular pathways in patients with glaucoma (17).

Neural degeneration in magno- and parvocellular path-
ways in experimental glaucoma implicates motion and
red-green visual deficits in the disease process. Further-
more, the close relationship observed between these
degenerative findings and RGC loss suggests that tests
of these visual modalities might be useful to assess
disease progression (17). Observations of neurochemical
changes in koniocellular neurons in the presence of
ocular hypertension without significant RGC axon loss,
suggest that elevated IOP may alter the CNS in ear-
ly glaucoma. Blue-ON deficits in patients with ocular
hypertension support this notion (18,19). Further in-
vestigations of brain changes in early experimental
glaucoma are needed to understand the impact of el-
evated IOP on the RGCs and their target neurons.

Functional tests used to detect vision loss in glau-
coma are often interpreted in relation to the degree
of optic nerve damage. Neurophysiological (20-22) and
functional neuroimaging (23) may help to investigate
neuron populations along the retino-geniculo-corti-
cal pathway in glaucoma. Investigations of the extra-
geniculate-cortical visual pathways in glaucoma may
help to characterize the impact of glaucomatous dam-
age on processes such as circadian rhythms and eye
movements (24).
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