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Abstract

The etiology of intracranial aneurysm formation and rupture remains mostly
unknown, but lately several studies have increasingly supported the role of
genetic factors. In reports so far, genome-wide linkage studies suggest several
susceptibility loci that may contain one or more predisposing genes. Depending
on the examined ethnic population, several different non-matching chromo-
somal regions have been found. Studies of several candidate genes report
association with intracranial aneurysms. To date, no single gene has been iden-
tified as responsible for intracranial aneurysm formation or rupture.



In addition to the well-published environmental factors, such as alcohol
intake, hypertension and smoking, only the recent progress in molecular genet-
ics enables us to investigate the possible genetic determinants of this disease.
Although a familial predisposition is the strongest risk factor for the develop-
ment of intracranial aneurysms, the mode of Mendelian inheritance is uncertain
in most families. Therefore, multiple genetic susceptibilities in conjunction with
the environmental factors are considered to act together in the disease’s etiolo-
gy. Accordingly, researchers performed linkage studies and case-control asso-
ciation studies for the genetic analysis and have identified several genes to be
susceptible to intracranial aneurysms. The identification of susceptible genes
may lead to the understanding of the mechanism of formation and rupture and
possibly lead to the development of a pharmacological therapy. Furthermore,
should it be possible to identify a genetic marker associated with an increased
risk of formation and rupture of an intracranial aneurysm, the necessity for
screening and urgency of treatment could be determined more easily.

In this review we summarize the current knowledge of intracranial aneu-
rysm genetics and also discuss the method to detect the causalities. In view of
the recent advances made in this field, we also give an outlook on possible
future genetically engineered therapies, whose development are well underway.

Keywords: Cerebral aneurysms; subarachnoid hemorrhage; genetic; intracerebral
hemorrhage.

Introduction

Although the incidence of other kinds of stroke has declined in the last three
decades the frequency of subarachnoid hemorrhage due to a ruptured intra-
cranial aneurysm has remained the same. The peak incidence of suffering from
a subarachnoid hemorrhage is in persons 55–60 years of age [26], whereas
there is a preponderance of the female ratio of around 2:1 [76, 83]. Recent
technical advances have changed intracranial aneurysm (IA) treatment dramat-
ically. According to availability, coiling has taken over a large part of IA treat-
ment in industrialized countries [75]. Nevertheless, mortality of individuals
remains around 50% of patients who had suffered an intracranial aneurysm
[44], while the survivors have a 30% danger of developing a persisting neuro-
logical deficit. Environmental factors associated with intracranial aneurysms
such as hypertension, alcohol intake and smoking have all been well documen-
ted [20] but they alone can not be held responsible for IA formation and
rupture. It has been shown that the risk of ruptured IA in first-degree relatives
of patients with aneurysmal SAH is four times higher, and the relative risk in
siblings is six times higher, than that in the general population [77, 81].
According to the period of follow-up the risk of rupture is between 0.6 and
1.3% per year [63, 95]. As the relative risk (RR) for rupture is 2.0 in patients
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above the age of 60, it is also increased in the female gender (RR1.6) and in
patients of Japanese and Finnish descent (RR3.4) [95].

Different epidemiology in different countries

Rupture rates in highly industrialized countries have been determined to be
between 11=100,000 in the USA and 96=100,000 in distinct regions in Japan,
which may again reflect the genetic component that plays a role in formation
and=or rupture [39, 50, 63]. Even within Japan the incidence varies from 20 to
96=100,000 [36, 50, 90]. As of now, still little is known about the rates in highly
populated countries such as India and China [38]. The increasingly wide-spread
use of digital communication between IA treating departments that are in dif-
ferent locations allows easy access to each others documentation within differ-
ent countries and will hopefully lead to further insight into the globally differing
epidemiological data of IA.

A widely cited figure for the prevalence for asymptomatic unruptured in-
tracranial aneurysms is 5% although the prevalence in the general population is
unclear. The prevalence for all cerebral aneurysms according to autopsy pro-
cedures ranges from 0.2 to 9%, with a prevalence of 0.6 to 4.2% for unrup-
tured aneurysms alone [96]. As an example, one of the largest autopsy studies
of 1230 Japanese cases over a period of 30 years revealed a prevalance of
incidental intracranial aneurysms to be 4.6% [41].

The increasingly sophisticated and susceptible means of non-invasive diag-
nostic imaging will further change early treatment modalities. Nowadays 3 Tesla
MRIs can detect IAs with diameters as small as 2–3mm. With health care
systems providing extensive check-ups, e.g. – prophylactic brain MR scan in
Japan [63, 101], the very early detection and treatment of IAs is bound to
change.

Etiology of intracranial aneurysm formation and rupture

The detailed causes for intracranial aneurysm formation and rupture have not
been elucidated, but there have been several studies on possible etiological
causes. Inflammatory mechanisms [12], hypertension [37] and hormonal influ-
ence in the female gender [31, 42, 43] have all been connected to IA formation
and rupture.

The typical intracranial artery is made up of three histological layers: 1) the
inner layer (tunica intima) consisting of an endothelial layer and smooth muscle
cells, 2) the muscular layer (tunica media) made up of the internal elastic lamina
and SMCs and 3) the outer loose connective tissue layer (tunica adventitia) [78].
At bifurcation sites they have a gap in the continuity of the muscular media
layer which are called medial gaps or raph�ees. This particular gap has often been
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cited as a predisposing weakness to the formation of intracranial aneurysms
due to a possible decrease in tensile strength. But ultrastructural examination at
these sites has revealed a tendon-like organization of collagen fibers increasing
the resistency to mechanical stretching [22, 85, 86]. In intracranial aneurysms
the layers are often not clearly defined [24]. A lack of elastic lamina, disorga-
nized smooth muscle cells, neointimal and myointimal hyperplasia as well as
early atherosclerotic changes are common features [45, 51]. Structural abnor-
malities in structural proteins of the extracellular matrix have been identified in
the arterial wall at a distance from the aneurysm itself. Reticular fibers were
significantly decreased in the Tunica media of intracranial aneurysms as com-
pared to those of control arteries [13].

Continuous pressure exerted at points of bifurcation around the circle of
Willis are subject to aneurysm formation [18]. This leads to the conclusion that
a vessel wall weakness predisposes an outpouching. Furthermore, structural
weaknesses seen in connective tissue disorders are associated with the presence
of IA and their rupture. Among them are diseases such as the autosomal
dominant polycystic kidney disease, Ehlers-Danlos Syndrome, pseudoxan-
thoma elasticum and fibromuscular dysplasia [80]. Hereditary hemorrhagic
telangiectasia (HHT) or Osler-Weber-Rendu syndrome is an autosomal domi-
nant vascular disorder characterized by telangiectases, internal arteriovenous
malformations and intracranial aneurysms. Endoglin gene mutations are re-
sponsible for HHT type 1 and ACVRL1 (activin receptor like kinase 1) muta-
tions cause HHT type 2 [21]. A polymorphism of the endoglin gene has been
correlated with intracranial aneurysm formation in a Japanese population but
could not be replicated by others [54, 69, 89]. Several genes of the extracellular
matrix have been examined regarding their immediate role in the vessel wall
formation. Most recent reports have shown that irregularities in the elastin
gene [2], the collagen gene [100] and the lysl oxidase like family gene 2
(LOXL 2), which cross links collagen and elastin [1], play a role in IA forma-
tion although replication studies in patients of different ethnic origin did not
always reach the same conclusions [56].

Whether or not genetic susceptibilities play a role in the rupture of IA in
combination with the well-known environmental factors, remains to be seen. In
an article comparing a group of ruptured and unruptured intracranial aneurysm
patients of Caucasian ethnicity it was found that three polymorphisms in the
endothelial nitric oxide synthase gene (eNOS) could possibly indicate an
enheightened risk of rupture [47]. In a larger study of Japanese patients none
of the aforementioned polymorphisms of the eNOS gene could be verified [57].

Aside from the strucutral differences several findings of infiltrating inflam-
matory cells have been reported [12, 45, 92]. Macrophages and T-cells infiltrate
all layers of the aneurysm vessel wall. Comparison between ruptured and
unruptured aneurysm tissue has demonstrated similar histological findings in-
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dicating a restrucuring process to have begun before the aneurysm’s rupture
[12, 15, 25, 51].

Vascular and cerebrovascular diseases associated
with a genetic component

Family history studies and the results from studies of twins have shown a ten-
dency for different types of stroke to cluster within families. Several mendelian
and mitochondrial disorders cause cerebrovascular malformations, ischemic
stroke as well as hemorrhagic stroke [62]. As an example, among the most
intensively genetically researched cerebral vascular malformations are the cere-
bral cavernous malformations (CCM). Three linkage regions have been de-
scribed: CCM1 on chromosome locus 7q21–q22, CCM2 on 7p13–15 and
CCM3 on 3q25.2–q27. The genetic defects for CCM 1 are due to various mu-
tations in the gene Krit1, which encodes for the Krev interaction Trapped 1
(Krit1) protein. CCM2 encodes the MGC4607 protein, also called malcavernin,
and CCM3 the programmed cell death 10 (PDCD10) protein [60]. Other
cerebrovascular malformations in which multiple genetic components are likely
to play a role include brain arteriovenous malformations and Moyamoya
disease [66]. Recently there have been reports on the association of polymor-
phisms of Interleukin-6 [8] and ACVRL1 [82] with arteriovenous malforma-
tions of the central nervous system.

Abdominal aortic aneurysms have been examined extensively, revealing
similar results of a multigenic origin [67]. Comparative studies between aortic
and intracranial aneurysms have yet to yield identical findings [49], but similar
mechanisms of formation seem fathomable.

Approaches to genetic research of intracranial aneurysms

There are two major approaches for the identification of possible intracranial
aneurysm genes. They are not mutually exclusive, but more complementary.
One is to perform a linkage analysis which locates the locus of disease using
DNA and clinical information of families (including more than one member).
The other is the association approach that may comprise the whole genome
or single candidate genes. It identifies potential disease alleles in a case-control
design.

While linkage analysis is arguably the most powerful method for identifying
a locus involving rare, high-risk alleles in Mendelian diseases, as was the case
for the Krit1 gene in cerebral cavernous malformation [30] and Notch3 for
CADASIL (cerebral autosomal dominant arteriopathy with subcortical infarcts
and leukoencephalopathy) [91], many consider genetic association analyses to
be the best method for identifying genetic variants related to common and
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complex diseases, such as for IA. The HapMap project, in particular, has made
genomewide association studies the most powerful tool for identification of
common alleles to common diseases. The recently emerged hypothesis, the so
called ‘‘rare variant-common disease hypothesis’’, implies that several rare var-
iants in a gene may be involved in the causality of a common disease [14]. If
this is the case, an association study (even one that is genome-wide with high-
density genotyping of single nucleotide polymorphisms) may not be able to
detect the disease gene because most of the SNPs in the database are common
SNPs designed to map common alleles. Therefore, both family-based genetic
linkage studies as well as association studies are required for the full under-
standing of the genetics of IA.

Linkage analyses reveal chromosomal loci

Although the molecular basis of the disorder is not known, family studies
strongly support genetic factors in the formation of IA [77]. Several studies
of familial aneurysms have identified chromosomal loci showing suggestive
evidence of linkage [56]. The mode of transmission for harboring an IA is
not clear, and the genetics of the disorder appear to be complex, involving
multiple loci and interaction of multiple genes [70]. In accordance with this,
several genomewide scans and linkage studies have identified multiple chromo-
somal regions that may contain one or more susceptible genes. However, in
some cases, results could not be replicated, even when examining patients of
the same ethnic background [58, 70, 98, 99]. Onda et al. observed positive
evidence of linkage on chromosome 5q22–31 (MLS 2.24), 7q11 (MLS 3.22)
and 14q22 (MLS 2.31) with 104 affected sib-pairs. Yamada et al. observed
positive evidence of linkage on chromosome 17cen (MLS 3.00), 19q13 (MLS
2.15) and Xp22 (MLS 2.16) with 29 extended families [98]. The inconsistency
must be interpreted with caution. Discrepancies are possibly due to genetic
heterogeneity and differences of patient cohorts (affected sib-pairs vs. extensive
nuclear families). Further studies comprising larger sample sizes are undoubt-
edly needed, as multiple interacting genes and environmental factors contribute
to the phenotype. Three regions that were confirmed in samples of patients of
different ethnic origin are on chromosome 7q [19, 68, 70], 19q [19, 68, 98] and
14q [70, 72]. All regions were verified once using affected sib-pairs and once
using extended pedigrees.

Alternatively, the rare Mendelian forms of disease might lead to the identi-
fication of genes or pathways that play a key role in the pathogenesis of the
common form of the disease. Nahed et al. identified a large family of IA (six
living patients and four deceased) showing autosomal dominant inheritance
and detected a single locus with a LOD score of 4.2 at chromosome 1p34.3–
36.13 [65]. Positional (candidate) cloning might be underway in the locus.
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Candidate gene association analyses: positional and functional

Association studies and the selection of target genes and sequence variants
have often been limited to the investigation of candidate genes selected because
of a priori hypotheses about their etiological role in a disease. These studies
depended on the ability to predict functional candidate genes and polymor-
phisms [88]. Positional candidate genes can be selected from regions that have
been identified by linkage analyses or genome wide scans [27, 28, 33].

More than 25 different candidate genes have been examined in case-control
studies by different groups using the DNA of patients with different ethnic
backgrounds. Selection of these genes were usually either of functional or
positional nature. After identifying several susceptibility loci on different chro-
mosomes, many positional candidate genes have been looked at that are
located in the found regions. On the other hand, many of the examined func-
tional candidate genes play a role in connective tissue formation, such as the
collagen gene [100], the elastin gene [2], the matrix metalloproteinases and their
tissue inhibitor genes [52, 53] and the endoglin gene [89]. Only a few have
shown moderate positive association. Considering the genetic role in the for-
mation of IAs, some of the examined candidate genes potentially possess both
attributes of function and position (e.g., the elastin gene [2] which makes up
part of the extracellular matrix of the vessel wall and is located in the linkage
region of chromosome 7q11 found in a Japanese sibpair linkage study and
replicated in a group of white patients in Utah). Detailed contemporary de-
scriptions and tables of all examined candidate genes and chromosomal loci
have been published in recent articles [56, 64, 79]. Conflicting results have been
obtained, and no single gene has been consistently identified as a candidate
gene. Possible reasons for these inconsistencies are false-positive studies, false-
negative studies and differences between populations. Inadequate sample size is
a major cause for false-positive and false-negative results [40]. Other causes
include population stratification, misclassification (genotyping or phenotyping
errors), and inappropriate statistical methods.

Variability in the association between different populations may be due to
the frequency of disease-causing alleles, the pattern of association between dis-
ease causing alleles or interacting genetic or environmental factors. Therefore,
failure to replicate does not necessarily mean lack of causality but possibly
point to the need for additional studies [17]. As mentioned most of the asso-
ciation studies to date have focussed on single polymorphisms, but recently
joint effects of single markers on a haplotype level have been examined [2].
Haplotypes are a set of markers that are physically close to each other on the
DNA strand and are therefore inherited as a unit (a set of alleles in strong
linkage disequilibrium (LD)). Association between a polymorphism and a trait,
such as intracranial aneurysm, does not necessarily imply causality. Instead, the
polymorphism=haplotype under investigation may be in LD with the causative
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sequence variant, requiring more detailed studies to identify the causative se-
quence alteration. Thus far, numerous association studies have been per-
formed, some showing positive associations, some negative. But the majority
of studies only examined small sample sizes and thus are mostly preliminary.

Many tested variants are single-nucleotide polymorphisms (SNPs) that
change an amino acid and are therefore more likely to have a functional conse-
quence. However, based on the successful positional cloning of disease genes for
several common diseases, including schizophrenia [84], osteoporosis [87], myo-
cardial infarction [33], ischemic stroke [28] and asthma [3], the most important
variants are noncoding variants that affect the expression and=or efficiency of
splicing. A large percentage of many organisms’ total genome sizes is comprised
of noncoding DNA. Some noncoding DNA is involved in regulating the activity
of coding regions. However, much of this DNA has no known function and is
sometimes referred to as ‘‘junk DNA’’. Recent evidence suggests that ‘‘junk
DNA’’ may in fact be employed by proteins created from coding DNA [6].

Gene expression microarray analyses

One of the newer genetic research techniques is the microarray which allows
examination of several thousand genes at once. Although its deployment is
related to substantial costs, its efficiency can hardly be beaten. No other meth-
odological approach has transformed molecular biology more in recent years
than the use of microarrays. Microarray technology has led the way from
studies of the individual biological functions of a few related genes, proteins
or, at best, pathways towards more global investigations of cellular activity. The
development of this technology immediately yielded new and interesting infor-
mation, and has produced more data than can be currently dealt with. To many,
the term microarray analysis is equivalent to transcript analysis. Although tran-
scriptional profiling is unquestionably the most widely used application at pres-
ent, it might become less important in future because it focuses on a biological
intermediate. Currently a whole battery of sophisticated applications for this
technology are being developed, e.g. for epigenetic studies, expanding RNA
studies and probing with genomic sequences [35].

Concerning intracranial aneurysms there are several studies with this tech-
nique that are being completed worldwide. Analysis of the results of those
genes differentially expressed within IA tissue will again shift focus towards
hitherto unexamined targets.

Application of genetic findings to novel diagnostic tests
and future therapies

Nowadays, there is a wide array of over-the-counter commercially available
tests which, for example, lets users find out whether they are prone to develop
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cardiovascular disease or are the carriers of Factor V Leiden, a single mutation
that raises the risk for thrombophilia, or abnormal blood clotting. The results
of these kinds of tests have to be interpreted with caution, as in some cases
they could lead to false behaviour after negative results [16, 97]. Nevertheless,
with increasing availability of such non-invasive diagnostic procedures, a wider
spectrum of people can be screened at a relative cost-efficient basis, which in
turn, in the case of intracranial aneurysms, could lead to timely prophylactic
measures.

An early diagnosis through a genetic test, such as available for BRCA [4],
could potentially spare patients from needless dangerous invasive diagnostic
procedures or treatment. Furthermore, a precise diagnosis of an underlying
genetic component could permit rational family counseling. Genetic markers
showing an increased risk of rupture in patients harboring intracranial aneu-
rysms that are of a smaller size (<7mm) could facilitate the decision for imme-
diate treatment. Genes, such as the above mentioned eNOS, could be possible
candidates. Such kinds of genetic tests could easily be performed during a visit
to the outpatient clinic during which a simple blood withdrawal for the extrac-
tion of DNA could take place.

Although a few publications have reported on ultrastructural findings of
skin biopsies possibly being able to indicate the risk of developing an intracra-
nial aneurysm this hypothesis has not been further substantiated. Mostly these
findings were linked to connective tissue disease such as Ehlers Danlos
Syndrome Type IV [29, 46, 55, 59, 93].

The goal of gene therapy is either to introduce a gene that is deficient in
patients, to overexpress a therapeutic gene, or to silence a gene that is detri-
mental. Several studies have reported the feasibility of transferring genes to
blood vessels to alter vascular function [10]. An alternative is to transfer the
genes to the liver or the skeletal muscle so that the released protein from the
transgene binds to blood vessels to alter vascular function [32]. The gene
transfer, either direct or indirect by vector, is achieved with DNA or RNA.
The transgene then expresses RNA or a protein.

Naked DNA, for direct transfection, is the safest approach but inefficient
for transduction of cells and tissues [11]. Several recombinant viruses are used
as vectors: Adenoviruses are efficient but the transfection period is short, as
the viruses also induce an inflammatory response. Retroviruses provide long-
term expression but may lead to insertional mutagenesis. Leukemia has been
induced in children during retroviral transfer. Adeno-associated viruses provide
long-term expression without inflammation, however it is difficult to produce
large amounts of recombinant viruses [23]. So widespread use of gene therapy
is being held back by the fact that a safe and efficient vector for delivery of
genes has not been developed yet [32]. Cerebrovascular diseases have been
the target of experimental gene therapy in animal models. Such as cerebral
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vasospasm, chronic cerebral ischaemia with poor collateral circulation and
restenosis of the extracranial artery.

Although lately drug eluting stents have been strongly criticized for a pos-
sible increase of restenosis after deployment [5], they or coils may be an
effective method of administering genetically engineered treatment to the site
of an intracranial aneurysm. For this kind of topically administered gene ther-
apy, newer developments such as endovascular devices carrying vectors [74]
and techniques of delivering genetically modified autologous fibroblasts are
being pursued [61, 74].

A further approach and challenge is the direct administration of vectors
into the carotid artery which unfortunately still requires an interruption of the
blood flow for 10–30min so that the virus can infect the endothelium [94].
Further techniques being studied are perivascular approaches, e.g., by adminis-
tering adenoviral vectors into the CSF [7, 71] and by paintbrush technique [48].
An intravenous application could lead to the entrapment of the virus in the
liver [34] where a secretable protein could then be released into the circulation.
Similarly subcutaneous=intramuscular injections could deploy the same mech-
anism [9, 73].

Even though intracranial aneurysms may be considered as an irreversible
process possibly genetic therapy can lead to a regression. A recent publication
of an abdominal aortic aneurysm (AAA) mouse model has shown that an
intraperitoneal application of a JNK inhibitor led to the regression of the
aneurysm’s diameter. In the case of AAA the diseased aorta seems to have
the potential to regress if exacerbating factors are eliminated and=or the tissue
repair is reinforced [102].

Conclusion and proposals for the future

Several reports have substantiated the fact that intracranial aneurysms and their
rupture are associated with a strong genetic component. Overall, the results
point to a multigenic disease in which environmental factors interact in the
etiology.

It will be necessary to perform multicenter studies to 1) substan-
tially increase the number of affected patients, 2) substratisfy the different
regions and ethnicities of the patients and 3) to approach the genetic re-
search from several angles. Positive results in candidate gene association
studies as well as positive linkage regions need to be compared among
cohorts of different ethnicity. The publications so far have shown the dif-
ferent influence in different countries. With the advent of ever increasing
sophistication of computational analyses programs gene-gene interaction
and gene-environment action will be scrutinized, leading to possible novel
therapeutic approaches.
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