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Abstract

Gene therapy potentially represents one of the most important develop-
ments in modern medicine. Gene therapy, especially of cancer, has created
exciting and elusive areas of therapeutic research in the past decade. In
fact, the first gene therapy performed in a human was not against cancer
but was performed to a 14 year old child su¤ering from adenosine deami-
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nase (ADA) deficiency. In addition to cancer gene therapy there are many
other diseases and disorders where gene therapy holds exciting and promis-
ing opportunities. These include amongst others gene therapy within the
central nervous system and the cardiovascular system. Improvements of
the e‰ciency and safety of gene therapy is the major goal of gene therapy
development. After the death of Jesse Gelsinger, the first patient in whom
death could be directly linked to the viral vector used for the treatment,
ethical doubts were raised about the feasibility of gene therapy in humans.
Therefore, the ability to direct gene transfer vectors to specific target cells is
also a crucial task to be solved and will be important not only to achieve a
therapeutic e¤ect but also to limit potential adverse e¤ects.

Keywords: Gene therapy; viral vectors; Parkinson’s disease; Alzheimer’s disease;

brain tumours; cerebral vasospasm.

Introduction to Gene Therapy: The Past, Present and Future

Scientific understanding of the molecular basis of life increased dramati-
cally after Oswald T. Avery’s discovery in 1944 that deoxyribonucleic
acid (DNA) was the ‘‘transforming principle’’ – the secret code of life.
Then Francis Crick and James Watson described the ‘‘double helix’’ struc-
ture of DNA in 1953. The process, however, by which DNA replicates it-
self during cellular reproduction, or how DNA expresses its genetic infor-
mation, was still a mystery in the late 1950s. A little less than 20 years after
Oswald T. Avery’s discovery, Marshall Nirenberg and his colleagues in
1962 deciphered UUU (one three-unit batch of uracil, which was a ‘‘code
word’’ for identifying phenylalanine) as the first word in the chemical dic-
tionary of life. Nearly 30 years after Nirenberg’s breakthrough, in 1990 the
first clinical study involving gene transfer was commenced (Mountain,
2000) and it contributed to the start of a whole new industrial area –
biotechnology.

A four-year old girl called Ashanti de Silva became the first gene ther-
apy patient on September 14, 1990 at the NIH Clinical Center. She had
adenosine deaminase (ADA) deficiency, a genetic disease which left her
defenceless against infections. White blood cells were taken from her
blood, and the normal genes for making adenosine deaminase were
inserted into them. Afterwards the corrected cells were re-injected back
into her circulation. Unfortunately, the e¤ects of Ashanti’s gene therapy
were not clearly demonstrated due to simultaneous enzyme replacement
therapy with polyethylene glycol adenine deaminase (PEG-ADA), which
she had to take as a back up.

Since the commencement of the first clinical trial, the field has grown
rapidly. Today there are close to 1000 ongoing gene therapy clinical trials
worldwide (Edelstein, 2004), most of which are targeted against cancer.
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Table 1 lists the most common clinical targets for gene therapy (http://
www.wiley.co.uk/genmed/clinical).

Unfortunately, gene therapy clinical trials experienced one drawback
after another as several clinical trials failed to show e‰cacy (Scollay, 2001).

In September 1999, the worst case scenario for gene therapy became re-
ality, when 18 year old Jesse Gelsinger took part in a gene therapy clinical
trial at the University of Pennsylvania in Philadelphia. He su¤ered from a
partial deficiency of ornithine transcarbamylase (OTC), a liver enzyme that
is required for the removal of excessive nitrogen from amino acids and pro-
teins. Four days after treatment, Jesse Gelsinger died because of multi-
organ failure. He was the first patient in whom death could be directly
linked to the viral vector used for the treatment. A little later, in April of
the following year the journal Science published an article from Maria
Cavazzana-Calvo et al. (Cavazzana-Calvo, 2000) where they reported the
first definitive cure of disease by gene therapy. Three young children su¤er-
ing from the fatal X-linked SCID-XI syndrome had developed a functional
immune system after gene therapy treatment. After that success several
more patients have been treated using the same gene therapy strategy.
Some years later 2 out of 11 treated patients had developed a leukaemia-
like disease obviously as a result of the use of the murine leukaemia virus
(MLV) vector (Hacein-Bey-Abina, 2003). After the tragedy of Jessie
Gelsinger’s death the number of approved clinical trials have decreased
worldwide (Fig. 1).

Nevertheless, despite these drawbacks gene therapy research and devel-
opment itself has never stopped, or slowed down. As a result of that, on
October the 16th 2003, China became the first country to approve the com-
mercial production of a gene therapy. Shenzhen SiBiono GenTech (Shen-

Table 1. Most common clinical targets for gene therapy. Edelstein, 2004. Gene

therapy clinical trials worldwide 1989–2004 – an overview. Copyright John Wiley

& Sons Limited. Reproduced with permission

Indications Gene therapy clinical trials

Number %

Cancer diseases 656 66,5
Monogenic diseases 93 9,4

Vascular diseases 80 8,1

Infectious diseases 65 6,6

Other diseases 29 2,9

Gene marking 52 5,3

Healthy volunteers 12 1,2

Total 987
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zhen, China), obtained a drug license from the State Food and Drug Ad-
ministration of China (SFDA; Beijing, China) for its recombinant Ad-p53
gene therapy (Gendicine) for head and neck squamous cell carcinoma
(HNSCC). At the same time there are some very promising ongoing gene
therapy clinical trials worldwide for the treatment of diseases such as tissue
ischemia (Morishita, 2004), cancer (Trask, 2000, Prados, 2003, Lamont,
2000, Immonen, 2004), haemophilia A or B (Monahan, & White, 2002)
and Parkinson’s disease (Howard, 2003) with potential for the launching
into the market. But so far the American Food and Drug Administration
(FDA) has not yet approved any human gene therapy product for sale.

Regarding the variety of areas where gene therapy could be applicable,
one notes that only a few are in fact directed to diseases of the central
nervous system (CNS). These areas include treatment of brain tumours,
e.g. glioblastoma, and degenerative conditions, e.g. Alzheimer’s disease
and Parkinson’s disease, and ischemic brain diseases.

Potential Areas for Gene Therapy in the Brain

The ‘‘tenacious start’’ of gene therapy for neurological diseases is not
really surprising, since gene therapy to the brain faces unique obstacles in
addition to those one faces with gene therapy in general. Evaluation of the
appropriate vector, route of administration, e‰ciency of the transgene ex-

Fig. 1. Decrease in the number of approved gene therapy clinical trials after the year

1999. Edelstein, 2004. Gene therapy clinical trials worldwide 1989–2004 – an overview.

Copyright John Wiley & Sons Limited. Reproduced with permission
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pression, and immune response against gene transfer vectors being used are
some of the problems one faces with gene therapy. In addition to those,
gene therapy to the brain has to overcome obstacles such as the blood
brain barrier and the limited space within the brain, which restricts the vol-
ume of gene transfer vectors that can be injected if administered locally.

Also, the lack of appropriate animal models for neurodegenerative dis-
ease such as Parkinson’s disease, or Alzheimer’s disease has been a prob-
lem. That again posed an obstacle that hindered gene therapy to move
into the clinic. However, in recent years tremendous strides have been
made in developing appropriate animal models of human neurodegenera-
tive diseases, and along the development of these animal models the move-
ment of gene therapy from benchside to the clinic has been justified.

Feasible areas of gene therapy in the brain include Alzheimer’s disease
(Mattson, 2004), ischemic brain diseases (Zadeh, & Guha, 2003), Parkin-
son’s disease (Samii, 2004), and brain tumours (Abelo¤, 2000), of which
gliomas have been the subject of the largest number of gene therapy strat-
egies (Chiocca, 2003). Also, epilepsy (Gutierrez-Delicado & Serratosa,
2004) amyotrophic lateral sclerosis (ALS), a motor neuron disease, (Weiss,
2004), lysosomal storage disease (LSD) (Futerman, & van Meer, 2004),
and Huntington’s disease (Hogarth, 2003) have been subject of numerous
promising gene therapy strategies. For example, approaches such as the
fibrinogen-galanin encoding adeno-associated viral vector gene therapy
(Haberman, 2003), the gene transfer of the Neuropeptide Y (Richichi,
2004), as well as the gene transfer of the aspartoacylase (ASPA) gene
(Seki, 2004, McPhee, 2005) has been used in studies against epilepsy. How-
ever, because of limited space, this review will be focusing only onto the
first four diseases mentioned above. The reader is referred to the following
references for more information about gene therapy in epilepsy (McCown,
2004), ALS (Boillée & Cleveland, 2004, Bruijn, 2004, Alisky & Davidson,
2000, Azzouz, 2004, Azzous, 2000, Pompl, 2003, Ascadi, 2002, Kaspar,
2003, Wang, 2002), LSD (Kaye & Sena-Esteves, 2002, Cabrera-Salazar,
2002, Eto & Ohashi, 2002), and Huntington’s disease (McBride, 2003,
Bemelmans, 1999, Bachoud-Levi, 2000, Bachoud-Levi, 1998, MacMillan,
1994).

Gene Therapy for Parkinson’s Disease

Diseases which are commonly related to aging have received major inter-
est worldwide. From an epidemiological perspective Parkinson’s disease
and Alzheimer’s disease share an increasing prevalence with aging, whereas
clinically they are characterized by di¤erent clinical symptoms and molec-
ular etiology with very limited potential for cure at present (Winkler, 1998).

The pathology of Parkinson’s disease reveals prominent loss of dopami-
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nergic neurons, especially in the substantia nigra, usually in connection
with the formation of extracellular inclusions, termed Lewy bodies. Clini-
cal symptoms usually do not appear in adults until when about 80% of
striatal dopamine and 50% of nigral neurons are lost (Samii, 2004).

Attaining focal, sustained physiologic delivery of L-Dopa or dopamine,
and preventing further death of dopaminergic neurons has been the main
focus of gene therapy of Parkinson’s disease (Finkelstein, 2001). This has
been achieved by mainly two di¤erent strategies. One strategy is to provide
localized growth factors to sustain dopaminergic neurons, preventing them
from undergoing apoptosis. The neuroprotective e¤ect of growth factors
has been demonstrated in several studies (Eberhardt & Schulz 2004).
Among these growth factors, glial cell line-derived neurotrophic factor
(GDNF) is one of the most promising candidates for gene therapy of
Parkinson’s disease. Studies using intracerebral injections of the recombi-
nant GDNF protein have shown that GDNF can provide almost complete
protection of nigral dopamine neurons against 6-hydroxydopamine (6-
OHDA) – or MPTP-induced damage in rodents and non-human primates,
promote axonal sprouting and regrowth of lesioned dopamine neurons,
and stimulate dopamine turnover and function in neurons spared by the
lesion (Björklund, 1997; Gash, 1998; Kordower, 2000).

Another approach to sustain physiological delivery of L-Dopa, or
dopamin is replacing/supplementing critical enzymes in the dopaminergic
pathway. The three most relevant enzymes for dopamin production are 1)
tyrosin hydroxylase, the rate limiting enzyme in the synthesis of dopamin,
2) GTP cyclohydrase (GCH), to generate more tetrahydrobiopterin (a es-
sential cofactor for TH) and 3) aromatic amino acid decarboxylase
(AADC), an enzyme that converts L-Dopa to dopamine. It became clear,
that these enzymes represent potential targets for gene therapy and there-
fore they have also been subjected to a lot of research (During, 1994,
Lampela, 2002, Sun, 2003; Eberling, 2003; Sanchez Pernaut, 2001; Shen,
2000). Also the delivery of the gene encoding for glutamate decarboxylase
(GAD) has been subjected to research (Luo, 2002). Currently, there are
two ongoing gene therapy clinical trials regarding Parkinson’s disease.
One uses the approach of subthalamic GAD gene transfer; the other uses
the approach of intrastriatal gene transfer of ADDC (www.gemcris.od.
nih.gov).

Gene Therapy for Alzheimer’s Disease

Alzheimer’s disease (AD) is the most common cause of dementia (Palmer,
2002). Dementia is a collective name for progressive degenerative brain
syndromes which a¤ect memory, thinking, behaviour and emotion. The
precise mechanisms that lead to this disease are not fully understood and
many genetic, cellular and molecular irregularities are implicated. Central
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to the disease, however, is the altered proteolytic processing of the amyloid
precursor protein (APP) resulting in the production and aggregation of
neurotoxic forms of amyloid b-peptide (Ab) (Mattson, M. P. 2004). In ad-
dition, neuropathological examination of AD brains reveals neuronal and
synaptic loss and neurofibrillary tangles. The progression of AD is slow,
starting with mild memory problems and ending with severe intellectual
impairment. It is the cognitive areas of the brain that are the first to be af-
fected from this disease leading, amongst other things, to memory loss and
behavioural abnormalities. It then spreads to the parts of the brain that
control movement. Eventually, the loss of brain function becomes so severe
that it can be the primary cause of death (Brown, 2003).

Several specific neurotransmitter systems are regularly and substantially
altered in AD brains. One of the most prominent systems a¤ected in the
course of AD are the cholinergic neurons of the nucleus basalis magno-
cellularis (NBM) (Winkler, 1998). Several gene therapy approaches have
been documented to be promising in experimental animal models. In this
regard, greatest interest as a potential gene therapy approach, and also sub-
ject of two ongoing clinical trials (www.gemcris.od.nih.gov), is the use of
nerve growth factor (NGF) as a neuroprotective molecule (Tuszynski,
2002, Wu, 2004, Winkler, 1998, Tuszynski, 1998). NGF has been shown
to be able to prevent the death of cholinergic neurons after axotomy, and
that it was also able to reverse spontaneous age-related morphological and
behavioural decline in rat (Kromer, 1987, Fisher, 1987). In addition to the
use of NGF for the treatment of AD, there are studies about the feasibility
of neprilysin (NEP) gene transfer for the treatment of Alzheimer’s disease.
Marr and colleagues (Marr, 2004) demonstrated that injection of NEP
expressing lentiviruses into the hippocampus of transgenic mice led to an
approximate 50% reduction in the number of amyloid plaques.

Gene Therapy for Vascular Brain Diseases

There are several potentially feasible applications of gene therapy for the
treatment of vascular brain diseases. One application is the prevention of
vasospasm after subarachnoid hemorrhage (SAH). Another application is
the stimulation of growth of collateral blood vessels in the area of ischemia,
and third, stabilization of atherosclerotic plaques, inhibition of thrombosis,
and prevention of restenosis after angioplasty of the carotid and posterior
circulation arteries (Toyoda, 2003).

Vasospasm after SAH typically occurs slowly several days after sub-
arachnoid hemorrhage (Dietrich, 2000), and therefore the timing for gene
therapy seems feasible, since maximal expression of the transgene occurs
usually a few days after gene transduction with viral vectors. In addition,
the risk of vasospasm after SAH is transient (Lüders, 2000). Thus, even
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with current available vectors, which provide transient transduction, gene
therapy for the prevention of vasospasm after subarachnoid hemorrhage
may be achievable. Gene therapy to prevent vasospasm after SAH has
been done, for instance, using endothelial NOS (eNOS) gene transfer.
Endothelial NOS improved NO-mediated relaxation in vitro after experi-
mental SAH (Onoue, 1998), but did not demonstrate a therapeutical e¤ect
in vivo after intracisternal injection of adenovirus containing the gene
for eNOS in dogs (Stoodley, 2000), even though an increase of cerebral
blood flow could be demonstrated in rats after intracisternal injections of
replication-defective adenovirus containing the gene for eNOS (Lüders,
2000). Compared to eNOS, injection of adenovirus containing the gene
for human extracellular superoxide dismutase (ECSOD) into the cisterna
magna 30 minutes after induction of experimental SAH, reduced cerebral
vasospasm after subarachnoid hemorrhage in rabbits (Watanabe, 2003).

Preservation of cerebral circulation and prevention of cerebral infarc-
tion could be achieved by stimulation of growth of collateral blood vessels.
A variety of growth factors have been reported to induce angiogenesis in
di¤erent experimental animal models (Ylä-Herttuala & Martin, 2000) and
have shown to be therapeutically e¤ective, many of them being used in
clinical trials of gene therapy. Growth factors that induce angiogenesis in-
clude vascular endothelial growth factors (VEGFs), basic fibroblast growth
factor (bFGF) (Ylä-Herttuala & Alitalo, 2003), and hepatocyte growth
factor (HGF) (Morishita, 2004). For angiogenesis in the brain, Yukawa
(Yukawa, 2000) demonstrated that adenoviral gene delivery of bFGF
into the cerebrospinal fluid (CSF) induced angiogenesis in the bilateral par-
aventricular region in rat brains.

Regarding ischemic stroke, the initial damage after stroke is not a fea-
sible target for gene therapy. That’s because the therapeutic window is (at
most) only a few hours after onset of ischemic stroke. At the same time the
expression of the transgene requires hours to days, depending on the vector
used. For that reason gene therapy strategies can be used only for preven-
tion of succeeding damages in the ischemic penumbra. Shimamura et al.
(Shimamura, 2004) demonstrated that gene transfer of HGF into the brain
resulted in attenuation of brain ischemic injury even if HGF was trans-
duced 24 hours after the ischemic event. Also, the expression of genes
such as Bcl-2 (Yenari, 2003), the 72-kD inducible heat shock protein
(HSP72) (Hoehn, 2001), or the cyclooxygenase-1 (COX-1) (Lin, 2002)
have also been demonstrated to reduce ischemic injury.

Some strategies focus on inhibition of genes that are expressed and
believed to be harmful after ischemic stroke, such as the interleukin-1 re-
ceptor (Yang, 1997). In addition, genes such as interleukin-10, transform-
ing growth factor-b1 (TGF-b1), glial cell line-derived neurotropic factor
(GDNF) (Shirakura, 2004), and nerve growth factor (NGF) (Shirakura,
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2004), have been targets for gene therapy (Shimamura, 2004). Fibroblastic
growth factor-2 (FGF-2) has been shown to decrease brain injury after ce-
rebral ischemia when administered systemically (Bethel, 1997). As a result
to that Shigeru et al. developed a systemic gene therapy using macrophages
infiltrating the infarct to deliver and express FGF-2 (Shigeru, et al. 2004).

So far none of the above mentioned strategies have reached clinical
trials.

Gene Therapy for Brain Tumours

Regarding brain tumours, malignant gliomas have been the primary target
for gene therapy. The average life expectancy of a patient diagnosed with
glioblastoma multiforme is 10 months after diagnoses (Ammirati, 1987).
Several therapeutic approaches to treat cancer are limited in their success
because of the lack of specificity of the drugs used for therapy. The thera-
peutic index of several cytotoxic drugs is very narrow, which limits the
possibility to reach e¤ective tissue concentrations. In addition, some of
the di‰culties encountered include inaccessibility to resective surgery be-
cause of the anatomical location of the tumour and because of infiltration
of tumour cells into surrounding tissues. For that reason gene therapy of
brain tumour has been one of the most exciting and elusive areas of thera-
peutic research in the past decade. It potentially represents one of the most
important developments in the treatment of brain tumours. However, gene
delivery to brain tumours is a formidable obstacle. Transduction rates > 5%
of the tumour mass are di‰cult to achieve (Puumalainen, 1998a), even in
experimental tumours. For that reason the therapeutic e¤ect must not be
limited only to transduced cells, but it must be able to exert a therapeutic
e¤ect on neighbouring, non-transduced, cells as well (bystander e¤ect).

One of the most studied gene therapy strategies in the treatment of
malignant gliomas is the combination of thymidine kinase and Ganci-
clovir. This approach has also been called ‘suicide’ gene therapy as the
non-toxic pro-drug is converted in transduced cells into a toxic molecule,
which can kill tumour cells (Fecci, 2002, Puumalainen, 1998b, Smitt, 2003,
Sandmair, 2000a, Sandmair, 2000b). Currently, there are 7 ongoing clinical
trials regarding thymidine kinase ganciclovir therapy (www.gemcris.od.
nih.gov) either alone or in combination with other gene therapy strategies.
Even though promising results regarding HSV-tk/ganciclovir therapy have
been obtained in human trials using adenoviral vectors (Immonen, 2004)
there have been also failures regarding therapeutic e‰cacy of HSV-tk/
ganciclovir therapy when a retroviral vector was used for gene transfer
(Rainov, 2000, Shand, 1999).

In addition to thymidine kinase ganciclovir treatment there are three
other well characterized pro-drug activating systems that have been used
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in experimental animal models in the treatment of gliomas. These are the
Escherichia coli cytosine deaminase/5-fluorocytosin (CD/5-FC) (Miller,
2002), the rat cytochrome P450 2B1/cyclophosphamide (CPA) (Manome,
1996, Ichikawa, 2001) and the Escherichia coli reductase/CB1954 system
(Friedlos, 1998, Weedon, 2000, Palmer, 2004). (Connors, 1995)

Other gene therapy strategies are triggering apoptosis in tumour cells
via tumour suppressor genes (such as p53, Fas, ras, TNF-a and caspases)
(Shimoura & Hamada, 2003), inhibition of angiogenesis (Puduvalli, 2004,
Kirsch, 2000, Tanaka, 1998), augmentation of extracellular matrix protein
expression (Lakka, 2003, Mohanam, 2002), modulation of the immune
system (Friese, 2003, Yamanaka, 2003, Witham, 2003, and Yang, 2004),
eradication of the tumour via oncolytic viruses (Rainov & Ren, 2003, Gro-
meier & Wimmer, 2001, Lou, 2004), and the use of small interfering RNA
(siRNA) (Uchida, 2004), ribozymes (Ge, 1995), and antisense oligonucleo-
tides (Gondi, 2004, Datta, 2004). Also, the generation of fusion proteins
that are expressed on the surface of cell membranes and capable of binding
a specific ligand could be used for the treatment of brain tumours. We
recently constructed and demonstrated the functionality of two di¤erent
avidin-fusion proteins in vitro and in vivo using viral vector expression sys-
tems in rat brain (Lehtolainen, et al. 2002, and Lehtolainen, et al. 2003).

In vivo studies have demonstrated that avidin-fusion protein expressed
in rat malignant glioma cells were capable of binding biotinylated mole-
cules administered either locally to the brain or systemically into the right
carotid artery. Systemically administered biotinylated ligands targeted with
high specificity to the intracerebral tumours of rats that were expressing the
fusion protein. This again could be achieved by local gene transfer of the
target tissue with the fusion protein, followed by i.v. administration of a
biotinylated drug (Lehtolainen, 2003). These results suggest, that local
gene transfer of the fusion protein to target tumour may o¤er a novel tool
for the delivery of biotinylated molecules in vitro and in vivo for therapeutic
and imaging purposes, o¤ering a possibility for an enhanced local e¤ect
and a decreased systemic exposure to toxic therapeutic compounds or the
imaging agents.

Challenges of Gene Therapy in the Brain

As mentioned earlier, gene therapy to the brain faces unique di‰culties in
addition to the general issues one faces with gene therapy. A major limiting
factor is the delivery of the gene to the brain. The brain is surrounded by
the blood brain barrier (BBB), which most gene expression vectors do not
naturally cross. The BBB is a capillary barrier that results from a continu-
ous layer of endothelial cells bound together with tight junctions. The
endothelial barrier excludes molecules from the brain based on electric
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charge, lipid solubility and molecular weight. Special transport systems are
available at brain capillaries for glucose, amino acids, amines, purines,
nucleosides, and organic acids. All other materials must cross between
endothelial cells (paracellular route) or across cytoplasm (transcellular
route) to move from the capillary blood into the tissue (Haluska &
Anthony, 2004). Molecules of greater than >500 kDa do not pass in gen-
eral the BBB. In result to that, under normal conditions large biological
molecules such as antibodies and complexes such as viruses have no or
very little access across the BBB (Neuwelt, et al. 1995, Pardridge, 2002).
However, there are viruses that naturally do cross the BBB. One example
of these is the Semliki Forest Virus (Fazakerley, 2004).

There are three main strategies of gene expression vector delivery into
the brain that have been studied in animal models: 1) Stereotactic inocula-
tion of the gene expression vector into the brain (Qureshi, 2000), 2) intra-
thecal or intraventricular administration of the gene expression vector
(Shimamura, 2003), and 3) intravascular application of the gene expression
vector (Rainov, 1999). Of those three methods the stereotactic inoculation

Fig. 2. The principle of biotin binding fusion proteins expressed on the cell surface of

the target cell. The target cell/tissue is transduced with an appropriate gene transfer

vector containing the gene for Avidin-fusion protein. The cell synthesizes the protein

and transports it to the cell membrane. After binding of a biotinylated molecule the

Avidin-fusion protein is endocytosed into the cytoplasm of the cell with the biotiny-

lated molecule. The biotinylated molecule is released inside the cytoplasm and the

Av-fusion protein is transported back to the cell surface, ready to bind another biotiny-

lated molecule

Gene Technology Based Therapies 13



of gene expression vector by burrhole is the most commonly used strategy.
So far, only the stereotactic inoculation or the craniotomy based inocula-
tion of gene expression vector, including injection into the wall of the
tumour cavity, and the intrathecal injection methods, have reached clinical
trials.

The intracerebral injection of gene expression vectors is the simplest
approach for local gene therapy (e.g. for gene therapy of brain tumours)
and an easy way of solving the problems caused by the BBB. In addition,
it has the advantage of targeting the vector mechanically into the treatment
area. However, there still remain some obstacles to overcome. For exam-
ple, direct intraparenchymal injections are limited by the small volumes
that can be injected into focal and extracellular areas. Also, di¤usion of
the gene transfer vector is very low. The gene expression vectors do not sig-
nificantly penetrate into brain parenchyma, which means that the trans-
duced area may be restricted to only a few micrometers. (Puumalainen,
1998b, Rainov & Kramm, 2001, Hsich, 2002) However, a recently devel-
oped method to improve the tissue distribution of macromolecules, such
as viruses, or liposomes to the brain is the bulk flow convection-enhanced
infusion that maintains a pressure gradient during interstitial infusion
(Bobo, 1994, Saito, 2004, Nguyen, et al. 2003).

The delivery of genes into the brain via the transvascular route has been
attempted through BBB disruption using a intracarotid infusion of hyper-
osmolar solutions and vasoactive compounds. One of the earliest techni-
ques and the first to be used in humans was the injection of a sugar solution
into arteries of the neck (Neuwelt, 1980, Greg, 2002). The idea of using
hyperosmolar solution is that the resulting high sugar concentration in the
capillaries sucks water out of the endothelial cells, shrinking them and
opening gaps between cells. The disadvantage of this approach, however,
is that it requires arterial access, and the disruption of the BBB may lead
to chronic neuropathological changes in the brain. Blood proteins such as
albumin are toxic to the brain cells and BBB disruption allows blood com-
ponents to enter the brain (Schlachetzki, et al. 2004). Another strategy to
deliver genes through the BBB is the use of certain endogenous transport
systems within the BBB. The capillary endothelium, which forms the
BBB, expresses receptor-mediated transcytosis systems for certain endoge-
nous peptides, such as insulin and transferrin, (Pardridge, 2002aþb). This
strategy has been mainly used in the context of non-viral gene transfer vec-
tors, e.g. with liposomes. Liposomes covered with peptides or antibodies
that bind to a specific transcytotic receptor on the endothelium of the
BBB are also often referred to as ‘‘Trojan horses’’. These ‘‘Trojan horses’’
have been mainly developed and used for cancer treatment (Pardridge,
2002aþb).

In addition to the problems related to the BBB there is a second major
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impediment that remains to be overcome when using viral gene transfer
vectors: the immune system. Immune-mediated vector toxicity has been
reported with a broad range of viral vectors, including herpes simplex
viruses (Wood, 1994, Bowers, 2003, Wakimoto, 2003), adenoviruses and
adeno-associated viruses (Lowenstein & Castro, 2003, Joos & Chirmule,
2003, Sun, 2003, Byrnes, 1995, Kajiwara, 2000), and retroviruses (Rainov,
2000b). It has been shown that in animals intravascular injection of viral
vectors induces the release of cytokines, interleukins, activates macro-
phages, induces T-cell and B-cell responses, induces viral neutralizing anti-
bodies, and induces the activation of the endothelium (Lowenstein, 2004).
The majority of immunological studies regarding viral vectors have
been done with adenoviruses and HSV-1. For example, Wood et al.
(Wood, 1994) described a strong inflammatory response, characterized by
di¤use up-regulation of major histocompatibility complex class I antigens
and the activation of microglia after stereotactic injection of a defective
HSV-1 vector into rat brain. In general, an immune response can be gener-
ated against both, the virion and the proteins expressed by the viral genome.

The extent of inflammatory and immune response to other viral vectors
such as with alphaviruses, and adeno-associated viruses injected into the
brain remains to be elucidated in more detail.

Targeting of the gene transfer vectors to target cells and avoidance of
the transduction of unwanted non-target cells is a general problem in gene
transfer based therapies. Regarding brain gene therapy several approaches
have been tackled in order to target gene transfer vectors to neuronal/
cancer cells. These include amongst other things the use of a) tissue specific
promoters such as the human PDGF-beta, the neuron specific enolase or
the glial fibrillary acidic protein promoter (Liu, 2004, Jakobsson, 2003),
b) antibody based targeting (e.g. liposomes) or re-targeting (e.g. adeno-
virus) of the gene transfer vectors (Zhang, 2004, Miller, 1998), or c) con-
ditionally replicating viruses (Gomez-Manzano, 2004, Markert, 2000).
Figure 3 gives an example of how adenoviruses for example can be modi-
fied in order to make them cell or tissue type specific.

Gene Transfer Vectors

There are two main types of gene delivery vectors: viral and non-viral vec-
tors. Retroviruses/lentiviruses, recombinant herpes simplex virus, adeno-
viruses, and adeno-associated viruses are the most common viral vectors
that have been used for the delivery of genes into the CNS. More recently,
there have been studies also about the possible use of Baculoviruses
(Lehtolainen, 2002, Tani, 2003) Semliki Forest viruses (SFV) (Lundstrom,
2001), Sindbis virus (Ehrengruber, 2002) and recombinant Simian virus-40
(SV40) (Cordelier, 2003) for gene therapy in the brain.
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Fig. 3. Targeting of adenoviruses can be achieved by (A) re-directing the vector capsid

to new cellular receptors using molecular adaptors, such bi-specific antibodies, through

(B) placing the transgene under the control of a cell type-specific promoter, or through

(C) genetically modifying them into conditionally replicating viruses



Viral Gene Transfer Vectors

Retroviruses

DNA can be introduced into cells using retrovirus vectors. Retroviruses
allow stable integration of expressed genes. The retroviridae are a large
group of viruses associated with many diseases ranging from completely
benign infections to fatal conditions such as HIV and tumours caused by
oncogenic viruses (Co‰n, 1990). Brain tumours are theoretically suitable
for retrovirus-mediated gene transfer, since retroviruses only infect prolifer-
ating cells, while normal, generally non-dividing brain tissue remains intact
(Miller, 1990). However, the failure of a phase III trial where 248 patients
with newly diagnosed, previously untreated glioblastoma multiforme were
treated by retrovirus-mediated transduction of glioblastoma cells with the
HSV-tk gene and subsequent systemic treatment with ganciclovir, was a
drawback for the retroviral vector. Especially, since the failure of that trial
was mainly attributed to poor rate of delivery of the HSV-tk gene (Rainov,
2000a).

Recently, retroviral vectors based on lentiviruses (such as the human
immunodeficiency virus) have been developed that are capable of transduc-
ing also non-dividing cells in a long lasting manner (Naldini, 1996, Kirik &
Bjorklund, 2003, Jakobsson, 2003). Since retroviruses are integrating vec-
tors one concern has been the possibility of random integration of foreign
DNA into target cells, carrying the potential risk of insertional mutagene-
sis, the perturbation of other genes involved in growth control, or inactiva-
tion of tumour suppressor genes (Temin, 1990). However, especially in
cancer gene therapy the risk of insertional mutagenesis is only of minimal
concern. Despite some safety and ethical concerns about the use of lenti-
viruses, they seem to be feasible gene transfer vectors to the brain (Van
den Haute, 2003, Marr, 2003, Watson & Wolfe, 2003, Koponen, 2003,
Regulier, 2002).

Herpes Simplex Virus-1 (HSV-1)

HSV’s have some characteristics that render them particularly suitable for
use as neuronal vectors. They are neurotropic, and hence, infect neurons
e‰ciently. In addition, they can accommodate large inserts, since approxi-
mately half of its genome is composed of non-essential genes that can be
replaced with heterologous genes. Another interesting feature of HSV is
that it can be transported retrogradely in neurons and transferred across
synapses. (Simonato, 2000) Replication defective HSV-1 vectors are pro-
duced by deleting all, or a combination, of the five immediate-early genes
(ICP0, ICO4, ICO22, ICP27 and ICP47) (Thomas, 2003), which are
required for lytic infection and expression of all other viral proteins. Vec-
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tors derived from HSV-1 still remain capable to infect a wide range of cell
types – including neurons in the CNS.

A number of attenuated strains have been developed. Thymidine
kinase/Ganciclovir therapy for brain tumour has been successfully applied
with HSV-tk viruses transfecting the tumour to express the thymidine kin-
ase gene (Todo, 2000, Moriuchi, 1998, Kramm, 1996). Disadvantages with
the use of HSV-1 vectors are lytic infections and potential neurotoxicity
(Zlokovic & Apuzzo, 1997). Because HSV-1 do not have a long lasting
gene expression, their use is mainly restricted to brain tumours.

Adenoviruses

Adenoviruses are large, double stranded DNA viruses which can carry
large fragments of foreign DNA. Adenoviruses exist extrachromosomally
within the cell although the DNA migrate into the cell nuclei. Adeno-
viruses have a known tropism for pulmonary and intestinal epithelial cells;
they are not neurotoxic and are linked to only minor diseases in human.
Adenoviruses have a broad host and cell range. They are capable of high-
e‰ciency gene delivery into a variety of organs, including lung, skeletal
muscle, heart, liver, blood vessels and the central nervous system (Sand-
mair, 2000b). For these reasons recombinant adenoviral vectors have been
extensively used in experimental models, as well as in clinical protocols.
Because of their broad host and cell range adenoviruses have been modified
by di¤erent means to make them specific to certain cell types (Fig. 3). One
approach involves genetically modifying the fibre knob, through which at-
tachment of the virus to the cell receptor and entry into the cell occurs. A
second approach is immunological modification of the adenovirus tropism
using bi-specific molecules that on one side bind to the fibre knob or the
penton base of the adenovirus, and on the other side bind to the cell surface
receptor, di¤erent from the viral receptor (Wickham, 2003).

Also, specificity of adenoviruses has been achieved using tissue specific
promoters, such as the human synapsin 1 gene promoter for neuron specific
transgene expression (Kugler, 2003), or more recently, using conditionally
replicating adenoviruses (Steinwaerder, 2001). The use of genes such as the
HSV-thymidine kinase gene that specifically targets dividing/tumour cells
has also been studied extensively (Moolten, 1994).

Adeno-Associated Virus (AAV’s)

So far, eight distinct AAV serotypes have been identified which infect dif-
ferent cell types with di¤erent e‰ciency (Thomas, 2003). However, most
recombinant AAV vectors have been derived from AAV2 and most of the
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in vivo studies have been performed using AAV2 vectors containing the
strong cytomegalovirus immediate-early (CMV) promoter (Tenenbaum,
2004). AAV vectors have been shown to transduce a broad range of neural
cells. Transduction e‰ciency, however, varies markedly from one region to
another.

AAV vectors are integrating vectors. Wild-type AAV integrates exclu-
sively into a single site on human chromosome 19, whereas it appears that
AAV recombinants integrate much less e‰ciently and more randomly
(Balague, 1997). AAV vectors have been shown to give sustained transgene
expression upon in vivo administration. Expression of homologous genes
has been detected two years after injection in mice and several months after
injection in dogs, primates, and man. (Mountain 2000) AAV vectors can
transfer genes e‰ciently to both quiescent and proliferating cells. The
main disadvantages of AAV vectors are the small insert size they can ac-
commodate and the use of helper viruses in the manufacturing process,
which caused problems, such as low titre, contamination and costly purifi-
cation procedures. However, progress has been made in manufacturing
process, which allows high-titre production without helper viruses. (Fer-
rari, 1997, Snyder & Flotte 2002, During, 2003)

Currently, there are two ongoing brain gene therapy clinical trials
where AAV vectors are used for the treatment of Parkinson’s disease
(www.gemcris.od.nih.gov).

Non-Viral Vectors

Viral vectors have been shown to be e‰cient gene transfer tools. Neverthe-
less, drawbacks, such as the bloodstream’s rapid clearance of viral vectors
(when injected systemically), their immunogenic and inflammatory poten-
tial, together with certain safety concerns, urged the development of new
synthetic gene delivery vectors. (Poly)cationic carriers and cationic lipids
have been studied extensively as alternatives for viral vectors (da Cruz,
2004, Anderson, 2003, Lesage, 2002, Goldman, 1997). The (poly)cationic
carriers possess groups which are protonated at physiological pH. The elec-
trostatic attraction between the cationic charged polymer and the nega-
tively charged DNA results in a particular complex – the polyplex, which
is the transduction reagent. As with (poly)cationic carriers, cationic lipids
posses additionally a hydrophobic group, which ensures that the cationic
lipids assemble into bi-layer vesicles on dispersion in aqueous media
(Brown, 2001). A great advantage of non-viral vectors is that they can be
produced more easily than viral vectors. However, compared to viral gene
transfer vectors these non-viral vectors are facing di¤erent types of prob-
lems, such as binding to plasma proteins or blood cells, which can lead to
aggregates and clogging of capillaries (Ogris & Wagner, 2002).
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Ethics

Gene therapy raises many questions among the society. They raise concern
about their safety in humans and their o¤spring, their environment
safety, and their impact on the status within the society; Is it going to be a
treatment modality only accessible for a certain group of people (people
with a high social status) or is it going to be accessible for everyone?
Opinions and points of views about gene therapy vary from one extreme
to another. Cultural as well as religious points of views have strong impact
on these standpoints.

Several questions have to be asked in order to justify gene therapy in
humans; Questions such as which are the diseases where gene therapy is
ethically acceptable? It appears that gene therapy is more tolerated for
life-threatening diseases (e.g. diseases like cancer or AIDS) than e.g. in the
correction of a learning disorders (Rabino, 2003). Also, somatic gene ther-
apy appears to be more tolerated than germline gene therapy. Several ques-
tions have to be asked in order to justify gene therapy in humans, like
which are the diseases where gene therapy is ethically acceptable? Where
the use of gene therapy in the treatment of a genetic disease (e.g. cancer)
might be ethically justified, how about when dealing with genetic ‘dis-
orders’? Would it be ethically acceptable to practise gene therapy on peo-
ple with Down’s syndrome? What is the justification of using gene therapy
in those people?

Fig. 4. Obstacles for positively charged non-viral gene transfer vectors within the

blood circulation. (1) They can bind to plasma proteins or (2) blood cells, and (3)

aggregates can clog capillaries. In addition, one of the major drawbacks of non-viral

vectors is their low transducing e‰ciency in vivo (Ogris, 2002)
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In addition to issues raised above there are also technical issues con-
cerning the justification of gene therapy in humans. For example, what
are the technical details of the DNA and vector to be used? The technical
aspects involved, risks endeavoured by the patient, and the fear of human
genetic engineering are some of the major reasons why human gene ther-
apy experiments have long been delayed.

The use of viral gene transfer vectors, such as lentiviruses raises scepti-
cism about the safety of these vectors. Non-viral vectors are not yet e‰-
cient enough, but have gained better acceptance in the society. It looks
like gene therapy of brain tumours will be ethically acceptable whereas
the use of genetically modified stem cells may be a much more di‰cult top-
ic. However, the normal principles of good clinical research apply in the
conduct of the ethical evaluation of gene therapy protocols as well. The
integrity and free will of a patient should be respected, all available infor-
mation for the informed consent should be given, and the safety of an indi-
vidual must be the first concern of the treatment protocol.

Concluding Remarks

There is extensive research going on in the field of gene therapy and espe-
cially malignant glioma, which has been subject of an increasing interest as
a possible target for it. AdHSV-tk/ganciclovir gene therapy is one of the
research lines with some promising results in early clinical trials that need
to be confirmed in larger patient series (Immonen, 2004). However, there
still remain obstacles that have to be overcome, especially when talking
about gene therapy into the brain. Gene transfer vectors have to be able
to cross the BBB. The induction of immune response for some vectors
must be avoided, and the production of viral vectors in large scale has to
be optimized. Nevertheless, there is no doubt that none of these problems
mentioned above are problems that can not be resolved.
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